CERN Accelerating science

CERN Document Server 1 záznamov nájdených  Hľadanie trvalo 0.99 sekúnd. 
1.
Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines / Schenk, Michael (CERN) ; Combarro, Elías F. (U. Oviedo (main)) ; Grossi, Michele (CERN) ; Kain, Verena (CERN) ; Li, Kevin Shing Bruce (CERN) ; Popa, Mircea-Marian (Bucharest, Polytechnic Inst.) ; Vallecorsa, Sofia (CERN)
Free energy-based reinforcement learning (FERL) with clamped quantum Boltzmann machines (QBM) was shown to significantly improve the learning efficiency compared to classical Q-learning with the restriction, however, to discrete state-action space environments. In this paper, the FERL approach is extended to multi-dimensional continuous state-action space environments to open the doors for a broader range of real-world applications. [...]
arXiv:2209.11044.- 2024-02-21 - 17 p. - Published in : Quantum Sci. Technol. 9 (2024) 025012 Fulltext: Publication - PDF; 2209.11044 - PDF;

Prajete si byť pravidelne informovaný o výsledkoch tohto hľadania?
Založte si osobný email alert alebo použite RSS feed.
Nenašli ste čo ste hľadali? Skúste Vašu otázku na iných serveroch:
recid:2893039 v Amazon
recid:2893039 v CERN EDMS
recid:2893039 v CERN Intranet
recid:2893039 v CiteSeer
recid:2893039 v Google Books
recid:2893039 v Google Scholar
recid:2893039 v Google Web
recid:2893039 v IEC
recid:2893039 v IHS
recid:2893039 v INSPIRE
recid:2893039 v ISO
recid:2893039 v KISS Books/Journals
recid:2893039 v KISS Preprints
recid:2893039 v NEBIS
recid:2893039 v SLAC Library Catalog