CERN Accelerating science

CERN Document Server 2,047 elementer funnet  1 - 10nesteslutt  gå til element: Søket tok 1.18 sekunder. 
1.
Application of Quantum Machine Learning using the Quantum Kernel Algorithm on High Energy Physics Analysis at the LHC / Wu, Sau Lan (Wisconsin U., Madison) ; Sun, Shaojun (Wisconsin U., Madison) ; Guan, Wen (Wisconsin U., Madison) ; Zhou, Chen (Wisconsin U., Madison) ; Chan, Jay (Wisconsin U., Madison) ; Cheng, Chi Lung (Wisconsin U., Madison) ; Pham, Tuan (Wisconsin U., Madison) ; Qian, Yan (Wisconsin U., Madison) ; Wang, Alex Zeng (Wisconsin U., Madison) ; Zhang, Rui (Wisconsin U., Madison) et al.
Quantum machine learning could possibly become a valuable alternative to classical machine learning for applications in High Energy Physics by offering computational speed-ups. In this study, we employ a support vector machine with a quantum kernel estimator (QSVM-Kernel method) to a recent LHC flagship physics analysis: $t\bar{t}H$ (Higgs boson production in association with a top quark pair). [...]
arXiv:2104.05059; FERMILAB-PUB-21-552-DI-QIS.- 2021-09-08 - 9 p. - Published in : Phys. Rev. Res. 3 (2021) 033221 Fulltext: PDF; Fulltext from Publisher: PDF; Fulltext from publisher: PDF; External link: Fermilab Library Server
2.
Quantum-centric Supercomputing for Materials Science: A Perspective on Challenges and Future Directions / Alexeev, Yuri (Argonne, PHY) ; Amsler, Maximilian (Unlisted, DE) ; Barroca, Marco Antonio (Rio de Janeiro, IMPA ; Rio de Janeiro, CBPF) ; Bassini, Sanzio (CINECA) ; Battelle, Torey (Arizona State U.) ; Camps, Daan (LBL, Berkeley) ; Casanova, David (Donostia Intl. Phys. Ctr., San Sebastian ; IKERBASQUE, Bilbao ; Basque U., Bilbao) ; Choi, Young Jai (Yonsei U.) ; Chong, Frederic T. (Chicago U.) ; Chung, Charles (IBM Watson Res. Ctr.) et al.
Computational models are an essential tool for the design, characterization, and discovery of novel materials. Hard computational tasks in materials science stretch the limits of existing high-performance supercomputing centers, consuming much of their simulation, analysis, and data resources. [...]
arXiv:2312.09733; FERMILAB-PUB-24-0001-SQMS.- 2024-05-31 - 45 p. - Published in : Future Gener. Comput. Syst. 160 (2024) 666-710 Fulltext: FERMILAB-PUB-24-0001-SQMS - PDF; 990a7c5cfb7293c88d2918a117658c8c - PDF; 2312.09733 - PDF; External link: Fermilab Accepted Manuscript
3.
Application of Quantum Machine Learning to High Energy Physics Analysis at LHC Using Quantum Computer Simulators and Quantum Computer Hardware / Wu, Sau Lan (Wisconsin U., Madison) ; Chan, Jay (Wisconsin U., Madison) ; Cheng, Alkaid (Wisconsin U., Madison) ; Guan, Wen (Wisconsin U., Madison) ; Sun, Shaojun (Wisconsin U., Madison) ; Wang, Alex (Wisconsin U., Madison) ; Zhang, Rui (Wisconsin U., Madison) ; Zhou, Chen (Wisconsin U., Madison) ; Livny, Miron (U. Wisconsin, Madison (main)) ; Di Meglio, Alberto (CERN) et al.
Machine learning enjoys widespread success in High Energy Physics (HEP) analyses at LHC. However the ambitious HL-LHC program will require much more computing resources in the next two decades. [...]
FERMILAB-CONF-22-331-DI-QIS.- 2022 - 8 p. - Published in : PoS EPS-HEP2021 (2022) 842 Fulltext: 9e81af30dcb178c482ac8c56f379040d - PDF; document - PDF; External link: Fermilab Library Server
In : European Physics Society conference on High Energy Physics 2021, Online, Online, 26 - 30 Jul 2021, pp.842
4.
Application of Quantum Machine Learning using the Quantum Variational Classifier Method to High Energy Physics Analysis at the LHC on IBM Quantum Computer Simulator and Hardware with 10 qubits / Wu, Sau Lan (Wisconsin U., Madison) ; Chan, Jay (Wisconsin U., Madison) ; Guan, Wen (Wisconsin U., Madison) ; Sun, Shaojun (Wisconsin U., Madison) ; Wang, Alex (Wisconsin U., Madison) ; Zhou, Chen (Wisconsin U., Madison) ; Livny, Miron (Wisconsin U., Madison) ; Carminati, Federico (CERN) ; Di Meglio, Alberto (CERN) ; Li, Andy C.Y. (Fermilab) et al.
One of the major objectives of the experimental programs at the LHC is the discovery of new physics. This requires the identification of rare signals in immense backgrounds. [...]
arXiv:2012.11560; FERMILAB-PUB-20-675-DI-QIS.- 2021-10-26 - 12 p. - Published in : J. Phys. G 48 (2021) 125003 Fulltext: 2012.11560 - PDF; fermilab-pub-20-675-di-qis - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
5.
High-Energy and Ultra-High-Energy Neutrinos: A Snowmass White Paper / Ackermann, Markus (DESY, Zeuthen) ; Bustamante, Mauricio (Bohr Inst.) ; Lu, Lu (Wisconsin U., Madison) ; Otte, Nepomuk (Georgia Tech., Atlanta) ; Reno, Mary Hall (Iowa U.) ; Wissel, Stephanie (Penn State U., University Park, IGC) ; Agarwalla, Sanjib K. (Bhubaneswar, Inst. Phys. ; HBNI, Mumbai ; ICTP, Trieste) ; Alvarez-Muñiz, Jaime (Santiago de Compostela U., IGFAE) ; Alves Batista, Rafael (U. Autonoma, Madrid (main)) ; Argüelles, Carlos A. (Harvard U.) et al.
Astrophysical neutrinos are excellent probes of astroparticle physics and high-energy physics. With energies far beyond solar, supernovae, atmospheric, and accelerator neutrinos, high-energy and ultra-high-energy neutrinos probe fundamental physics from the TeV scale to the EeV scale and beyond. [...]
arXiv:2203.08096.- 2022-11 - 56 p. - Published in : JHEAp: 36 (2022) , pp. 55-110 Fulltext: PDF; External link: eConf
In : 2021 Snowmass Summer Study, Seattle, WA, United States, 11 - 20 July 2021, pp.55-110
6.
lenstronomy II: A gravitational lensing software ecosystem / Birrer, Simon (KIPAC, Menlo Park ; SLAC) ; Shajib, Anowar J. (Chicago U., Astron. Astrophys. Ctr. ; UCLA) ; Gilman, Daniel (Toronto U., Astron. Dept.) ; Galan, Aymeric (CERN ; Ecole Polytechnique, Lausanne) ; Aalbers, Jelle (KIPAC, Menlo Park ; SLAC) ; Millon, Martin (CERN ; Ecole Polytechnique, Lausanne) ; Morgan, Robert (Wisconsin U., Madison) ; Pagano, Giulia ; Park, Ji Won (KIPAC, Menlo Park ; SLAC) ; Teodori, Luca et al.
lenstronomy is an Astropy-affiliated Python package for gravitational lensing simulations and analyses. lenstronomy was introduced by Birrer and Amara (2018) and is based on the linear basis set approach by Birrer et a. [...]
arXiv:2106.05976.- 2021-06-08 - Published in : J. Open Source Softw. 6 (2021) 3283 Fulltext: 2106.05976 - PDF; document - PDF;
7.
The AWAKE Run 2 programme and beyond / AWAKE Collaboration
Plasma wakefield acceleration is a promising technology to reduce the size of particle accelerators. Use of high energy protons to drive wakefields in plasma has been demonstrated during Run 1 of the AWAKE programme at CERN. [...]
arXiv:2206.06040.- 2022-08-12 - 21 p. - Published in : Symmetry 14 (2022) 1680 Fulltext: document - PDF; 2206.06040 - PDF;
8.
Development of the Self-Modulation Instability of a Relativistic Proton Bunch in Plasma / AWAKE Collaboration
Self-modulation is a beam-plasma instability that is useful to drive large-amplitude wakefields with bunches much longer than the plasma skin depth. We present experimental results showing that, when increasing the ratio between the initial transverse size of the bunch and the plasma skin depth, the instability occurs later along the bunch, or not at all, over a fixed plasma length, because the amplitude of the initial wakefields decreases. [...]
arXiv:2305.05478.- 2023-08-01 - 10 p. - Published in : Phys. Plasmas 30 (2023) 083104 Fulltext: 2305.05478 - PDF; Publication - PDF;
9.
Measurements of the suppression and correlations of dijets in Xe+Xe collisions at $\sqrt{s_{NN}}$ = 5.44 TeV / ATLAS Collaboration
Measurements of the suppression and correlations of dijets is performed using 3 $\mu$b$^{-1}$ of Xe+Xe data at $\sqrt{s_{\mathrm{NN}}} = 5.44$ TeV collected with the ATLAS detector at the LHC. Dijets with jets reconstructed using the $R=0.4$ anti-$k_t$ algorithm are measured differentially in jet $p_{\text{T}}$ over the range of 32 GeV to 398 GeV and the centrality of the collisions. [...]
arXiv:2302.03967; CERN-EP-2023-001.- Geneva : CERN, 2023-08-09 - 25 p. - Published in : Phys. Rev. C 108 (2023) 024906 Fulltext: ANA-HION-2018-28-PAPER - PDF; 2302.03967 - PDF; Publication - PDF; External link: Previous draft version
10.
Search for bottom-squark pair production in $pp$ collision events at $\sqrt{s} = 13$ TeV with hadronically decaying $\tau$-leptons, $b$-jets and missing transverse momentum using the ATLAS detector / ATLAS Collaboration
A search for pair production of bottom squarks in events with hadronically decaying $\tau$-leptons, $b$-tagged jets and large missing transverse momentum is presented. The analyzed dataset is based on proton-proton collisions at $\sqrt{s}$ = 13 TeV delivered by the Large Hadron Collider and recorded by the ATLAS detector from 2015 to 2018, and corresponds to an integrated luminosity of 139 fb$^{-1}$. [...]
arXiv:2103.08189; CERN-EP-2020-235.- Geneva : CERN, 2021-08-01 - 31 p. - Published in : Phys. Rev. D 104 (2021) 032014 Fulltext: PDF; Fulltext from publisher: PDF; External link: Previous draft version

Fant du ikke det du lette etter? Gjenta søket på andre tjenere:
recid:2764310 i Amazon
recid:2764310 i CERN EDMS
recid:2764310 i CERN Intranet
recid:2764310 i CiteSeer
recid:2764310 i Google Books
recid:2764310 i Google Scholar
recid:2764310 i Google Web
recid:2764310 i IEC
recid:2764310 i IHS
recid:2764310 i INSPIRE
recid:2764310 i ISO
recid:2764310 i KISS Books/Journals
recid:2764310 i KISS Preprints
recid:2764310 i NEBIS
recid:2764310 i SLAC Library Catalog