CERN Accelerating science

CERN Document Server 1 のレコードが見つかりました。  検索にかかった時間: 0.69 秒 
1.
Hybrid actor-critic algorithm for quantum reinforcement learning at CERN beam lines / Schenk, Michael (CERN) ; Combarro, Elías F. (U. Oviedo (main)) ; Grossi, Michele (CERN) ; Kain, Verena (CERN) ; Li, Kevin Shing Bruce (CERN) ; Popa, Mircea-Marian (Bucharest, Polytechnic Inst.) ; Vallecorsa, Sofia (CERN)
Free energy-based reinforcement learning (FERL) with clamped quantum Boltzmann machines (QBM) was shown to significantly improve the learning efficiency compared to classical Q-learning with the restriction, however, to discrete state-action space environments. In this paper, the FERL approach is extended to multi-dimensional continuous state-action space environments to open the doors for a broader range of real-world applications. [...]
arXiv:2209.11044.- 2024-02-21 - 17 p. - Published in : Quantum Sci. Technol. 9 (2024) 025012 Fulltext: Publication - PDF; 2209.11044 - PDF;

Interested in being notified about new results for this query?
Set up a personal email alert or subscribe to the RSS feed.
捜していたものを見つけなかったならば、他のサーバーもお試しください:
recid:2893039 中の Amazon
recid:2893039 中の CERN EDMS
recid:2893039 中の CERN Intranet
recid:2893039 中の CiteSeer
recid:2893039 中の Google Books
recid:2893039 中の Google Scholar
recid:2893039 中の Google Web
recid:2893039 中の IEC
recid:2893039 中の IHS
recid:2893039 中の INSPIRE
recid:2893039 中の ISO
recid:2893039 中の KISS Books/Journals
recid:2893039 中の KISS Preprints
recid:2893039 中の NEBIS
recid:2893039 中の SLAC Library Catalog