CERN Accelerating science

CERN Document Server 2,039 のレコードが見つかりました。  1 - 10次最後  レコードへジャンプ: 検索にかかった時間: 0.79 秒 
1.
Three-loop contributions to the $\rho$ parameter and iterated integrals of modular forms / Abreu, Samuel (Louvain U., CP3) ; Becchetti, Matteo (Louvain U., CP3) ; Duhr, Claude (CERN) ; Marzucca, Robin (Durham U., IPPP)
We compute fully analytic results for the three-loop diagrams involving two different massive quark flavours contributing to the $\rho$ parameter in the Standard Model. We find that the results involve exactly the same class of functions that appears in the well-known sunrise and banana graphs, namely elliptic polylogarithms and iterated integrals of modular forms. [...]
arXiv:1912.02747; CERN-TH-2019-210; CP3-19-53; IPPP/19/90.- 2020-02-07 - 38 p. - Published in : JHEP 2002 (2020) 050 Article from SCOAP3: scoap3-fulltext - PDF; ddbcba117252a4493a580783cf786f86 - PDFPDFA; Fulltext: PDF; External link: Article from SCOAP3
2.
An analytic solution for the equal-mass banana graph / Broedel, Johannes (Humboldt U., Berlin) ; Duhr, Claude (CERN ; Louvain U., CP3) ; Dulat, Falko (SLAC) ; Marzucca, Robin (Louvain U., CP3) ; Penante, Brenda (CERN) ; Tancredi, Lorenzo (CERN)
We present fully analytic results for all master integrals for the three-loop banana graph with four equal and non-zero masses. The results are remarkably simple and all integrals are expressed as linear combinations of iterated integrals of modular forms of uniform weight for the same congruence subgroup as for the two-loop equal-mass sunrise graph. [...]
arXiv:1907.03787; CP3-19-34; CERN-TH-2019-105; HU-Mathematik-2019-04; HU-EP-19/20, SLAC-PUB-17453; HU-EP-19/20, SLAC-PUB-17453.- 2019-09-16 - 36 p. - Published in : JHEP 1909 (2019) 112 Article from SCOAP3: PDF; Fulltext: PDF;
3.
Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series / Broedel, Johannes (Humboldt U., Berlin) ; Duhr, Claude (CERN ; Louvain U., CP3) ; Dulat, Falko (SLAC) ; Penante, Brenda (CERN) ; Tancredi, Lorenzo (CERN)
We present a generalization of the symbol calculus from ordinary multiple polylogarithms to their elliptic counterparts. Our formalism is based on a special case of a coaction on large classes of periods that is applied in particular to elliptic polylogarithms and iterated integrals of modular forms. [...]
arXiv:1803.10256; CP3-18-24; CERN-TH-2018-057; HU-Mathematik-2018-03; HU-EP-18/09; SLAC-PUB-17240.- 2018-08-07 - 65 p. - Published in : JHEP 08 (2018) 014 Article from SCOAP3: scoap3-fulltext - PDF; scoap - PDF; Fulltext: arXiv:1803.10256 - PDF; 1803.10256 - PDF;
4.
PolyLogTools - Polylogs for the masses / Duhr, Claude (CERN ; Louvain U., CP3) ; Dulat, Falko (SLAC)
We review recent developments in the study of multiple polylogarithms, including the Hopf algebra of the multiple polylogarithms and the symbol map, as well as the construction of single valued multiple polylogarithms and discuss an algorithm for finding fibration bases. We document how these algorithms are implemented in the Mathematica package PolyLogTools and show how it can be used to study the coproduct structure of polylogarithmic expressions and how to compute iterated parametric integrals over polylogarithmic expressions that show up in Feynman integal computations at low loop orders..
arXiv:1904.07279; CP3-19-17; CERN-TH-2019-045; SLAC-PUB-17423.- 2019-08-23 - 55 p. - Published in : JHEP 1908 (2019) 135 Article from SCOAP3: scoap3-fulltext - PDF; scoap - PDF; Fulltext: PDF;
5.
Elliptic polylogarithms and iterated integrals on elliptic curves II: an application to the sunrise integral / Broedel, Johannes (Humboldt U., Berlin, Inst. Math. ; Humboldt U., Berlin) ; Duhr, Claude (CERN ; Louvain U., CP3) ; Dulat, Falko (SLAC) ; Tancredi, Lorenzo (CERN)
We introduce a class of iterated integrals that generalize multiple polylogarithms to elliptic curves. These elliptic multiple polylogarithms are closely related to similar functions defined in pure math- ematics and string theory. [...]
arXiv:1712.07095; CERN-TH-2017-274; CP3-17-58; HU-EP-17-30; HU-Mathematik-2017-10; SLAC-PUB-17195.- 2018-06-13 - 19 p. - Published in : Phys. Rev. D 97 (2018) 116009 Article from SCOAP3: PDF; Fulltext: arXiv:1712.07095 - PDF; fulltext - XML;
6.
Elliptic Feynman integrals and pure functions / Broedel, Johannes (Humboldt U., Berlin) ; Duhr, Claude (CERN ; Louvain U., CP3) ; Dulat, Falko (SLAC) ; Penante, Brenda (CERN) ; Tancredi, Lorenzo (CERN)
We propose a variant of elliptic multiple polylogarithms that have at most logarithmic singularities in all variables and satisfy a differential equation without homogeneous term. We investigate several non-trivial elliptic two-loop Feynman integrals with up to three external legs and express them in terms of our functions. [...]
arXiv:1809.10698; CP3-18-58; CERN-TH-2018-211; HU-Mathematik-2018-09; HU-EP-18/29; SLAC-PUB-17336.- 2019-01-03 - 47 p. - Published in : JHEP 1901 (2019) 023 Article from SCOAP3: scoap3-fulltext - PDF; scoap - PDF; Fulltext: PDF;
7.
Three-loop corrections to the soft anomalous dimension in multileg scattering / Almelid, Øyvind (U. Edinburgh, Higgs Ctr. Theor. Phys.) ; Duhr, Claude (CERN ; Louvain U., CP3) ; Gardi, Einan (U. Edinburgh, Higgs Ctr. Theor. Phys.)
We present the three-loop result for the soft anomalous dimension governing long-distance singularities of multi-leg gauge-theory scattering amplitudes of massless partons. We compute all contributing webs involving semi-infinite Wilson lines at three loops and obtain the complete three-loop correction to the dipole formula. [...]
arXiv:1507.00047; CERN-PH-TH-2015-148; CP3-15-18; EDINBURGH 2015-08.- Geneva : CERN, 2016 - 6 p. - Published in : Phys. Rev. Lett. 117 (2016) 172002 APS Open Access article: PDF; Fulltext: PDF; Preprint: PDF; External link: Preprint
8.
Elliptic polylogarithms and iterated integrals on elliptic curves I: general formalism / Broedel, Johannes (Humboldt U., Berlin, Inst. Math. ; Humboldt U., Berlin) ; Duhr, Claude (CERN ; Louvain U., CP3) ; Dulat, Falko (SLAC) ; Tancredi, Lorenzo (CERN)
We introduce a class of iterated integrals, defined through a set of linearly independent integration kernels on elliptic curves. As a direct generalisation of multiple polylogarithms, we construct our set of integration kernels ensuring that they have at most simple poles, implying that the iterated integrals have at most logarithmic singularities. [...]
arXiv:1712.07089; CERN-TH-2017-273; CP3-17-57; HU-EP-17-29; HU-Mathematik-2017-09; SLAC-PUB-17194; CERN-TH-2017-273.- 2018-05-15 - 54 p. - Published in : JHEP 05 (2018) 093 Article from SCOAP3: scoap3-fulltext - PDF; scoap - PDF; Fulltext: PDF;
9.
Elliptic polylogarithms and Feynman parameter integrals / Broedel, Johannes (Humboldt U., Berlin, Inst. Math.) ; Duhr, Claude (CERN ; Louvain U., CP3) ; Dulat, Falko (SLAC) ; Penante, Brenda (CERN) ; Tancredi, Lorenzo (CERN)
In this paper we study the calculation of multiloop Feynman integrals that cannot be expressed in terms of multiple polylogarithms. We show in detail how certain types of two- and three-point functions at two loops, which appear in the calculation of higher order corrections in QED, QCD and in the electroweak theory (EW), can naturally be expressed in terms of a recently introduced elliptic generalisation of multiple polylogarithms by direct integration over their Feynman parameter representation. [...]
arXiv:1902.09971; CP3-19-07; CERN-TH-2019-016; HU-Mathematik-2019-01; HU-EP-19/03, SLAC-PUB-17406; HU-EP-19/03, SLAC-PUB-17406.- 2019-05-21 - 37 p. - Published in : JHEP 05 (2019) 120 Article from SCOAP3: PDF; Fulltext: PDF;
10.
From positive geometries to a coaction on hypergeometric functions / Abreu, Samuel (Louvain U., CP3) ; Britto, Ruth (Trinity Coll., Dublin ; Hamilton Math. Inst., Dublin ; IPhT, Saclay) ; Duhr, Claude (CERN) ; Gardi, Einan (U. Edinburgh, Higgs Ctr. Theor. Phys.) ; Matthew, James (U. Edinburgh, Higgs Ctr. Theor. Phys.)
It is well known that Feynman integrals in dimensional regularization often evaluate to functions of hypergeometric type. Inspired by a recent proposal for a coaction on one-loop Feynman integrals in dimensional regularization, we use intersection numbers and twisted homology theory to define a coaction on certain hypergeometric functions. [...]
arXiv:1910.08358; CERN-TH-2019-168.- 2020-02-20 - 45 p. - Published in : JHEP 2002 (2020) 122 Article from SCOAP3: 5ec5b198a3165fc4cc32fea91e2ebad0 - PDFPDFA; scoap3-fulltext - PDF; Fulltext: PDF; External link: Article from SCOAP3

捜していたものを見つけなかったならば、他のサーバーもお試しください:
recid:2705804 中の Amazon
recid:2705804 中の CERN EDMS
recid:2705804 中の CERN Intranet
recid:2705804 中の CiteSeer
recid:2705804 中の Google Books
recid:2705804 中の Google Scholar
recid:2705804 中の Google Web
recid:2705804 中の IEC
recid:2705804 中の IHS
recid:2705804 中の INSPIRE
recid:2705804 中の ISO
recid:2705804 中の KISS Books/Journals
recid:2705804 中の KISS Preprints
recid:2705804 中の NEBIS
recid:2705804 中の SLAC Library Catalog