CERN Accelerating science

CERN Document Server 6 ჩანაწერია ნაპოვნი  ძიებას დასჭირდა 1.40 წამი. 
1.
Highly-parallelized simulation of a pixelated LArTPC on a GPU / DUNE Collaboration
The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. [...]
arXiv:2212.09807; FERMILAB-PUB-22-926-LBNF.- 2023-04-26 - 26 p. - Published in : JINST 18 (2023) P04034 Fulltext: 2212.09807 - PDF; 81def4c089fd89d474ade1e24d67c3df - PDF; FERMILAB-PUB-22-926-LBNF - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
2.
DUNE Offline Computing Conceptual Design Report / DUNE Collaboration
This document describes the conceptual design for the Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE). [...]
arXiv:2210.15665 ; FERMILAB-DESIGN-2022-01.
- 229.
Fermilab Library Server - Fulltext - Fulltext
3.
Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora / DUNE Collaboration
The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. [...]
arXiv:2206.14521; FERMILAB-PUB-22-488-AD-ESH-LBNF-ND-SCD; CERN-EP-DRAFT-MISC-2022-007.- 2023-07-14 - 39 p. - Published in : Eur. Phys. J. C 83 (2023) 618 Fulltext: jt - PDF; 2206.14521 - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
4.
Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC / DUNE Collaboration
DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6x6x6m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. [...]
arXiv:2203.16134; CERN-EP-DRAFT-MISC-2022-003; FERMILAB-PUB-22-242-LBNF; CERN-EP-DRAFT-MISC-2022-003; FERMILAB-PUB-22-242-LBNF.- 2022-07-16 - 31 p. - Published in : Eur. Phys. J. C 82 (2022) 618 Fulltext: 2203.16134 - PDF; Publication - PDF; jt - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
5.
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network / DUNE Collaboration
Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). [...]
arXiv:2203.17053; FERMILAB-PUB-22-240-AD-ESH-LBNF-ND-SCD; CERN-EP-2022-077.- Geneva : CERN, 2022-10-12 - 31 p. - Published in : Eur. Phys. J. C 82 (2022) 903 Fulltext: CERN-EP-DRAFT-MISC-2022-002 - PDF; 2203.17053 - PDF; jt - PDF; Fulltext from Publisher: PDF; Fulltext from publisher: PDF; External link: Fermilab Library Server
6.
Extracting low energy signals from raw LArTPC waveforms using deep learning techniques — A proof of concept / Uboldi, Lorenzo (CERN) ; Ruth, David (Unlisted, US, IL) ; Andrews, Michael (Carnegie Mellon U.) ; Wang, Michael H.L.S. (Fermilab) ; Wenzel, Hans Joachim (Fermilab) ; Wu, Wanwei (Fermilab) ; Yang, Tingjun (Fermilab)
We investigate the feasibility of using deep learning techniques, in the form of a one-dimensional convolutional neural network (1D-CNN), for the extraction of signals from the raw waveforms produced by the individual channels of liquid argon time projection chamber (LArTPC) detectors. A minimal generic LArTPC detector model is developed to generate realistic noise and signal waveforms used to train and test the 1D-CNN, and evaluate its performance on low-level signals. [...]
arXiv:2106.09911; FERMILAB-PUB-21-030-ND-SCD.- 2022-04-01 - 9 p. - Published in : Nucl. Instrum. Methods Phys. Res., A 1028 (2022) 166371 Fulltext: fermilab-pub-21-030-nd-scd - PDF; 2106.09911 - PDF; External link: Fermilab Library Server

ასევე იხილეთ: მსგავსი ავტორის სახელები
8 Uboldi, L.
გნებავთ შეტყობინების მიღება, ამ კითხვაზე ახალი პასუხების შემთხვევაში?
დააყენეთ პირადი ელფოსტის შეტყობინება ან ჩაეწერეთ RSS ფიდზე.
ვერ იპოვნეთ რასაც ეძებდით? სცადეთ თქვენი ძებნა სხვა სერვერებზე:
Uboldi, Lorenzo ში Amazon
Uboldi, Lorenzo ში CERN EDMS
Uboldi, Lorenzo ში CERN Intranet
Uboldi, Lorenzo ში CiteSeer
Uboldi, Lorenzo ში Google Books
Uboldi, Lorenzo ში Google Scholar
Uboldi, Lorenzo ში Google Web
Uboldi, Lorenzo ში IEC
Uboldi, Lorenzo ში IHS
Uboldi, Lorenzo ში INSPIRE
Uboldi, Lorenzo ში ISO
Uboldi, Lorenzo ში KISS Books/Journals
Uboldi, Lorenzo ში KISS Preprints
Uboldi, Lorenzo ში NEBIS
Uboldi, Lorenzo ში SLAC Library Catalog
Uboldi, Lorenzo ში Scirus