CERN Accelerating science

CERN Document Server Pronađeno je 28 zapisa  1 - 10slijedećikraj  idi na zapis: Pretraživanje je potrajalo 1.22 sekundi 
1.
Measurement of the fractional radiation length of a pixel module for the CMS Phase-2 upgrade via the multiple scattering of positrons / Tracker Group of the CMS Collaboration
High-luminosity particle collider experiments such as the ones planned at the High-Luminosity Large Hadron Collider require ever-greater vertexing precision of the tracking detectors, necessitating also reductions in the material budget of the detectors. Traditionally, the fractional radiation length ($x/X_0$) of detectors is either estimated using known properties of the constituent materials, or measured in dedicated runs of the final detector. [...]
arXiv:2407.13721; CERN-CMS-NOTE-2024-005.- Geneva : CERN, 2024-10-16 - 42 p. - Published in : JINST 19 (2024) P10023 Fulltext: cc31400e03af7929e4432fc48d857519 - PDF; NOTE2024_005 - PDF; 2407.13721 - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
2.
Snowmass 2021 Computational Frontier CompF03 Topical Group Report: Machine Learning / Shanahan, Phiala (MIT) ; Terao, Kazuhiro (SLAC) ; Whiteson, Daniel (UC, Irvine) ; Aarts, Gert (Swansea U. ; ECT, Trento ; Fond. Bruno Kessler, Trento) ; Adelmann, Andreas (Northeastern U. ; PSI, Villigen) ; Akchurin, N. (Texas Tech.) ; Alexandru, Andrei (George Washington U. ; Maryland U.) ; Amram, Oz (Johns Hopkins U.) ; Andreassen, Anders (Google Inc.) ; Apresyan, Artur (Fermilab) et al.
The rapidly-developing intersection of machine learning (ML) with high-energy physics (HEP) presents both opportunities and challenges to our community. [...]
arXiv:2209.07559 ; FERMILAB-CONF-22-719-ND-PPD-QIS-SCD.
-
Fermilab Library Server - eConf - Fulltext - Fulltext
3.
A General Introduction to Machine Learning (whenever possible with a twist towards accelerators) / Adelmann, Andreas (speaker) (PSI)
Abstract: This module will give an overview of Machine Learning (ML) and its methodologies and examples of applications. As an hors d'oeuvre, we will make a transition from statistics to machine learning using regression models. Then we will discover the beauty and power of deep neural networks - one of the most flexible approaches to supervised learning. Unsupervised Learning will free us from labeled data, as an application we look at clustering. The last method we will discover is reinforcement learning. [...]
2022 - 3803. Academic Training Lecture Regular Programme, 2021-2022 External link: Event details In : A General Introduction to Machine Learning (whenever possible with a twist towards accelerators)
4.
A General Introduction to Machine Learning (whenever possible with a twist towards accelerators) / Adelmann, Andreas (speaker) (PSI)
Abstract: This module will give an overview of Machine Learning (ML) and its methodologies and examples of applications. As an hors d'oeuvre, we will make a transition from statistics to machine learning using regression models. Then we will discover the beauty and power of deep neural networks - one of the most flexible approaches to supervised learning. Unsupervised Learning will free us from labeled data, as an application we look at clustering. The last method we will discover is reinforcement learning. [...]
2022 - 5052. Academic Training Lecture Regular Programme, 2021-2022 External link: Event details In : A General Introduction to Machine Learning (whenever possible with a twist towards accelerators)
5.
Search for the muon electric dipole moment using frozen-spin technique at PSI / muon EDM initiative Collaboration
The presence of a permanent electric dipole moment in an elementary particle implies Charge-Parity symmetry violation and thus could help explain the matter-antimatter asymmetry observed in our universe. Within the context of the Standard Model, the electric dipole moment of elementary particles is extremely small. [...]
arXiv:2201.08729.- 2022-03-31 - 5 p.
- Published in : PoS: NuFact2021 (2022) , pp. 136 Fulltext: 2201.08729 - PDF; document - PDF;
In : 22nd International Workshop on Neutrinos from Accelerators (NuFact 2021), Cagliari, Italy, 6 - 11 Sep 2021, pp.136
6.
Uncertainty quantification analysis and optimization for proton therapy beam lines / Rizzoglio, V (PSI, Villigen ; CERN) ; Adelmann, A (PSI, Villigen) ; Gerbershagen, A (PSI, Villigen ; CERN) ; Meer, D (PSI, Villigen) ; Nesteruk, K P (PSI, Villigen) ; Schippers, J M (PSI, Villigen)
Since many years proton therapy is an effective treatment solution against deep-seated tumors. A precise quantification of sources of uncertainty in each proton therapy aspect (e.g. [...]
2020 - 8 p. - Published in : Physica Medica 75 (2020) 11-18
7.
Search for a muon EDM using the frozen-spin technique / Adelmann, A. (ETH, Zurich (main) ; PSI, Villigen) ; Backhaus, M. (ETH, Zurich (main)) ; Chavez Barajas, C. (Liverpool U.) ; Berger, N. (Mainz U., Inst. Phys.) ; Bowcock, T. (Liverpool U.) ; Calzolaio, C. (PSI, Villigen) ; Cavoto, G. (Rome U. ; INFN, Rome) ; Chislett, R. (University Coll. London) ; Crivellin, A. (PSI, Villigen ; CERN ; U. Zurich (main)) ; Daum, M. (PSI, Villigen) et al.
This letter of intent proposes an experiment to search for an electric dipole moment of the muon based on the frozen-spin technique. [...]
arXiv:2102.08838.
- 28 p.
Fulltext
8.
Scientific opportunies for bERLinPro 2020+, report with ideas and conclusions from bERLinProCamp 2019 / Kamps, Thorsten (Helmholtz-Zentrum, Berlin ; Humboldt U., Berlin (main)) ; Abo-Bakr, Michael (Helmholtz-Zentrum, Berlin) ; Adelmann, Andreas (PSI, Villigen) ; Andre, Kevin (CERN) ; Angal-Kalinin, Deepa ; Armborst, Felix (Helmholtz-Zentrum, Berlin) ; Arnold, Andre (HZDR, Dresden) ; Arnold, Michaela (Darmstadt, Tech. U.) ; Amador, Raymond (Humboldt U., Berlin (main)) ; Benson, Stephen (Jefferson Lab) et al.
The Energy Recovery Linac (ERL) paradigm offers the promise to generate intense electron beams of superior quality with extremely small six-dimensional phase space for many applications in the physical sciences, materials science, chemistry, health, information technology and security. [...]
arXiv:1910.00881.
- 2019. - 7 p.
Fulltext
9.
Opportunities in Machine Learning for Particle Accelerators / Edelen, A. (SLAC) ; Mayes, C. (SLAC) ; Bowring, D. (Fermilab) ; Ratner, D. (SLAC) ; Adelmann, A. (PSI, Villigen) ; Ischebeck, R. (PSI, Villigen) ; Snuverink, J. (PSI, Villigen) ; Agapov, I. (DESY) ; Kammering, R. (DESY) ; Edelen, J. (RadiaSoft, Boulder) et al.
Machine learning (ML) is a subfield of artificial intelligence. [...]
arXiv:1811.03172 ; FERMILAB-PUB-19-017-AD.
- 2018. - 25 p.
Fermilab Library Server (fulltext available) - Fulltext - Fulltext
10.
Intensity limits of the PSI Injector II cyclotron / Kolano, Anna (CERN ; PSI, Villigen ; Huddersfield U.) ; Adelmann, Andreas (PSI, Villigen) ; Barlow, Roger (Huddersfield U.) ; Baumgarten, Christian (PSI, Villigen)
We investigate limits on the current of the PSI Injector II high intensity separate-sector isochronous cyclotron, in its present configuration and after a proposed upgrade. Accelerator Driven Subcritical Reactors, neutron and neutrino experiments, and medical isotope production all benefit from increases in current, even at the ~ 10% level: the PSI cyclotrons provide relevant experience. [...]
arXiv:1707.07970.- 2018-03-21 - 6 p. - Published in : Nucl. Instrum. Methods Phys. Res., A 885 (2018) 54-59 Preprint: PDF;

CERN Document Server : Pronađeno je 28 zapisa   1 - 10slijedećikraj  idi na zapis:
Također vidi: slična imena autora
26 Adelmann, A
23 Adelmann, Andreas
Interested in being notified about new results for this query?
Set up a personal email alert or subscribe to the RSS feed.
Niste pronašli ono što ste htjeli? Pokušajte pretražiti na ovim serverima:
Adelmann, A. u Amazon
Adelmann, A. u CERN EDMS
Adelmann, A. u CERN Intranet
Adelmann, A. u CiteSeer
Adelmann, A. u Google Books
Adelmann, A. u Google Scholar
Adelmann, A. u Google Web
Adelmann, A. u IEC
Adelmann, A. u IHS
Adelmann, A. u INSPIRE
Adelmann, A. u ISO
Adelmann, A. u KISS Books/Journals
Adelmann, A. u KISS Preprints
Adelmann, A. u NEBIS
Adelmann, A. u SLAC Library Catalog
Adelmann, A. u Scirus