1.
|
The second data release from the European Pulsar Timing Array - IV. Implications for massive black holes, dark matter, and the early Universe
/ EPTA Collaboration
The European Pulsar Timing Array (EPTA) and Indian Pulsar Timing Array (InPTA) collaborations have measured a low-frequency common signal in the combination of their second and first data releases respectively, with the correlation properties of a gravitational wave background (GWB). Such signal may have its origin in a number of physical processes including a cosmic population of inspiralling supermassive black hole binaries (SMBHBs); inflation, phase transitions, cosmic strings and tensor mode generation by non-linear evolution of scalar perturbations in the early Universe; oscillations of the Galactic potential in the presence of ultra-light dark matter (ULDM). [...]
arXiv:2306.16227.-
2024-05-01 - 30 p.
- Published in : Astron. Astrophys. 685 (2024) A94
Fulltext: document - PDF; 2306.16227 - PDF;
|
|
2.
|
EuPRAXIA – a compact, cost-efficient particle and radiation source
/ Weikum, M K (DESY) ; Akhter, T (INFN, Naples) ; Alesini, P D (LNF, Dafne Light) ; Alexandrova, A S (Cockcroft Inst. Accel. Sci. Tech. ; Liverpool U.) ; Anania, M P (LNF, Dafne Light) ; Andreev, N E (Lebedev Inst. ; Moscow, MIPT) ; Andriyash, I (SOLEIL, Saint-Aubin) ; Aschikhin, A (DESY) ; Assmann, R W (DESY) ; Audet, T (LPGP, Orsay) et al.
Plasma accelerators present one of the most suitable candidates for the development of more compact particle
acceleration technologies, yet they still lag behind radiofrequency (RF)-based devices when it comes to beam quality,
control, stability and power efficiency. The Horizon 2020-funded project EuPRAXIA (“European Plasma Research
Accelerator with eXcellence In Applications”) aims to overcome the first three of these hurdles by developing a
conceptual design for a first international user facility based on plasma acceleration. [...]
2019 - 9 p.
- Published in : AIP Conf. Proc. 2160 (2019) 040012
In : 25th Conference on Application of Accelerators in Research and Industry (CAARI 2018), Grapevine, TX, United States, 12 - 17 Aug 2018, pp.040012
|
|
3.
|
Nanoplasmonic Accelerators Towards Tens of TeraVolts per Meter Gradients Using Nanomaterials
/ Sahai, Aakash A (Colorado U., Denver) ; Golkowski, Mark (Colorado U., Denver) ; Harid, Vijay (Colorado U., Denver) ; Joshi, Chan (UCLA) ; Katsouleas, Tom (Connecticut U.) ; Latina, Andrea (CERN) ; Resta-López, Javier (Valencia U.) ; Taborek, Peter (UC, Irvine) ; Thomas, Alexander (Michigan U.) ; Zimmermann, Frank (CERN)
Ultra-high gradients which are critical for future advances in high-energy physics, have so far relied on plasma and dielectric accelerating structures. While bulk crystals were predicted to offer unparalleled TV/m gradients that are at least two orders of magnitude higher than gaseous plasmas, crystal-based acceleration has not been realized in practice. [...]
Geneva : JACoW, 2021 - 4 p.
- Published in : JACoW IPAC 2021 (2021) 574-577
Fulltext: PDF;
In : 12th International Particle Accelerator Conference (IPAC 2021), Online, 24 - 28 May 2021, pp.574-577
|
|
4.
|
EuPRAXIA Conceptual Design Report
/ Assmann, R W (DESY) ; Weikum, M K (DESY) ; Akhter, T (INFN, Naples) ; Alesini, D (Frascati) ; Alexandrova, A S (Cockcroft Inst. Accel. Sci. Tech. ; U. Liverpool (main)) ; Anania, M P (Frascati) ; Andreev, N E (ITAE, Moscow ; Moscow, MIPT) ; Andriyash, I (Weizmann Inst.) ; Artioli, M (ENEA, Bologna) ; Aschikhin, A (DESY) et al.
This report presents the conceptual design of a new European research infrastructure EuPRAXIA. The concept has been established over the last four years in a unique collaboration of 41 laboratories within a Horizon 2020 design study funded by the European Union. [...]
2020 - 610 p.
- Published in : Eur. Phys. J. Spec. Top. 229 (2020) 3675-4284 - Published in : Eur. Phys. J. Spec. Top. 229 (2020) 11-31
Fulltext from Publisher: PDF;
|
|
5.
|
Shaping trailing beams for beam loading via beam-induced-ionization injection at FACET
/ Amorim, Lígia Diana (SUNY, Stony Brook) ; Vafaei-Najafabadi, Navid (SUNY, Stony Brook) ; Emma, Claudio (SLAC) ; Clarke, Christine I (SLAC) ; Green, Selina Z (SLAC) ; Storey, Doug (SLAC) ; White, Glen (SLAC) ; O'Shea, Brendan (SLAC) ; Hogan, Mark J (SLAC) ; Yakimenko, Vitaly (SLAC) et al.
Recent progress in plasma based accelerator technology has demonstrated its ability to deliver high energy (GeV) beams in compact structures (centimeter to meter scale plasmas). Current developments of that technology are oriented toward producing beams with quality and energy spread comparable to those obtained using standard accelerating structures. [...]
2019 - 10 p.
- Published in : Phys. Rev. Accel. Beams 22 (2019) 111303
Fulltext: PDF;
|
|
6.
|
Status of the Horizon 2020 EuPRAXIA conceptual design study
/ Weikum, Maria (DESY) ; Akhter, Tahmina (INFN, Naples ; U. Naples (main)) ; Alesini, David (Frascati) ; Alexandrova, Alexandra (U. Liverpool (main) ; Cockcroft Inst. Accel. Sci. Tech.) ; Anania, Maria Pia (Frascati) ; Andreev, Nikolay (Moscow, Inst. High Temp. ; Moscow, MIPT) ; Andriyash, Igor (Weizmann Inst.) ; Aschikhin, Alexander (DESY) ; Aßmann, Ralph (DESY) ; Audet, Thomas (LPGP, Orsay) et al.
The Horizon 2020 Project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). [...]
CERN-ACC-2019-225.-
2019 - 5 p.
- Published in : 10.18429/JACoW-IPAC2019-THPGW026
Preprint: PDF;
In : 10th International Particle Accelerator Conference, Melbourne, Australia, 19 - 24 May 2019, pp.THPGW026
|
|
7.
|
Producing multi-coloured bunches through beam-induced ionization injection in plasma wakefield accelerator
/ Vafaei-Najafabadi, N (Stony Brook U.) ; Amorim, L D (Stony Brook U.) ; Adli, E (Oslo U.) ; An, W (UCLA) ; Clarke, C I (SLAC) ; Clayton, C E (UCLA) ; Corde, S (Palaiseau, Lab. Opt. Appl.) ; Gessner, S (CERN) ; Green, S Z (SLAC) ; Hogan, M J (SLAC) et al.
This paper discusses the properties of electron beams formed in plasma wakefield accelerators through ionization injection. In particular, the potential for generating a beam composed of co-located multi-colour beamlets is demonstrated in the case where the ionization is initiated by the evolving charge field of the drive beam itself. [...]
2019
- Published in : Philos. Trans. R. Soc. Lond. A 377 (2019) 20180184
In : Directions in particle beam-driven plasma wakefield acceleration : Theo Murphy meeting, Newport Pagnell, Buckinghamshire, UK, 4 - 5 Jun 2019, pp.20180184
|
|
8.
|
Betatron radiation and emittance growth in plasma wakefield accelerators
/ San Miguel Claveria, P (Palaiseau, Lab. Opt. Appl.) ; Adli, E (Oslo U.) ; Amorim, L D (Stony Brook U.) ; An, W (UCLA) ; Clayton, C E (UCLA) ; Corde, S (Palaiseau, Lab. Opt. Appl.) ; Gessner, S (CERN) ; Hogan, M J (SLAC) ; Joshi, C (UCLA) ; Kononenko, O (Palaiseau, Lab. Opt. Appl.) et al.
Beam-driven plasma wakefield acceleration (PWFA) has demonstrated significant progress during the past two decades of research. The new Facility for Advanced Accelerator Experimental Tests (FACET) II, currently under construction, will provide 10 GeV electron beams with unprecedented parameters for the next generation of PWFA experiments. [...]
2019 - 9 p.
- Published in : Philos. Trans. R. Soc. Lond. A 377 (2019) 20180173
Fulltext from publisher: PDF;
In : Directions in particle beam-driven plasma wakefield acceleration : Theo Murphy meeting, Newport Pagnell, Buckinghamshire, UK, 4 - 5 Jun 2019, pp.20180173
|
|
9.
|
Plasma wakefield acceleration experiments at FACET II
/ Joshi, C (UCLA) ; Adli, E (Oslo U.) ; An, W (UCLA) ; Clayton, C E (UCLA) ; Corde, S (Palaiseau, Lab. Opt. Appl.) ; Gessner, S (CERN) ; Hogan, M J (SLAC) ; Litos, M (Colorado U.) ; Lu, W (Tsinghua U., Beijing, Dept. Eng. Phys.) ; Marsh, K A (UCLA) et al.
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. [...]
2018 - 14 p.
- Published in : Plasma Phys. Control. Fusion 60 (2018) 034001
Fulltext: PDF;
|
|
10.
|
Measurement of transverse wakefields induced by a misaligned positron bunch in a hollow channel plasma accelerator
/ Lindstrøm, C.A. (Oslo U.) ; Adli, E. (Oslo U.) ; Allen, J.M. (SLAC) ; An, W. (UCLA, Los Angeles (main)) ; Beekman, C. (Palaiseau, Lab. Opt. Appl.) ; Clarke, C.I. (SLAC) ; Clayton, C.E. (UCLA, Los Angeles (main)) ; Corde, S. (Palaiseau, Lab. Opt. Appl.) ; Doche, A. (Palaiseau, Lab. Opt. Appl.) ; Frederico, J. (SLAC) et al.
Hollow channel plasma wakefield acceleration is a proposed method to provide high acceleration gradients for electrons and positrons alike: a key to future lepton colliders. However, beams which are misaligned from the channel axis induce strong transverse wakefields, deflecting beams and reducing the collider luminosity. [...]
arXiv:1802.09000.-
2018-03-27 - 5 p.
- Published in : Phys. Rev. Lett. 120 (2018) 124802
Fulltext: PDF; Fulltext from Publisher: PDF;
|
|