CERN Accelerating science

CERN Document Server 20 Datensätze gefunden  1 - 10nächste  gehen zum Datensatz: Die Suche hat 0.68 Sekunden gedauert. 
1.
The ALPHA-2 apparatus - facilitating experimentation with trapped antihydrogen / Akbari, R (British Columbia U.) ; Alves, B X R (Aarhus U.) ; Baker, C J (Swansea U.) ; Baquero-Ruiz, M (LPHE, Lausanne) ; Bertsche, W (Cockcroft Inst. Accel. Sci. Tech. ; Manchester U.) ; Butler, E (CERN) ; Burrows, C (Swansea U.) ; Capra, A (TRIUMF) ; Cesar, C L (Rio de Janeiro Federal U.) ; Charlton, M (Swansea U.) et al.
This paper describes the ALPHA-2 apparatus, used at the CERN Antiproton Decelerator facility for the study of trapped antihydrogen atoms. Details of both the construction and performance are included. [...]
2025 - 24 p. - Published in : Nucl. Instrum. Methods Phys. Res., A 1072 (2025) 170194 Fulltext: PDF;
2.
Precision spectroscopy of the hyperfine components of the 1S–2S transition in antihydrogen / Baker, C J (Swansea U.) ; Bertsche, W (Manchester U. ; Daresbury) ; Capra, A (TRIUMF) ; Carruth, C (UC, Berkeley) ; Cesar, C L (Rio de Janeiro Federal U.) ; Charlton, M (Swansea U.) ; Christensen, A (UC, Berkeley) ; Collister, R (TRIUMF) ; Cridland Mathad, A (Swansea U.) ; Eriksson, S (Swansea U.) et al.
The antimatter equivalent of atomic hydrogen—antihydrogen—is an outstanding testbed for precision studies of matter–antimatter symmetry. Here we report on the simultaneous observation of both accessible hyperfine components of the 1S–2S transition in trapped antihydrogen. [...]
2025 - 7 p. - Published in : Nature Phys. 21 (2025) 201-207 Fulltext: PDF;
3.
Adiabatic expansion cooling of antihydrogen / ALPHA Collaboration
Magnetically trapped antihydrogen atoms can be cooled by expanding the volume of the trap in which they are confined. We report a proof-of-principle experiment in which antiatoms are deliberately released from expanded and static traps. [...]
2024 - 6 p. - Published in : Phys. Rev. Res. 6 (2024) L032065 Fulltext: PDF;
4.
Measurements of Penning-Malmberg trap patch potentials and associated performance degradation / ALPHA Collaboration
Antiprotons created by laser ionization of antihydrogen are observed to rapidly escape the ALPHA trap. Further, positron plasmas heat more quickly after the trap is illuminated by laser light for several hours. [...]
2024 - 8 p. - Published in : Phys. Rev. Res. 6 (2024) L012008 Fulltext: PDF;
5.
Observation of the effect of gravity on the motion of antimatter / ALPHA Collaboration
Einstein’s general theory of relativity from 19151 remains the most successful description of gravitation. From the 1919 solar eclipse2 to the observation of gravitational waves3, the theory has passed many crucial experimental tests. [...]
2023 - 23 p. - Published in : Nature 621 (2023) 716-722 Fulltext: PDF; External links: Space.com article; CERN News article; ScienceNews article; Interactions.org article; Physics article; ScienceAlert article; Phys.org article; SciTechDaily article; Physics World article; New York Times article; symmetry magazine article
6.
Design and performance of a novel low energy multispecies beamline for an antihydrogen experiment / ALPHA Collaboration
The ALPHA Collaboration, based at the CERN Antiproton Decelerator, has recently implemented a novel beamline for low-energy ($\lesssim$ 100 eV) positron and antiproton transport between cylindrical Penning traps that have strong axial magnetic fields. Here, we describe how a combination of semianalytical and numerical calculations were used to optimise the layout and design of this beamline. [...]
arXiv:2211.09838.- 2023-04-03 - 15 p. - Published in : Phys. Rev. Accel. Beams 26 (2023) 040101 Fulltext: 2211.09838 - PDF; Publication - PDF;
7.
Sympathetic cooling of positrons to cryogenic temperatures for antihydrogen production / Baker, C J (Swansea U.) ; Bertsche, W (Manchester U. ; Cockcroft Inst. Accel. Sci. Tech. ; Liverpool U.) ; Capra, A (TRIUMF) ; Cesar, C L (Rio de Janeiro Federal U.) ; Charlton, M (Swansea U.) ; Mathad, A Cridland (Swansea U.) ; Eriksson, S (Swansea U.) ; Evans, A (Calgary U.) ; Evetts, N (British Columbia U.) ; Fabbri, S (Manchester U.) et al.
The positron, the antiparticle of the electron, predicted by Dirac in 1931 and discovered by Anderson in 1933, plays a key role in many scientific and everyday endeavours. Notably, the positron is a constituent of antihydrogen, the only long-lived neutral antimatter bound state that can currently be synthesized at low energy, presenting a prominent system for testing fundamental symmetries with high precision. [...]
2021 - 8 p. - Published in : Nature Commun. 12 (2021) 6139 Fulltext: PDF;
8.
Laser cooling of antihydrogen atoms / ALPHA Collaboration
The photon—the quantum excitation of the electromagnetic field—is massless but carries momentum. A photon can therefore exert a force on an object upon collision1. [...]
2021 - 18 p. - Published in : Nature 592 (2021) 35-52 Fulltext from Publisher: PDF; External link: Interactions.org article
9.
Investigation of the fine structure of antihydrogen / ALPHA Collaboration
At the historic Shelter Island Conference on the Foundations of Quantum Mechanics in 1947, Willis Lamb reported an unexpected feature in the fne structure of atomic hydrogen: a separation of the 2S$_{1/2}$ and 2P$_{1/2}$ states1. The observation of this separation, now known as the Lamb shift, marked an important event in the evolution of modern physics, inspiring others to develop the theory of quantum electrodynamics2–5. [...]
2020 - 10 p. - Published in : Nature 578 (2020) 375-380 Fulltext: PDF; External links: INTERACTIONS; Nature News and Views article
10.
Characterization of the 1S–2S transition in antihydrogen / Ahmadi, M (Liverpool U.) ; Alves, B X R (Aarhus U.) ; Baker, C J (Swansea U.) ; Bertsche, W (Manchester U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Capra, A (TRIUMF) ; Carruth, C (UC, Berkeley) ; Cesar, C L (Rio de Janeiro Federal U.) ; Charlton, M (Swansea U.) ; Cohen, S (Ben Gurion U. of Negev) ; Collister, R (TRIUMF) et al.
In 1928, Dirac published an equation that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles—antimatter. [...]
2018 - 5 p. - Published in : Nature 557 (2018) 71-75 Fulltext: s41586-018-0017-2 - PDF; 10.1038_s41586-018-0017-2 - PDF; External link: INTERACTIONS

CERN Document Server : 20 Datensätze gefunden   1 - 10nächste  gehen zum Datensatz:
Sehen Sie auch: ähnliche Autornamen
1 Tharp, T
1 Tharp, T  D
1 Tharp, T.
3 Tharp, T.D.
1 Tharp, Timothy D
Sind Sie interessiert über neue Ergebnisse zu dieser Suchabfrage informiert zu werden?
Definieren Sie eine persönliche E-Mail-Benachrichtigung oder abonnieren Sie den RSS Feed.
Haben Sie nicht gefunden was Sie suchten? Versuchen Sie Ihre Suche auf anderen Servern:
Tharp, T D in Amazon
Tharp, T D in CERN EDMS
Tharp, T D in CERN Intranet
Tharp, T D in CiteSeer
Tharp, T D in Google Books
Tharp, T D in Google Scholar
Tharp, T D in Google Web
Tharp, T D in IEC
Tharp, T D in IHS
Tharp, T D in INSPIRE
Tharp, T D in ISO
Tharp, T D in KISS Books/Journals
Tharp, T D in KISS Preprints
Tharp, T D in NEBIS
Tharp, T D in SLAC Library Catalog
Tharp, T D in Scirus