CERN Accelerating science

CERN Document Server Намерени са 3 записа  Търсенето отне 1.34 секунди. 
1.
Open-source FPGA-ML codesign for the MLPerf Tiny Benchmark / Borras, Hendrik (Heidelberg U.) ; Di Guglielmo, Giuseppe (Columbia U.) ; Duarte, Javier (UC, San Diego) ; Ghielmetti, Nicolò (CERN) ; Hawks, Ben (Fermilab) ; Hauck, Scott (Washington U., Seattle) ; Hsu, Shih-Chieh (Washington U., Seattle) ; Kastner, Ryan (UC, San Diego) ; Liang, Jason (UC, San Diego) ; Meza, Andres (UC, San Diego) et al.
We present our development experience and recent results for the MLPerf Tiny Inference Benchmark on field-programmable gate array (FPGA) platforms. [...]
arXiv:2206.11791 ; FERMILAB-CONF-22-479-SCD.
-
Fermilab Library Server - Fulltext - Fulltext
2.
Applications and Techniques for Fast Machine Learning in Science / Deiana, Allison McCarn (Southern Methodist U.) ; Tran, Nhan (Fermilab ; Northwestern U. (main)) ; Agar, Joshua (Lehigh U. (main)) ; Blott, Michaela (Xilinx, Dublin) ; Di Guglielmo, Giuseppe (Columbia U. (main)) ; Duarte, Javier (UC, San Diego) ; Harris, Philip (MIT) ; Hauck, Scott (George Washington U. (main)) ; Liu, Mia (Purdue U.) ; Neubauer, Mark S. (Illinois U., Urbana) et al.
In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. [...]
arXiv:2110.13041; FERMILAB-PUB-21-502-AD-E-SCD.- 2022-04-12 - 56 p. - Published in : Front. Big Data 5 (2022) 787421 Fulltext: 2110.13041 - PDF; fermilab-pub-21-502-ad-e-scd - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
3.
Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies and the Distant Universe / Blanton, Michael R. (Stanford U., Phys. Dept.) ; Bershady, Matthew A. (Wisconsin U., Madison, Astron.) ; Abolfathi, Bela ; Albareti, Franco D. (Madrid, Autonoma U. ; Madrid, IFT) ; Allende Prieto, Carlos ; Almeida, Andres ; Alonso-García, Javier ; Anders, Friedrich (Potsdam, Astrophys. Inst.) ; Anderson, Scott F. (LLNL, Livermore) ; Andrews, Brett et al.
We describe the Sloan Digital Sky Survey IV (SDSS-IV), a project encompassing three major spectroscopic programs. The Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) is observing hundreds of thousands of Milky Way stars at high resolution and high signal-to-noise ratio in the near-infrared. [...]
arXiv:1703.00052.- 2017 - Published in : Astron. J. 154 (2017) 28 Fulltext: PDF;

Виж също: автори с подобни имена
13 Meza, A
9 Meza, Andrés
Интересувате ли се от уведомяване за нови резултати по тази заявка?
Set up a personal email alert or subscribe to the RSS feed.
Не намерихте, каквото търсите? Опитайте търсене в други сървъри:
Meza, Andres в Amazon
Meza, Andres в CERN EDMS
Meza, Andres в CERN Intranet
Meza, Andres в CiteSeer
Meza, Andres в Google Books
Meza, Andres в Google Scholar
Meza, Andres в Google Web
Meza, Andres в IEC
Meza, Andres в IHS
Meza, Andres в INSPIRE
Meza, Andres в ISO
Meza, Andres в KISS Books/Journals
Meza, Andres в KISS Preprints
Meza, Andres в NEBIS
Meza, Andres в SLAC Library Catalog
Meza, Andres в Scirus