
DELPHI Collaboration DELPHI 2004-032 CONF 707
10 July, 2004

Search for Charged Higgs Bosons at LEP

in General Two Higgs Doublet Models

M. Battaglia1, M. Ellert2, T. Ekelof2, G. Gómez-Ceballos3, A. Kiiskinen4,
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Abstract

A search for pair-produced charged Higgs bosons was performed in the data col-
lected by the DELPHI detector at LEP II at centre-of-mass energies from 189 GeV
to 209 GeV. Five different final states, τ+ντ τ

−ν̄τ , cs̄c̄s, cs̄τ−ν̄τ , W∗AW∗A and
W∗Aτ−ν̄τ were considered, accounting for the major expected decays in type I and
type II Two Higgs Doublet Models. No significant excess of data compared to the
expected Standard Model processes was observed. The existence of a charged Higgs
boson with mass lower than 76.7 GeV/c2 (type I) or 74.4 GeV/c2 (type II) is ex-
cluded at the 95% confidence level, for a wide range of the model parameters. Model
independent cross-section limits have also been calculated.
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1 Introduction

A search for pair-produced charged Higgs bosons in e+e− collisions was performed us-
ing the data collected by DELPHI during the LEP runs at centre-of-mass energies from
189 GeV to 209 GeV. The results reported here supersede those obtained in an earlier
analysis of the DELPHI data [1]. Similar searches have been performed by the other LEP
experiments [2].

The existence of a pair of charged Higgs bosons is predicted by several extensions
of the Standard Model. Pair-production of charged Higgs bosons occurs mainly via s-
channel exchange of a photon or a Z0 boson. In Two Higgs Doublet Models (2HDM), the
couplings are completely specified in terms of the electric charge and the weak mixing
angle, θW , and therefore the production cross-section depends only on the charged Higgs
boson mass. Higgs bosons couple to mass and therefore decay preferentially to heavy
particles, but the precise branching ratios may vary significantly depending on the model.
In most cases, for the masses accessible at LEP energies, the τ−ν̄τ and c̄s decay1 channels
are expected to dominate. This is the case of the so-called type II 2HDM Models [3],
where one Higgs doublet couples only to up-type fermions and the other to down-type
fermions. Analyses of the three possible final states, τ+νττ

−ν̄τ , cs̄c̄s and cs̄τ−ν̄τ , have
been performed and are described in this paper. To avoid loss of generality, the results
are combined and interpreted treating the Higgs decay branching fraction to leptons as a
free parameter. An alternative set of models, type I models [4], assume that all fermions
couple to the same Higgs doublet. In this case and if the neutral pseudo-scalar A is light
(which is not excluded by direct searches for general 2HDM [5]) the decay to W∗A can be
predominant even in the range of masses of interest at LEP (W∗ is an off-shell W boson).
Figs. 1 and 2 show the branching ratios for different parameters in type I models [6]. To
cover the possibility of a light A boson the final states W∗AW∗A and W∗Aτ−ν̄τ were also
looked for. The channel W∗Ac̄s is not considered because its contribution is expected to
be small. Type I models are explored through the combination of all the five channels,
with or without W∗A decays. The combination is performed according to the branching
ratios predicted by the model as a function of the ratio of the Higgs vacuum expectation
(tanβ) and the boson masses.

Previous studies [7] exclude masses below 43.5 GeV/c2, for type II models. The limit
is also valid for type I models when the W∗A decay is not kinematically allowed or its
branching ratio is small. Electroweak precision measurements [8] set indirect bounds
on the charged Higgs mass regardless of its decay branching ratios. The tree-level decay
amplitude Γ(Z0 → H+H−) is independent of the model assumptions and can be calculated
within 2HDM to be[9]

Γ(Z0 → H+H−) =
GFMZ
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where GF is the Fermi coupling constant, MH and MZ are the masses of the charged Higgs
and Z0 and sin θW is the weak mixing angle. The difference between the measured decay
width of the Z0 (ΓZ) and the prediction from the Standard Model sets a limit to any non-
standard contribution to the Z0 decay. The current results [8] set the limit ΓnonSM < 2.9

1Here and in the following all the decay modes are referred to the H−, the charge conjugated being
in all cases considered.
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MeV/c2 at 95% C.L. (taking into account both experimental and theoretical errors), which
combined with the above expression sets the limit MH > 39.6 GeV/c2 at 95% C.L. As a
consequence, the searches in this analysis are performed for charged Higgs boson masses
of 38 GeV/c2 or larger. The limits described here are only valid if the neutral pseudoscalar
is heavy enough to allow the bb̄ decay.

Different techniques were developed to improve the discrimination against the domi-
nant W+W− background using multidimensional estimators based on discriminant vari-
ables such as the boson production angle, jet flavour tagging or τ polarisation.

2 Data sample

Data collected during the 2000 LEP run at centre-of-mass energies from 200 GeV to
209 GeV were used, with a total integrated luminosity of about 220 pb−1. The data
were grouped into two samples with centre-of-mass energies above or below 205.5 GeV,
respectively. In the following, the average energy is quoted for each of these two samples.
Approximately 60 pb−1 of these data were collected when one of the sectors of the Time
Projection Chamber (TPC) was not operational (referred to as the S6 period in the
following). The data collected during the years 1998 and 1999 at centre-of-mass energies
from 189 GeV to 202 GeV were reanalysed, to take advantage of the improved performance
of the reconstruction and selection. The additional data amounted to approximately
380 pb−1.

The DELPHI detector and its performance have already been described in detail
elsewhere [10, 11].

The background estimates for the different Standard Model processes were based on
the following event generators: KK2f [12] for qq̄(γ) and µ+µ−(γ), KORALZ [13] for
τ+τ−(γ), BHWIDE [14] for e+e−(γ) and WPHACT [15] for four-fermion final states.
The four-fermion samples were complemented with two-photon interactions, generated
with TWOGAM [16] for hadronic final states, DIAG36 [17] for electron final states and
RADCOR [17] for other leptonic final states. The quark hadronisation was simulated with
JETSET 7.4 [18] and comparisons were made with HERWIG [19] and ARIADNE [20].
All the relevant background were simulated at each of the main centre-of-mass energies
with an equivalent luminosity of at least 40 times that recorded for the data.

Signal samples were simulated using the HZHA generator [21] for charged Higgs
masses from 40 to 100 GeV/c2 in steps of 10 GeV/c2, with additional points at 75, 85
and 95 GeV/c2. For decays involving a neutral pseudoscalar, its mass was varied from
20 GeV/c2 up to the charged Higgs mass, with the same step width, with additional points
at 12 GeV/c2. 2000 events were simulated for each mass point for each of the five decay
channels at the same centre-of-mass energies. W∗ and A bosons, if present, were allowed
to decay according to the Standard Model and Two Higgs Doublet Model expectations,
respectively.

A specific simulation, with the appropriate detector conditions, was performed for the
S6 period, both for signal and for background.
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3 Analysis

Most of the techniques and requirements follow closely those used for the selection of
W+W− pairs [22], since the topology of the H+H− signal is very similar. We briefly
describe them here together with other techniques specific to the present analyses.

3.1 Run selection and particle selection

To ensure a good detector performance the data corresponding to runs in which subde-
tectors relevant to the analysis were not fully operational were discarded. In particular
it was required that the tracking subdetectors and calorimeters were fully operational.
An exception for the S6 period was made, because the redundancy of the tracking sys-
tem of the DELPHI detector made possible the use of these data without a significant
degradation of the analyses. For all the topologies that involved leptons, it was further
required that the muon chambers were active. This resulted in slightly smaller integrated
luminosities than for the hadronic channel. Table 1 summarizes the luminosities selected
in each case at every centre-of-mass energy.

√
s(GeV) L (leptonic) L (hadronic)
189 153.8 158.0
192 24.5 25.9
196 72.4 76.9
200 81.8 84.3
202 39.4 41.1
205 69.1 75.6

206.6 79.8 87.8
206.3(S6) 50.0 60.8

Table 1: Integrated luminosity in pb−1 selected for leptonic and hadronic final states at
the different centre-of-mass energies.

Only charged particle tracks with an impact parameter in the transverse plane2 smaller
than 5 cm, and with an axial coordinate |z| < 10 cm at the point of closest approach
to the beam spot, were accepted. Those with a relative momentum error ∆p

p
> 1 were

rejected.
Showers in the calorimeters were accepted as neutral particles if their energy was above

200 MeV and they were not associated to a charged particle track.

3.2 Lepton identification

To perform lepton identification, an initial clustering of particles into jets was performed
with the LUCLUS [18] algorithm.

Jets containing only one charged particle and no neutral particles, which were isolated
by more than 15◦ from the remaining particles in the event were initially considered as

2The co-ordinate system used has the z-axis parallel to the electron beam, and the polar angle cal-
culated with respect to this axis. The plane perpendicular to the z axis will be called hereafter the
transverse plane.
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lepton candidates. One of these isolated charged particles was identified as a muon if it
gave signal in the muon chambers or left a signal in the calorimeters compatible with a
minimum ionising particle (MIP). It was identified as an electron if its energy deposition
in the electromagnetic calorimeters was compatible with its measured momentum and the
ionisation loss in the TPC was compatible with that expected from an electron of that
momentum.

If an electron or muon had a momentum and energy deposition in the electromag-
netic calorimeters smaller than 0.13

√
s, it was assumed to come from a τ decay and was

therefore tagged as τ . In addition, isolated jets with an energy of at least 5 GeV, at least
one and at most five charged particles and no more than ten particles in total were also
considered as τ candidates.

When dealing with semileptonic final states, the τ candidate jet definition was refined
removing particles that were not likely to come from a τ decay. Particles contained inside
the jet, but forming an angle with the jet axis of more than 15◦ were removed from the
jet. If the invariant mass of the jet was greater than 2.5 GeV/c2, the particle giving the
largest contribution to the mass (excluding the highest momentum charged particle in
the jet) was excluded. This procedure was repeated until the mass no longer exceeded
2.5 GeV/c2.

If more than one τ candidate was found they were sorted with the following order of
precedence: muon, electron, narrowest jet (defined as the one whose momentum weighted
angular spread was lowest), single charged particle. For purely leptonic events the first
two candidates were retained and the rest were neglected as τ particles. For semileptonic
events, only the first one was retained as a τ candidate.

In some of the analyses, the particular decay of the τ had to be identified. All τ
candidates were classified into the following categories (corresponding to the major decay
modes): e, µ, π, π + nγ, ≥ 3π according to the lepton identification, the number of
charged particles of the jet and the number of photons.

3.3 Likelihood ratio technique

In several of the analyses the background discrimination was performed by using a like-
lihood ratio technique. Signal and background likelihood functions, Ls and Lb, were
defined as products of the probability density functions of the N discriminating variables,
Ls =

∏

i=1,N si(xi) and Lb =
∏

i=1,N bi(xi). For each of the measured values of the N
discriminating variables, xi, the values of the signal and background probability densi-
ties, si(xi) and bi(xi), were determined using samples of simulated signal and background
events. The final event likelihood ratio, for simplicity referred to as “likelihood” in the
following, was computed as a normalised ratio of the signal and background likelihoods,
Ls/(Ls + Lb).

3.4 Tau polarisation

One of the methods used to discriminate charged Higgs from W bosons is based on the
different spin of these particles, the Higgs being a scalar and the W a vector boson. This
spin can be inferred if the decay involves τ leptons.

Assuming that the ντ has a definite helicity, the polarisation (Pτ ) of tau leptons
originating from heavy boson decays is determined entirely by the properties of weak
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interactions and the spin of the parent boson. The helicity configuration for the signal
is H− → τ−

R ν̄τ R (H+ → τ+
L ντ L) and for the W+W− background it is W− → τ−

L ν̄τ R

(W+ → τ+
R ντ L) resulting in P H

τ = +1 and P W
τ = −1.

The τ weak decay induces a dependence of the angular and momentum distributions
on the polarisation. Once the τ decay channel was identified, the information on the τ
polarisation was extracted from the observed kinematic distributions of its decay products,
e.g. angles and momenta. These kinematic variables can always be combined [23] into
a single estimator, defined for each decay channel, without loss of information. These
estimators are equivalent to those used at the Z0 peak for precision measurements [24].
For charged Higgs boson masses close to the threshold, the boost of the bosons is relatively
small and the τ energies are similar to that of the τ ’s from Z0 decays at rest (40–50 GeV).

To compare events in which the τ had different decay modes coherently , the identified
decay mode and Pτ estimator were combined into a likelihood function. When two τ
candidates were present in one event, the likelihood functions were defined for each of
them and then multiplied, assuming independence of the two τ (which was true to a large
extent, except for some small correlations due to detector effects).

3.5 Jet definition and flavour tagging

When the charged particle multiplicity was larger than 6, the particles were clustered
into jets using the DURHAM[25] algorithm. When a τ had been identified, the particles
assigned to its jet were excluded from this clustering and the remaining particles were
forced into exactly two jets. Each of the two jets was required to have a minimum of four
particles of which at least one had to be charged. For the purely hadronic events, the jet
algorithm was forced to produce a maximum of four jets.

In the cs̄c̄s and cs̄τ−ν̄τ decay channels all hadronic jets in the event originate from a
c or s quark. In the hadronic background processes, such as qq̄ and W+W− events, often
the jets have a different quark flavour or originate from a gluon. Therefore a jet flavour
tagging algorithm was used as a tool in the analyses of the cs̄c̄s and cs̄τ−ν̄τ channels,
which follows a similar technique to that used by DELPHI in a determination of |Vcs| at
LEP II [26].

This tagging was based on nine discriminating variables, combined in a likelihood
function: three of them were related to identified leptons and hadron content of the jet,
two depended on kinematical variables and four on the reconstructed secondary decay
structure. The finite lifetime of c particles was exploited to distinguish between c and
light quark jets, while the c mass and decay multiplicity were used to discriminate against
b jets. Furthermore s and c jets could be distinguished from u and d jets by the presence
of an identified energetic kaon. Charged hadrons were identified combining the Ring
Imaging Cherenkov (RICH) and TPC dE/dx [27] measurements. The responses of the
flavour tagging algorithm for the individual jets were further combined into an event cs̄c̄s
probability or into a di-jet c̄s (or cs̄) probability which were then used in background
suppression.

3.6 Mass reconstruction

The masses of the decaying bosons were reconstructed using a constrained fit [28] requiring
energy and momentum conservation with known beam energy (4C fit). For the topologies
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studied in this analysis, the event had to be compatible with the hypothesis that the
different objects were produced in the decay of two equal mass particles, so an additional
constraint was applied requiring that the two mass combinations were equal (5C fit).
These fits also provide the best estimation of the boson momenta.

In the case of channels involving a τ−ν̄τ decay, the three components of the momen-
tum vector of the ντ and the magnitude of the τ momentum were treated as unknown
parameters, reducing the number of degrees of freedom of the fit from five to one. This
fit also provided a good estimation of the τ 4-momentum.

In the τ+νττ
−ν̄τ final state, the number of unknowns was higher than the number of

constraints and no mass could be estimated.

4 Selection

4.1 The τ+νττ
−ν̄τ channel

The signature for H+H− → τ+νττ
−ν̄τ is large missing energy and momentum and two

acollinear and acoplanar3 τ jets containing either a lepton or one or a few hadrons. The
main backgrounds are the W+W− leptonic decays, mainly those in which one W or both
decayed to τν. Less important, but still not negligible, are the radiative τ+τ− and two-
photon events.

4.1.1 Event preselection

To select leptonic events a total charged particle multiplicity between 2 and 6 was required.
Only events with two jets both containing at least one charged particle were retained.
Events were rejected if both jets had more than one charged particle. It was also required
that the angle between the two jets was larger than 30◦.

Two-fermion and two-photon events were rejected by requiring the acoplanarity to be
larger than 13◦ if both jets were in the barrel region (43◦ < θ < 137◦) or larger than 25◦

otherwise.
The two-photon background was further reduced by different requirements on the

jets: the sum of the jet energies transverse to the beam direction, E⊥, was required to
be greater than 0.1

√
s; the total transverse momentum, PT , to be greater than 0.04

√
s;

the total energy detected within 30◦ around the beam axis to be less than 0.1
√

s; and the
total energy outside this region to be greater than 0.1

√
s.

To reject W+W− events where neither W decayed to τν, it was required that the two
jets were identified as τ leptons.

4.1.2 Final background discrimination

Following the selection above most of the remaining background is W+W− → τ+ντ τ
−ν̄τ

events. The H+H− signal and the W+W− background have similar topologies and the
presence of missing neutrinos in the decay of each of the bosons makes the boson mass
reconstruction impossible. However, the boson polar angle distribution and the τ polari-
sation are different, providing means to discriminate between the two processes.

3The acoplanarity is defined as the supplement of the angle between the two jets projected onto the
plane perpendicular to the beam.
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A likelihood function was built to separate the signal from the background. It was
composed of five variables: the τ polarisation likelihood of the event, the signed cosine
of the polar angle 4 of both τ ’s (which carries information of the boson polar angle),
the acoplanarity and the total transverse momentum. The first three variables discrim-
inated between τ+ντ τ

−ν̄τ produced from W boson and charged Higgs pairs. The last
two variables had some sensitivity to the boson mass and helped in the discrimination
of the remaining background from other processes. Some of these variables are shown in
Fig. 3 and the resulting likelihood distribution for data, expected backgrounds and signal
is shown in Fig. 4. The effects of the different sets of cuts are shown in Table 2 for the
combined 189–209 GeV sample.

cut data total bkg. 4-fermion other bkg. ε80

Leptonic selection 175699 176685 921 175764 72.2%
Acoplanarity cut 16607 16576 715 15861 62.3%
Energy/momentum cuts 527 566.9 534.4 32.5 46.7%
τ identification 59 68.9 58.3 10.6 35.1%

Table 2: The total number of events observed and expected backgrounds in the τ+ντ τ
−ν̄τ

channel after the different cuts used in the analysis at
√

s = 189–209 GeV. The last
column shows the efficiency for a charged Higgs boson signal with MH = 80 GeV/c2.

4.2 The cs̄c̄s channel

In the analysis of the cs̄c̄s channel both charged Higgs bosons were assumed to decay
into a pair of c and s quarks producing a final state with four jets. The two dominant
background sources are the qq̄ production with gluon radiation (qq̄gg) and fully hadronic
four-fermion final states. The four-fermion background from W+W− production is much
more severe than that from Z0Z0, because of the higher cross-section. In addition, the
discriminant variables used against the W+W− background usually work with similar
performance against the Z0Z0 background. Therefore, the four-fermion sample is referred
to as W+W− in the remainder of the section.

4.2.1 Event preselection

In order to preselect hadronic events the following cuts were applied: the events had to
contain at least 10 charged particles, the visible energy of the reconstructed particles, had
to be larger than 0.6

√
s, the reconstructed effective centre-of-mass energy5,

√
s′, had to

be larger than 0.85
√

s. To reject hadronic back-to-back two-jet qq̄ events the thrust was
required to be less than 0.95.

To select only genuine four-jet events it was required that the DURHAM clustering
distance for the transition from four to three jets, y4→3, was greater than 0.002 and each
jet was required to have a mass larger than 2 GeV/c2 and at least three particles, out of

4The signed cosine is defined as the charge of the particle multiplied by the cosine of its polar angle.
5The effective centre-of-mass energy was estimated from a three-constraint kinematic fit in order to

test the presence of an initial state radiated photon lost in the beam pipe [29].
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which at least two were charged. All jets were required to have a total energy above 5
GeV, and the minimum angle between any two jets was required to be at least 25◦.

In order to obtain the best possible mass resolution a 5C fit was performed for each
of the three possible di-jet combinations and the combination giving the smallest χ2

was selected. A 4C fit was also performed for that di-jet combination, imposing only
energy-momentum conservation, to estimate the difference between the masses of the two
reconstructed bosons. As the uncertainty of the di-jet mass reconstruction is approxi-
mately proportional to the mass, the boson mass difference was renormalised dividing it
by the mass provided by the 5C fit. In such a way, the resulting discriminant variable had
less dependence on the signal mass. This relative mass difference of the two reconstructed
bosons was required to be below 25%.

4.2.2 Final background discrimination

Significant amounts of qq̄gg background still remained after the preselection. To suppress
it further an anti-qq̄ likelihood function based on five variables was constructed as follows.

The first variable, the event aplanarity, exploits the differences in the event shape
between signal and background. The second one, the cosine of the polar angle of the
thrust axis, uses the fact that the signal events have a polar angle distribution with
an approximate dependence as sin2 θ, whereas the jets in the qq̄ background events are
concentrated closer to the beam axis. The third variable was based on the product
of the minimum angle between two jets and the minimum jet energy in the event and
exploited the particular dependence of the probability of hard gluon radiation with the
gluon energy and emission angle. The minimum energy and the minimum angle between
jets are significantly different in signal events with low and high mass due to the large
boost of light Higgs bosons. In order to reduce the mass dependence of the likelihood
variable, the product was scaled dividing it by the reconstructed Higgs boson mass of
the event. The fourth variable used the fact that the charged Higgs bosons have equal
mass whereas the masses of the di-jet pairs in the qq̄ events are more or less randomly
distributed. Therefore the relative mass difference was a powerful discriminant variable.
The last variable was the output of the event cs̄c̄s-tag described in Section 3.5. The
normalised likelihood was required to exceed 0.4 to reject most of the qq̄ background with
a moderate signal efficiency loss (Table 3). Some of these variables are shown in Fig. 5.

Most of the background remaining after the anti-qq̄ cut was hadronic decays of W pairs.
If the mass of the charged Higgs boson coincides with the mass of the W boson the W+W−

background is partly irreducible. Some differences, however, exist and were combined into
an anti-WW likelihood in order to discriminate between these two processes.

The first of the variables in the anti-WW likelihood exploited the different polar angle
distributions of the Higgs boson and the W boson, due to their different spins. This
variable was the cosine of the polar angle of the positive boson, estimated assuming equal
and opposite boson momenta. The charge was derived from the sum of the momentum
weighted charges of the two jets [30] used to reconstruct the boson. The boson with the
higher value of charge was assumed to be the positive one and the other was assumed to
be the negative one. The second variable used for W+W− background discrimination was
the cs̄c̄s event tag output which is useful as all signal jets originate from c and s quarks
and only half of the background jets have the same quark flavours. The last variable used
was the relative mass difference between the two reconstructed bosons. This variable
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has rejection power especially in cases where the reconstructed mass in W events is far
away from the nominal W mass since in these events something has gone wrong in the
jet momentum measurement, which usually leads to a higher mass difference between the
reconstructed bosons. It also rejects more W+W− background than charged Higgs signal
due to a larger natural width of the W boson. All events with anti-WW likelihood value
below 0.3 were rejected.

The effects of the different sets of cuts are shown in Table 3 for the combined 189–
209 GeV sample. The distribution of the anti-qq̄ and anti-WW likelihoods at the pres-
election level are shown in Fig. 6. The reconstructed 5C fit mass distribution for data,
expected backgrounds and signal after the anti-qq̄ and anti-WW cuts is shown in Fig. 7
with the likelihood cut tightened to Lqq > 0.7 and LWW > 0.5 to visually enhance the
mass distribution of the events whose variables are closer to those expected for the charged
Higgs signal.

cut data total bkg. 4-fermion other bkg. ε75 ε80

4-jet presel. 5890 5902.5 4076.9 1825.6 83.0% 84.1%
Mass diff. 4326 4354.2 3389.6 964.6 71.0% 71.8%
anti-qq̄ 2785 2808.1 2506.2 301.9 56.9% 57.8%
anti-WW 2114 2115.6 1855.5 260.1 52.8% 53.6%

Table 3: The total number of events observed and expected backgrounds in the cs̄c̄s
channel after the different cuts used in the analysis at

√
s = 189–209 GeV. The last

columns show the efficiencies for charged Higgs boson signals with MH = 75 GeV/c2 and
MH = 80 GeV/c2, respectively.

4.3 The cs̄τ−ν̄τ channel

In the cs̄τ−ν̄τ channel one of the charged Higgs bosons decays into a cs̄ quark pair, while
the other decays into τ−ν̄τ . Such an event is characterised by two hadronic jets, a τ
candidate and missing energy carried by the neutrinos. The dominating background
processes are qq̄g(γ) events and semileptonic decays of W+W−.

4.3.1 Event preselection

An initial set of cuts was applied to reject purely leptonic events as well as two-photon in-
teractions. The charged particle multiplicity had to be at least 6 and the total momentum

of the charged particles had to be greater than 0.01
√

s. The quantity Efw =
√

E45
2 + E135

2,
where E45 and E135 are the energies deposited in the electromagnetic calorimeters at
θ < 45◦ and θ > 135◦ respectively, had to be less than 0.45

√
s. The absolute value of

the cosine of the polar angle of the missing momentum had to be less than 0.985 and the
total transverse energy had to be greater than 0.2

√
s. The electromagnetic energy within

a 15◦ cone around the beam-pipe was required to be less than 30 GeV.
To remove qq̄`+`− four-fermion topologies, events with two or more leptons of the

same flavour with momentum greater than 0.05
√

s and more than 10◦ isolation angle
were rejected.
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Another set of cuts was applied to reject the bulk of the qq̄γ radiative events. The
absolute value of the cosine of the polar angle of the missing momentum had to be less
than 0.96, the difference between the centre-of-mass energy and the effective centre-of-
mass energy (

√
s−

√
s′) had to be greater than 10 GeV, the visible energy had to be lower

than 0.85
√

s. The DURHAM clustering distance y4→3 had to be less than 0.03. The angle
between the most energetic neutral particle in the event and the missing momentum had
to be greater than 25◦. If the absolute value of the cosine of the polar angle of the
missing momentum was greater than 0.8, the effective centre-of-mass energy (

√
s′) had

to be greater than 105 GeV and its difference from the nominal centre-of-mass energy
(
√

s −
√

s′) had to be greater than 25 GeV.
Background from W+W− semileptonic decays not involving τ particles as well as a

large fraction of the remaining qq̄ background was rejected by requiring the presence of
an identified τ . The momentum of the τ jet had to be greater than 5 GeV/c and the
product of the τ candidate momentum and its isolation angle had to be larger than 150
GeV·degree. If the τ candidate jet contained more than one charged particle, the cone
around its axis containing 75% of the jet energy had to be smaller than 10◦.

Finally, if the 5C mass fit did not converge the event was rejected. This reduced the
background from misreconstructed W+W− pairs, with badly defined jets or with wrong
pairing, contributing to masses very different from the expected W peak.

4.3.2 Final background discrimination

At this level of the selection there was still a very significant contribution of qq̄ events.
To reduce this background further a likelihood function was defined with eleven variables:
the event thrust, the cosine of the missing momentum, the angle in the transverse plane
between the two hadronic jets, the reconstructed polar angle of the negatively charged
boson (with the charge defined according to that of the τ), the angle between the τ jet
and the parent boson’s momentum in the boson’s rest-frame, the τ decay channel, the
total transverse momentum,

√
s′/

√
s, the τ isolation, the DURHAM clustering distance

y3→2 when going from three to two jets and the angle between the plane spanned by the
two hadronic jets and the τ candidate. This angle took into account the fact that in
most cases the qq̄ background, produced when a radiated gluon was confused with a τ
jet, tended to have all three jets in the same plane, while for the signal the τ is more or
less uniformly distributed in space. Some of these variables are shown in Fig. 8 (a-c) and
the likelihood is shown in Fig. 9 (top). Events with an anti-qq̄ likelihood lower than 0.5
were rejected.

At this stage, most of the remaining background was W+W− decaying to qq̄τ−ν̄τ ,
whose topology is equivalent to that of the signal. Further background rejection was
possible, however, using the τ polarisation and the output of the jet flavour algorithm.
Another likelihood function was therefore defined using these two variables and some of
the variables used in the previous anti-qq̄ likelihood since these also improved the W+W−

rejection. The additional variables were the thrust, angle in the transverse plane between
the two hadronic jets, the reconstructed polar angle of the negatively charged boson,
the angle between the τ momentum and its parent boson’s momentum in the boson’s
rest-frame and the τ isolation angle. Some of these variables are shown in Fig. 8 (d-
f) and the result of the likelihood is shown in Fig. 9 (bottom). No cut was imposed
on this function, but it was used in the limit estimation as described below. However,
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Fig. 10, shows the mass distribution after a cut on LWW > 0.5 to visually enhance the
mass distribution of the events whose variables are closer to those expected for the charged
Higgs signal. The effects of the different sets of cuts are shown in Table 4 for the combined
189–209 GeV sample. At preselection level the background from two-photon events was
slightly underestimated, due to the phase space cuts used in the generator. Further cuts
in the analysis are tighter than those in the generation and therefore the background
estimation is not affected.

cut data total bkg. 4-fermion other bkg. ε75

Preselection 31138 29803.1 9449.0 20354.1 95.8%
Bulk qq̄ rejection 6267 5899.7 3939.7 1960.0 84.9%
qqτν selection 3054 2814.5 1649.0 1165.4 66.1%
anti-qq̄ likelihood > 0.5 1085 1081.7 985.3 95.9 57.5%

Table 4: The number of events selected in the data and expected from Monte Carlo after
the different cuts in the cs̄τ−ν̄τ analysis at

√
s = 189–209 GeV. The efficiency in the last

column corresponds to a charged Higgs boson with a mass of 75 GeV/c2.

4.4 Channels including a W∗A decay

If at least one of the Higgs bosons decays to a W∗A pair, there are several possible
topologies depending on the different boson decays. The W can decay leptonically or
hadronically, and the number of jets strongly depends on the A mass and on the boson
boosts. The search was restricted to A masses above 12 GeV/c2, where it decays pre-
dominantly to bb̄ and an inclusive search was performed. Events with jets with b quark
content were searched for in two topologies:

• events with a τ , missing energy and at least two hadronic jets

• events with no missing energy and at least four hadronic jets

In this way most of the possible decay chains for the W∗Aτ−ν̄τ (first topology) and
W∗AW∗A (second) were covered. The decay to W∗Ac̄s was neglected because its con-
tribution is small. Its branching ratio is usually very small and only reaches a maximum
of about 17% in a small region of the parameter space. In this region the branching ratio
for W∗Aτ−ν̄τ is about twice as large, with a smaller background. The branching ratio for
W∗AW∗A is about 30%, giving a signal almost indistinguishable from W∗Ac̄s.

The analysis designed by DELPHI for technipion search within Technicolor models [32]
was well suited also for these topologies and had a good performance in this search. It
was therefore adopted here. A brief description of that analysis is outlined here.

4.4.1 Semileptonic final states.

Since the topology searched for in the semileptonic case is very close to the corresponding
channel in W+W− production, a selection similar to that used on W+W− cross-section
and decay branching ratio measurements [22] was applied at the first step. However,
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variables strongly correlated with the boson mass were not used, making the analysis
efficient for a wide range of masses.

Firstly loose initial cuts, requiring at least seven charged particles, transverse energy
greater than 0.25

√
s, less than 30 GeV in a 30◦ cone around the beam, and the polar

angle of the missing momentum fulfilling | cos θmiss| < 0.985, were used to remove a large
fraction of the leptonic, qq̄(γ) and γγ events.

Then, an isolated τ candidate had to be found, to reduce the background from W+W−

leptonic decays not involving τ particles. The isolation criterion was defined in terms of
the product p · θiso, where p is the τ jet momentum and θiso is the isolation angle between
the lepton and the nearest charged particle with momentum greater than 1 GeV/c.

To reject non-W+W− events, a neural network (NN) with the following variables
was used: the jet momentum, isolation angle, cosine of the polar angle of the missing
momentum, transverse momentum, thrust, angle between the lepton and the hadronic

system, the acoplanarity and acollinearity of the hadronic jets and
√

s′/s . Events were

accepted if the NN output was above 0.6. In this way most of the non-W+W− background
is rejected.

The second step exploits the specific properties of the signal, such as the presence of
b-quarks or the production angle, to distinguish it from the W pairs. This is done using
another neural network which uses four input variables: the b-tagging variables of the two
hadronic jets, the signed cosine of the polar angle of the boson6 and | cos θmiss|.

The effects of the different sets of cuts are shown in Table 5 for the combined 189–
209 GeV sample. Fig. 12 (top) shows the reconstructed mass, using a 5C fit, of the
selected candidates.

cut data total bkg. 4-fermion other bkg. ε80/30

Hadronic preselection 28380 28274.8 3925.9 24348.9 88.9%
qq̄τν selection 1043 1061.9 884.5 177.4 44.0%
NN output > 0.1 39 36.8 22.2 14.6 22.6%
NN output > 0.2 18 17.8 7.9 9.9 17.9%
NN output > 0.3 12 11.0 3.7 7.3 14.9%

Table 5: The total number of events observed and expected backgrounds in the W∗Aτ−ν̄τ

channel after the different cuts used in the analysis at
√

s = 189–209 GeV. The last
column shows the efficiencies for charged Higgs boson signals with MH = 80 GeV/c2 and
MA= 30 GeV/c2.

4.4.2 Hadronic final states.

The W∗AW∗A analysis starts with the four-jet preselection used in the search for neutral
Higgs bosons [33], which aims to eliminate the radiative and γγ events and to reduce the
QCD and Z0γ∗ background. The qq̄(γ) and 4-fermion backgrounds remaining after the
preselection have to be reduced further. For this purpose different shape and b-tagging
variables have been investigated. Finally, 12 variables were selected for this analysis and

6The sign is defined by the charge of the τ , and the production polar angle θprod is the one obtained
from the 5C fit.
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the final discriminant variable is defined as the output of a neural network. There were
two b-tagging variables intended to reduce the W+W− background: one of them (xb) is
computed as the sum of the two highest jet b-tagging variables [31], and the other is the
sum of the four jet b-tagging variables. Seven shape variables are used to reduce the
qq̄(γ) contamination. They are the sum of the second and fourth Fox-Wolfram moments,
the product of the minimum jet energy and the minimum opening angle between any
two jets, the event thrust, the sum of the four lowest angles between any pair of jets in
the event, the minimal di-jet mass, and the minimal ycut values for which the event is
clustered into 4 jets (y4→3) and into 5 jets (y5→4). Finally, three more variables take into
account the two-boson event topology. To define them the event is forced into four jets,
a five constraint fit requiring conservation of energy and momentum and equal masses of
opposite jet pairs is applied to all possible jet pairings, and the pairing giving the smallest
value of the fit χ2 is selected. The variables then included in the neural network are the
smallest χ2, the production angle of the jet pair, and the angle between the planes defined
by the two jet pairs.

The effects of the different sets of cuts are shown in Table 6 for the combined 189–
209 GeV sample. Fig. 12 (bottom) shows the reconstructed mass, using a 5C fit, of the
selected candidates.

cut data total bkg. qq̄g 4-fermion ε80/30

preselection 6592 6520.1 2004.9 4515.2 67.9%
NN output > 0.1 254 252.5 87.2 165.3 46.1%
NN output > 0.3 86 78.9 25.2 53.7 28.3%

Table 6: The total number of events observed and expected backgrounds in the W∗AW∗A
channel after the different cuts used in the analysis at

√
s = 189–209 GeV. The last

column shows the efficiencies for charged Higgs boson signals with MH = 80 GeV/c2 and
MA= 30 GeV/c2.

5 Systematic errors

Uncertainties in the expected background rates and in the signal efficiency were accounted
for at each centre-of-mass energy and separately for the S6 period. Small contributions
to the background rate uncertainties, of the order of 0.6%, are due to uncertainties in the
luminosity measurement and in the theoretical cross-section estimates for the simulated
data samples. The systematic error estimation for the background follows closely the
treatment in the DELPHI W+W− cross-section measurement [22].

The largest part of the background and signal efficiency uncertainties in the τ+ντ τ
−ν̄τ

channel is due to the limited simulation statistics available. The typical contribution was
8% and 1.5% respectively. Several additional sources of systematic uncertainties were
investigated. In particular, the track reconstruction efficiency, the τ identification and
the behaviour of different variables were studied.

The systematic errors induced by the track reconstruction and τ identification were
checked by a comparison with independent samples of di-lepton or two-photon leptonic
events of simulation and real data, taken with the same detector conditions both at high
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energy and at the Z0 resonance. These samples were selected by kinematic cuts, with
only very loose particle identification requirements, which were found to be uncorrelated
to those used in this analysis. The lepton identification efficiency estimation from data
and simulation was found to agree within the statistical errors (about 1%). The same
leptonic samples were used to check the track reconstruction efficiency of isolated parti-
cles, showing an agreement at the 1% level. The modelling of the preselection variables
agrees within statistical errors with the data. The momentum and electromagnetic en-
ergy scales and resolutions were investigated using radiative di-lepton events, µ+µ−γ or
e+e−γ, from data and simulation. For these events, the momenta of the particles can be
calculated with very good precision from kinematical constraints, independently of the
direct measurement on the tracking detectors or calorimeters, allowing comparisons. In
all cases, data and simulation agreed to better than the statistical precision, which had a
negligible influence both in signal efficiency and background rates. Additional systematic
effects were estimated by comparing the data collected at the Z0 peak during the period
when sector 6 of the TPC was not functioning with simulation samples produced with
the same detector conditions. This did not indicate any significant increase in the sys-
tematic errors, compared to those quoted above. The total systematic error on the signal
efficiency was 2% and the total relative systematic error on the background rate was 10%.

In the cs̄c̄s analysis, the total uncertainty of the qq̄gg background estimate at the four-
jet preselection level was dominated [22] by the hadronisation model and imperfections in
the generator model. Based on a comparison of three models provided by the generators
JETSET 7.4 [18], HERWIG [19] and ARIADNE [20], the total uncertainty of the qq̄gg
event rate was estimated to be of the order of 5%.

Another uncertainty in four-fermion background (mainly W+W−), is due to the uncer-
tainties in the luminosity measurement and in the cross-section estimate. The precision
of the Standard Model prediction for the W+W− production cross-section estimate de-
pends on the centre-of-mass energy and has been estimated to be of the order of 1%. An
additional systematic error on the background rate arose from the preselection efficiency
precision. The detailed study made in [22] could also be applied to this analysis, leading
to a total uncertainty of 0.6%. The main contribution to this uncertainty is also the
hadronisation model, with smaller contributions from the detector simulations. Combin-
ing these uncertainties the estimated precision of the four-fermion background rate at the
preselection level was 1.3%.

Further systematic effects could have been introduced in the analysis when applying
the relative mass difference cut and the likelihood background rejections. Any differ-
ences in the shapes of these variables between the real and simulated data would affect
the efficiency of the cuts. Comparisons were made at early selection levels in order to
keep the event rates high, enabling large statistics for the comparisons and keeping the
signal-to-background rate so small that a possible signal in the data would not affect the
distributions significantly. The uncertainty of the background rate due to the relative
mass difference cut was estimated to be 1%. The effect of potential systematic effects
of the shapes of the likelihood variable distributions was studied by changing the vari-
able shapes in the simulation by reweighting simulated events. The reweighted events
were propagated through the analysis and the effect on the cut efficiencies was studied.
The uncertainty of the anti-qq̄ likelihood and anti-WW cuts were estimated to be 2.3%
and 0.7%. Uncertainties in the final discriminating likelihood shape, which would affect
the signal likelihood of the data events, were also taken into account. A change in the
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likelihood shape would influence the likelihood ratio in the exclusion limit calculation.
This effect was taken into account by increasing the background rate uncertainty by an
additional 2%.

Combination of all background uncertainties leads to a total uncertainty of 4% in
the background normalisation. The uncertainty of the signal efficiency was estimated
to be 2.5% with a 1% contribution from beam energy, hadronisation model etc., a 1.2%
contribution from limited simulation statistics and a 2% contribution from the cuts and
likelihoods.

In the cs̄τ−ν̄τ channel, the contribution to the systematic error from the uncertainties
in the qq̄ and W+W− total normalisation was estimated in a similar way to be 0.4% and
0.9%, respectively. The isolated lepton identification efficiency was estimated with the
same di-lepton samples used for the τ+νττ

−ν̄τ channel, with a contribution of 1% both to
the signal and background systematics. The uncertainties of the selection variables were
estimated by comparing the shapes of the variable distributions in data and simulation
at the preselection level. All variables agreed within statistical errors. Nevertheless,
the potential error was estimated conservatively from the observed difference between
real data and simulation when any particular cut was varied within the resolution of the
corresponding variable. Combining these errors, a total uncertainty of 2.4% was estimated
for the background rate and 0.3% in the signal efficiency. For the likelihood functions, the
reweighting procedure described for cs̄c̄s was followed, estimating the total contribution
to 7.6% for the background and 3.2% for the signal.

For the W∗Aτ−ν̄τ and the W∗AW∗A channels, a similar procedure was followed, with
an additional contribution from the b-tagging and with the difference that the W+W− is
not the dominant background (described in detail in [32]). The total systematic errors on
the signal efficiency for the W∗AW∗A and W∗Aτ−ν̄τ were 5% and 2% respectively. The
relative errors on the background were 11% and 10%.

6 Results

The number of real data and background events and the estimated efficiencies in each
of the analysis channels for different H± masses are summarised in Tables 7 and 8. The
quoted errors include both statistic and systematic errors, added in quadrature.

6.1 Determination of the mass limit

No significant signal-like excess of events compared to the expected backgrounds was
observed in any of the five final states investigated. Confidence levels were calculated using
a modified frequentist technique, based on the extended maximum likelihood ratio [34, 35].
From these confidence levels, lower limits on the charged Higgs boson mass were derived
at 95% confidence level in two scenarios. In the first scenario it was assumed that the
charged Higgs boson decayed exclusively to either τ−ν̄τ or c̄s, corresponding to type II
models. The limits were extracted as a function of the leptonic Higgs decay branching
ratio BR(H− → τ−ν̄τ ). In the second scenario, corresponding to type I models, the W∗A
decay was permitted if kinematically accessible and limits were computed for different
values of MA as a function of tan β or for different values of tanβ as a function of MA.
The branching ratios were calculated according to [6] as functions of tan β and the neutral
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pseudo-scalar and charged Higgs masses.
The background and signal probability density functions of one or two discriminating

variables in each channel were used. The data samples collected at the different centre-
of-mass energies were treated as independent channels. When there was a significant
overlap between two channels, the one providing less sensitivity was ignored to avoid
double counting. In the cs̄c̄s and cs̄τ−ν̄τ channels the two discriminating variables were
the reconstructed Higgs boson mass and the anti-WW likelihood. In the W∗AW∗A and
W∗Aτ−ν̄τ the likelihood was replaced by the final neural network output. In the τ+ντ τ

−ν̄τ

channel only the final background discrimination likelihood was used since mass recon-
struction was not possible. The distributions of the discriminating variable for signal
events, obtained from the simulation at different H± mass values for each

√
s, were inter-

polated for intermediate mass values.
The estimated uncertainties on background and signal were taken into account in

the limit derivation by a Gaussian smearing around the central values of the number of
expected events.

The resulting limits at 95% confidence level are shown in Figs. 13, 14 and 15 for the

Chan.
√

s (GeV) lum. data total bkg. ε75 ε80

τ+ντ τ
−ν̄τ 189 153.8 14 17.8± 1.4 35.2±1.5% 35.7±1.5%

τ+ντ τ
−ν̄τ 192 24.5 3 2.9± 0.2 33.6±1.5% 37.0±1.5%

τ+ντ τ
−ν̄τ 196 72.4 10 9.1± 0.7 33.6±1.5% 37.0±1.5%

τ+ντ τ
−ν̄τ 200 81.8 10 9.7± 0.8 32.3±1.5% 35.5±1.5%

τ+ντ τ
−ν̄τ 202 39.4 2 4.7± 0.4 32.3±1.5% 35.5±1.5%

τ+ντ τ
−ν̄τ 205 69.1 10 8.5± 0.6 32.2±1.5% 33.4±1.5%

τ+ντ τ
−ν̄τ 206.6 79.8 5 10.1± 0.8 32.2±1.5% 33.4±1.5%

τ+ντ τ
−ν̄τ 206.3(S6) 50.0 5 6.1± 0.5 31.7±1.5% 35.7±1.5%

cs̄c̄s 189 158.0 565 554.9±22.2 52.1±1.3% 52.6±1.3%
cs̄c̄s 192 25.9 90 93.1± 3.7 54.6±1.4% 54.1±1.4%
cs̄c̄s 196 76.9 284 279.7±11.2 54.6±1.4% 54.1±1.4%
cs̄c̄s 200 84.3 299 300.6±12.2 53.1±1.3% 53.9±1.3%
cs̄c̄s 202 41.1 147 136.5± 5.5 53.1±1.3% 53.9±1.3%
cs̄c̄s 205 75.6 270 264.5±10.6 51.5±1.3% 53.6±1.3%
cs̄c̄s 206.6 87.8 291 288.3±11.5 52.1±1.3% 53.5±1.3%
cs̄c̄s 206.3 (S6) 60.8 168 196.9± 7.9 51.5±1.3% 53.6±1.3%

cs̄τ−ν̄τ 189 153.8 296 285.8±22.9 57.5±2.7% 57.1±2.7%
cs̄τ−ν̄τ 192 24.5 56 47.5± 3.8 57.6±2.7% 56.5±2.7%
cs̄τ−ν̄τ 196 72.4 147 143.8±11.5 57.6±2.7% 56.5±2.7%
cs̄τ−ν̄τ 200 81.8 158 154.6±12.4 57.4±2.7% 57.3±2.7%
cs̄τ−ν̄τ 202 39.4 71 75.7± 6.1 57.4±2.7% 57.3±2.7%
cs̄τ−ν̄τ 205 69.1 130 129.5±10.4 57.2±2.7% 55.5±2.6%
cs̄τ−ν̄τ 206.6 79.8 139 150.4±12.0 57.2±2.7% 55.5±2.6%
cs̄τ−ν̄τ 206.3(S6) 50.0 88 94.4± 7.6 57.7±2.7% 55.9±2.6%

Table 7: Integrated luminosity, observed number of events, expected number of back-
ground events and signal efficiency (for 75 GeV/c2 and 80 GeV/c2 charged Higgs boson
masses) for different centre-of-mass energies for the channels not involving W∗A decays.
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Chan.
√

s (GeV) lum. data total bkg. ε80 ε90

W∗Aτ−ν̄τ 189 153.8 12 11.4± 0.7 20.5±2.2% 10.2±2.1%
W∗Aτ−ν̄τ 192 24.5 3 1.6± 0.1 20.1±2.2% 11.4±2.1%
W∗Aτ−ν̄τ 196 72.4 2 4.7± 0.3 20.1±2.2% 11.4±2.1%
W∗Aτ−ν̄τ 200 81.8 4 4.9± 0.3 21.0±2.2% 13.7±2.1%
W∗Aτ−ν̄τ 202 39.4 4 2.5± 0.2 21.0±2.2% 13.7±2.1%
W∗Aτ−ν̄τ 205 69.1 4 4.1± 0.2 21.3±2.2% 15.5±2.2%
W∗Aτ−ν̄τ 206.6 79.8 6 4.6± 0.3 21.3±2.2% 15.5±2.2%
W∗Aτ−ν̄τ 206.3(S6) 50.0 4 3.0± 0.2 21.3±2.2% 15.5±2.2%
W∗AW∗A 189 158.0 81 79.7± 7.9 35.6±5.1% 39.4±5.1%
W∗AW∗A 192 25.9 16 13.0± 1.3 35.6±5.1% 39.4±5.1%
W∗AW∗A 196 76.9 37 35.3± 3.5 35.6±5.1% 39.4±5.1%
W∗AW∗A 200 84.3 36 35.6± 3.6 35.5±5.1% 39.3±5.1%
W∗AW∗A 202 41.1 16 17.7± 1.8 35.5±5.1% 39.3±5.1%
W∗AW∗A 205 75.6 24 24.7± 2.5 37.8±5.1% 34.5±5.1%
W∗AW∗A 206.6 87.8 30 28.3± 2.8 37.8±5.1% 34.5±5.1%
W∗AW∗A 206.3(S6) 60.8 13 18.2± 2.8 37.8±5.1% 34.5±5.1%

Table 8: Integrated luminosity, observed number of events, expected number of back-
ground events and signal efficiency (80 GeV/c2 and 90 GeV/c2 charged Higgs boson
masses, and MA=12 GeV/c2) for different centre-of-mass energies for the channels involv-
ing W∗A decays.

two scenarios as functions of the model parameters. The expected lower limits on the
mass have been obtained as the median7 of a large number of simulated experiments.

If the W∗A decay is forbidden, a lower H± mass limit of MH > 74.4 GeV/c2 can be set
at 95% confidence level, for any branching ratio BR(H → τ−ν̄τ ). The lower mass limit
corresponds to a branching ratio of about 0.3. The minimum of the expected limits is
76.3 GeV/c2. The noticeable difference between observed and expected limits is dominated
by a small unexcluded region (Fig. 13) around BR=0.35 produced by a small excess of
data in that region in the semileptonic channel. However, this region is excluded at 92%
confidence level,

Within type I models, a lower limit on the H± mass of MH > 76.7 GeV/c2 can be set
at 95% confidence level, for any tanβ for MA > 12 GeV/c2. The expected lower limit
on the mass for these conditions was 77.1 GeV/c2. Table 9 shows the limits obtained for
different values of MA and tan β. The lower limit on the mass for a given MA or a given
tan β and the absolute lower limit are also shown.

Figures 16 and 17 show the observed and expected confidence level for the background
only hypothesis8. In general a good agreement with this hypothesis is found, with the
confidence levels inside the two standard deviation regions. This is true in all cases,
except in a small mass region below 45 GeV/c2 for the cs̄c̄s decay channel, where the

7The median is calculated as the value which has 50% of the limits of the simulated experiments below
it and similarly, the ± 1σ estimations correspond to 84% and 16% of the simulated experiments.

8The confidence level for background hypothesis, CLb is defined [34, 35] in such a way that its ex-
pectation value is 0.5 in the absence of signal. A CLb value close to 1 indicates a signal-like excess of
candidates in the data.
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MA tan β = 0.01 tanβ = 50 minimum
12 82.4 (80.7) 82.1 (83.5) 77.6 (77.1)
30 82.5 (80.7) 84.6 (86.3) 78.6 (77.6)
50 82.5 (80.7) 88.0 (89.2) 78.9 (78.4)
70 82.5 (80.6) 86.4 (88.0) 80.2 (79.0)

minimum 82.4 (80.6) 79.8 (79.9) 76.7 (77.1)

Table 9: Observed limits for the charged Higgs mass in GeV/c2 at 95% C.L. for different
values of MA (in GeV) and tan β. The expected median limit is shown in parenthesis.
The last column and the last row, show the worst case limits for a fixed mass and any
tan β or a fixed tanβ and any mass.

observed confidence level corresponds to 3.1 standard deviations. This excess, however,
was not found to be compatible with a charged Higgs signal and therefore considered
as a fluctuation for the following reasons. Firstly, the excess is an order of magnitude
smaller than the expected rate from a signal. Secondly, the excess is distributed over
much broader mass range than what would be expected for a charged Higgs signal. As a
consequence, the signal plus background hypothesis is incompatible with the data with a
confidence level equivalent to more than 13 standard deviations.

6.2 Cross-section limit

The results are also expressed as 95% confidence level upper limits for the charged Higgs
boson production cross-section as a function of the charged Higgs boson mass, for different
assumptions on the model parameters, i.e. leptonic branching ratio for the first scenario
and MA and tanβ for the second. These cross-section limits were determined for each
mass point by scaling the expected Two Higgs Doublet Model signal cross-section up or
down until the confidence level for signal hypothesis reached 95%. Therefore the only
assumption taken from the model is the dependence of the cross-section on the mass and
centre-of-mass energy and thus this approach can be considered model independent to
a large extent. Results are summarised in Figures. 18 and 19. These cross-sections are
given for 206.6 GeV centre-of-mass energy, the maximum energy for which this analysis
has a sizable luminosity.

7 Conclusions

A search for pair-produced charged Higgs bosons was performed using the data collected
by DELPHI at LEP at centre-of-mass energies from 189 GeV to 209 GeV searching for
the τ+νττ

−ν̄τ , cs̄c̄s, cs̄τ−ν̄τ , W∗AW∗A and W∗Aτ−ν̄τ final states. No significant excess of
candidates over the expected Standard Model background was observed and lower limits
on the charged Higgs boson mass were set in two scenarios. Assuming that the branching
ratio to W∗A is negligible (type II models or type I with a heavy neutral pseudo-scalar)
limits are set at 95% confidence level as a function of the branching ratio to leptons.
Results are shown in Fig. 13. The absolute limit is 74.4 GeV/c2 at 95% confidence
level. Limits were also set within type I models for different neutral pseudo-scalar masses,
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MA > 12 GeV/c2 and tanβ. Results are shown in Figures 14 and 15. The absolute limit
is 76.7 GeV/c2 at 95% confidence level.

To allow a less model dependent comparison limits are also expressed in terms of upper
bounds on the cross-section for different sets of the model parameters. Results are shown
in Figs. 18 and 19.

This analysis improves previous searches both by the inclusion of new discriminant
techniques and by the less model dependent approach allowing more sensitivity and cov-
ering a wider range of models and model parameters.
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Figure 1: Predicted charged Higgs boson decay branching ratios for different parameters
in the framework of type I Two Higgs Doublets Models.
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Figure 2: Predicted charged Higgs boson decay branching ratios for different parameters
in the framework of type I Two Higgs Doublets Models.
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Figure 3: Distribution of some of the variables used for the anti-WW likelihood for the
τ+νττ

−ν̄τ analysis at
√

s = 189–209 GeV after preselection: a) acoplanarity, b) signed
cosine of polar angle of each τ candidate, c) total transverse momentum and d) event τ
polarisation likelihood. Data are shown as filled circles, while the solid histogram contour
shows the expected SM background with contributions from W+W− (unfilled) and qq̄
(shaded). The expected histogram for a 85 GeV/c2 charged Higgs boson signal is shown
as a dashed line with arbitrary normalisation for comparison.
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Figure 4: Distribution of the anti-WW likelihood for the τ+νττ
−ν̄τ analysis at 189–

209 GeV. The dots represent the data, while the solid histogram contour shows the
expectation from SM processes, as in Fig. 3. The expected histogram for a 85 GeV/c2

charged Higgs boson signal has been normalised to the production cross-section and 100%
leptonic branching ratio and added to the backgrounds (dashed). The dotted line shows
the shape of the likelihood for the charged Higgs signal only in arbitrary normalization.
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Figure 5: Distribution of some of the variables used for the anti-qq̄ and anti-WW likeli-
hoods in the cs̄c̄s analysis at

√
s =189–209 GeV after preselection: a) aplanarity, b) signed

cosine of the polar angle of the boson c) c̄s-tagging variable and d) mass difference. Data
are shown as filled circles, while the solid histogram shows the expected SM background
with contributions from W+W− (unfilled) and qq̄ (shaded). The expected distribution for
a 75 GeV/c2 charged Higgs boson signal is shown as a dotted histogram with arbitrary
normalisation for comparison.
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Figure 6: Distributions of the anti-qq̄ (top) and anti-WW (bottom) likelihoods in the cs̄c̄s
analysis at 189–209 GeV after preselection and mass difference cut. Data and expected
SM backgrounds are indicated as in Fig. 5. The expected distribution for a 75 GeV/c2

charged Higgs boson signal is shown as a dotted histogram with arbitrary normalisation.

27



0
100
200
300
400
500
600
700
800

10 20 30 40 50 60 70 80 90 100 110
0

100
200
300
400
500
600
700
800

10 20 30 40 50 60 70 80 90 100 110

DELPHI

Mass (GeV/c2)

E
ve

nt
s/

2 
G

eV

Mass (GeV/c2)

E
ve

nt
s/

2 
G

eV

0
25
50
75

100
125
150
175
200

10 20 30 40 50 60 70 80 90 100 110
0

25
50
75

100
125
150
175
200

10 20 30 40 50 60 70 80 90 100 110

Figure 7: Reconstructed mass distribution in the cs̄c̄s analysis at
√

s = 189–209 GeV
at preselection (top) and at the final selection with additional cut of Lqq > 0.7 and
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hadronic branching ratio of 100%, is also shown for comparison (dotted).
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Figure 9: Distributions of the anti-qq̄ and anti-WW likelihoods for the cs̄τ−ν̄τ analysis
at 189–209 GeV. The anti-qq̄ likelihood is plotted after preselection and the anti-WW
likelihood at the final level. Data and SM background are indicated as in Fig. 8. The
expected distribution for a 75 GeV/c2 charged Higgs boson signal is shown as a dotted
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Figure 10: Reconstructed mass distribution for events selected in the cs̄τ−ν̄τ analysis
at 189–209 GeV at preselection (top) and at the final selection level (bottom), with an
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Figure 11: Distribution of the output of the final discriminating neural network for events
selected in the W∗Aτ−ν̄τ (top) and W∗AW∗A (bottom) analyses, respectively, for energies
between 189–209 GeV. The data and the simulated SM background are indicated as
in previous figures. The expected distribution in the presence of an H+H− signal, with
MH = 80 GeV/c2 and MA = 30 GeV/c2, is also shown in arbitrary normalisation for
comparison (dotted).
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Figure 12: Reconstructed mass distribution for events selected in the W∗Aτ−ν̄τ (top) and
W∗AW∗A (bottom) analyses by a cut on the neural network output of 0.1 and 0.3, respec-
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are indicated as in previous figures. The expected distribution in the presence of an
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Figure 15: The observed and expected exclusion regions at 95% confidence level in the
plane of MA vs. MH in the framework of type I Two Higgs Doublet Models. These limits
were obtained from a combination of the search results in all studied channels, with or
without W∗A decays, at

√
s = 189–209 GeV, for different values of tanβ.
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Figure 16: Confidence level for the background-only hypothesis for different branching
ratios, under the assumption that the W∗A decay is forbidden. The bottom left figure,
shows the CLb only for the events selected in the cs̄τ−ν̄τ . The full line shows the observed
CLb and the horizontal dashed line at 0.5 indicates the expectation in the absence of a
signal. The bands show the one and two standard deviation regions for this expectation.
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Figure 17: Confidence level for the background-only hypothesis for different tan β and
A masses. The full line shows the observed CLb and the horizontal dashed line at 0.5
indicates the expectation in the absence of a signal. The bands show the one and two
standard deviation regions for this expectation.
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Figure 18: Upper limits on the cross-section for charged Higgs boson pair production at
95% confidence level, for different BR(H− → τ−ν̄τ ), under the assumption that the W∗A
decay is forbidden. The dashed curve shows the expected upper limit with one and two
standard deviation bands and the solid curve is the observed upper limit of the cross-
section for background only hypothesis. The solid black diagonal curve shows the Two
Higgs Doublet Model prediction. Cross-sections are given for 206.6 GeV centre-of-mass
energy.
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Figure 19: Upper limits, at 95% confidence level, on the production cross-section for a
pair of charged Higgs bosons as a function of the charged Higgs boson mass, for different
tan β and MA values within type I models. The dashed curve shows the expected upper
limit with one and two standard deviation bands and the solid curve the observed upper
limit of the cross-section for background only hypothesis. The solid black diagonal curve
shows the Two Higgs Doublet Model prediction. Cross-sections are given for 206.6 GeV
centre-of-mass energy.
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