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Abstract

Heavy-ion collisions can be simulated by means of comprehensive
approaches, to include the many different reaction mechanisms which may
contribute. QMD models and their relativistic extensions are examples
of these approaches based on Monte Carlo techniques. In thispaper are
shown some results obtained by coupling a new QMD code, whichde-
scribes the fast stage of ion-ion collisions, to the evaporation/fission/Fermi
break-up andγ de-excitation routines present in the FLUKA multipurpose
Monte Carlo transport and interaction code. In particular,we compare
the predicted neutron spectra to available experimental data from thin and
thick target irradiations. We show also some predictions ofparticle and
charged fragment fluences for the interaction of C and Fe ionswith a thick
PMMA target, which may be useful to assess the risk of side-effects in the
hadron therapy of tumours.

1 Introduction

Heavy-ion collisions at non-relativistic bombarding energies can be simulated
by Quantum Molecular Dynamics (QMD) calculations. These are comprehen-
sive approaches which allow one, using Monte Carlo techniques, to take into
account in a natural and straightforward way the whole of thedifferent reaction
mechanisms which contribute to a given two-ion interactionas a function of the
impact parameter and the bombarding energy. These featuresmake them most
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suitable for describing processes where yields and fluencesof emitted particles
and fragments have to be predicted and controlled, as it is needed in hadron
therapy and radiation protection in space missions.

Since nuclear fragmentation can be interpreted as the result of nuclear den-
sity fluctuations, originated by the collisions, a proper description of nucleon
correlations is crucial for understanding this process. The QMD methods allow
one to take into account correlations in a natural and straightforward way. The
time evolution of the projectile-target ion system in phase-space is calculated at
each step of the simulation, by relating the spatial coordinates and momenta of
each nucleon to the coordinates and momenta of all other particles. The nucleon
wave-function evolution is evaluated by the Variational Principle, by minimi-
zing the action corresponding to an Hamiltonian describingthe nucleon-nucleon
interactions.

In the original versions of QMD [1], the nuclear wave-function is merely
given as a product of nucleon wave-functions. In more advanced versions, e.g.
the Fermionic Molecular Dynamics (FMD) [2] and the Antisymmetrized Mole-
cular Dynamics (AMD) [3], the fermionic nature of nucleons is properly taken
into account. As far as we know, these last approaches are used for investigating
nuclear structure (e.g. for light exotic nuclei), but they have never been applied
in a systematic way for studying the interaction of heavy-ion beams in thick tar-
gets, due to their complexity and the required huge amount ofCPU time. Since
our aim is setting up an ion-ion collision event generator tobe used at relatively
low bombarding energies, from about one hundred up to a few hundred MeV/A,
for describing the interaction and transport of heavy-ion beams in matter, con-
sidering thick composite targets of complex geometries, wechoose to develop
a non relativistic QMD code in which the fermionic nature of nucleons is taken
into account in an approximate way. This is made using Pauli blocking factors
in nucleon-nucleon scattering processes and by giving an initial nucleon state
distribution which forbids that identical nucleons be in the same phase-space
region [4].

2 The Hamiltonian

The QMD calculations discussed in literature mainly differin their Hamilto-
nian, both considering its terms and the strenght of the nucleon interaction co-
efficients. In the following we briefly discuss, as reminded above, results which
we have obtained using a non-relativistic Hamiltonian, i.e., assuming an istan-
taneous effective nucleon-nucleon interaction. Our Hamiltonian incorporates
isospin and Coulomb effects, i.e.n-p, p-p andn-n interactions have different
strengths and radial dependence. Its nuclear part includesan attractive Skyrme
2-body interaction term and a repulsive Skyrme 3-body interaction term. This
one is crucial to reproduce the saturation properties of nuclear matter at normal
density (ρ0 ≃ 0.17 fm

−3). A symmetry term takes into account isospin effects,
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and a surface term, given by the sum of an attractive and a repulsive term, is also
included to reproduce the decrease of the nuclear potentialat lowr. The nuclear
terms of the Hamiltonian contain parameters fitted to reproduce the observed
properties of nuclear matter and finite nuclei.

In order to compare most of the calculated observables with experimental
data, an accurate description of the de-excitation of residues produced after the
fast nuclear interaction stage of the reaction is also needed. In fact QMD can
be used to study the fast overlapping stage of an ion-ion collision (∆tfast ∼

10−22s), that leads to the formation of pre-fragments, i.e. fragments which may
be excited. Other models, based on statistical considerations, are more suitable
to describe the de-excitation of these fragments, which mayoccur on a time
scale several order of magnitudes larger (∆tde−ex up to∼ 10−15 s). Thus, our
QMD has been coupled to the de-excitation module available in the FLUKA
Monte Carlo transport and interaction code [5, 6]. At present, the de-excitation
module allows one to take into account the evaporation of light particles and
intermediate mass fragments (up to A = 24), fission, Fermi break-up (in the case
of smaller fragments), andγ emission.

3 Simulation of thin target experiments

To validate the low energy limit of our calculations we have analysed neutron
double differential spectra in heavy-ion collisions at bombarding energies be-
low 150 MeV/nucleon. An example of the results obtained withour QMD +
FLUKA calculations is shown in Fig. 1 where our predictions are compared to
the experimental spectra measured by [7] in the interactionof 95 MeV/A Ar ions
with a thin Al target. In this experiment the target thickness was chosen to en-
sure the projectile ion energy loss be smaller than a few MeV.Our calculations
(filled triangles) reproduce quite accurately the experimental data (filled circles),
especially at intermediate neutron emission angles (30 - 80deg).

The QMD + FLUKA calculations reproduce with fair accuracy also the other
experimental results given in Ref. [7], as shown, e.g., in Fig. 2 where the expe-
rimental and calculated spectra of the neutrons emitted in the interaction of Ne
ions with Al ions at 135 MeV/A bombarding energy are compared.

An example of the ability of our calculations to reproduce the yield of the
emitted light and intermediate mass fragment is given in Fig. 3, for the reaction
Ca + Ca at 35 MeV/A. To reproduce accurately the data, the calculation must
simulate accurately the experimental constraints, such asthose concerning the
measured fragment multiplicity. The agreement of our calculations with the
experimental data measured with the AMPHORA detector at SARA [8], is quite
satisfactory.
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Figure 1:Double-differential spectra of the neutrons produced in the interaction of Ar
and Al ions at 95 MeV/A bombarding energy. The theoretical distributions predicted by
QMD + FLUKA (filled triangles) are compared to the experimental data of Ref. [7] (filled
circles).
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Figure 2:Double-differential spectra of the neutrons produced in the interaction of Ne
and Al ions at 135 MeV/A bombarding energy. The theoretical distributions predicted
by QMD + FLUKA (filled triangles) are compared to the experimental data of Ref. [7]
(filled circles).
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Figure 3: The theoretical prediction of the yield of the charged fragments produced
in the symmetrical Ca + Ca interaction at a 35 MeV/A bombarding energy (red filled
circles and yellow squares, joined by histograms) is compared to the experimental mea-
surement for central collisions events (grey circles) madewith the AMPHORA detector
at SARA [8]. The reproduction of the data requires to simulate exactly the experimen-
tal set up and contraints, as it may be appreciated by comparing the yellow histogram,
obtained by imposing that the charged fragment multiplicity be more than 5 at the end
of the nucleon interaction cascade described by QMD, to the red histogram, obtained by
imposing that the charged fragment multiplicity be more than 10 at the end of the de-
excitation stage, and fulfilling the requirement of quasicomplete events according to the
detector acceptance, as in the experiment.

4 Thick target applications

For applicative purposes one has often to deal with the interaction of an ion beam
with a thick target of complex geometry. In this case one mustdescribe also the
interactions of secondary particles and fragments with thetarget. To do this
our QMD code has been interfaced to the FLUKA Monte Carlo transport and
interaction code which allows one to study the transport of ions and secondary
particles in thick materials considering, in addition to nuclear interactions, many
effects such as energy losses due to medium ionization, bremsstrahlung, multiple
scattering. As reminded before, FLUKA also includes a nuclear de-excitation
module, which can be used to simulate the de-excitation of the hot fragments
that may be present at the end of the fast stage of the ion-ion collisions described
by the QMD calculations.

An example of the ability of the QMD + FLUKA calculations to reproduce
neutron spectra observed in a thick target experiment is shown in Fig. 4, where
our calculations are compared to the neutron spectra measured in the interaction



6 M.V. Garzelliet al.

of an Ar beam with a thick Al target at 400 MeV/A bombarding energy [9].
The aluminium target used in the experiment had a thicknessd = 5.5 cm, and
was able to stop the incident beam. The agreement between theresults of the
calculated and the experimental spectra is very encouraging, even considering
the small underestimation of the neutron yield along the beam direction. We
emphasize that the reproduction of the absolute yield does not require any nor-
malization coefficient. These calculations help to estimate the risk of side effects
in patient’s treatment. One of the growing applications of FLUKA concerns just
this field, considering also the biological damage to the irradiated tissue [10–12].
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Figure 4:Double-differential neutron spectra from the interactionof Ar and Al ions at
400 MeV/A bombarding energy. A 5.5 cm aluminium target was used to stop completely
the Ar incident beam. The theoretical distributions predicted by QMD + FLUKA (filled
triangles) at 0o, 7.5o, 15o, 30o, 60o, 90o emission angles are compared to the experimen-
tal data of Ref. [9] (filled circles).

The use of transport codes is necessary in hadron therapy studies for eva-
luating the spatial distribution of the physical dose givento a patient. To do
this one must consider all primary and secondary particles,and their energy and
angular distribution as they propagate in the biological tissue. An example of
the capabilities of the calculations in describing such processes is provided by
the study of the propagation of a 400 MeV/A Carbon ion beam in a10 cm ra-
dius PMMA cylinder 10 cm deep, surrounded by air. PMMA (C5H8O2) is a
compound which allows to simulate the energy loss of a particle beam in bio-
logical tissues. The calculated spatial distribution of neutron, proton and heavy
fragment fluence (expressed in particles/cm2/primary ion) are shown in the top,
central and bottom panels of Fig. 5, respectively. The comparison of the emit-
ted particle’s fluences shows that neutrons are more spreaded out than protons
and heavy-ions. Neutrons, originated from primary and secondary interactions
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Figure 5:Spatial distribution of the neutron (toppanel), proton (intermediatepanel) and
ion (bottompanel) fluences for a 400 MeV/A C beam propagating along the axis of a 10
cm radius PMMA cylinder 10 cm deep (which is not shown in the figure) in a cylindrical
symmetry geometry. The plots show the results of the simulations carried out with QMD
+ FLUKA. The cylinder front face is located at Z = 0 cm, while the beam is supposed to
come from the left along the Z axis (abscissa axis in the figure). The PPMA cylinder is
surrounded by air: the formation of a cascade of particles and fragments also outside the
cylinder can be explained by the interactions of primary particles and secondary products
with the air surrounding the cilinder.
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of beam particles with the target, are not subject to Coulombinteraction and
can thus propagate deep in matter. In Fig. 6 the dose distribution predicted at
different depths inside the PMMA cylinder previously considered is shown in
the case of the bombardment with a 400 MeV/A iron beam. In thisfigure, the
results of the QMD + FLUKA calculations are compared to thosemade with the
current version of FLUKA using the Relativistic Quantum Molecular Dynamics
code RQMD2.4 [13–15]. The results of the two calculations practically coincide
up to the Bragg peak showing that the prediction of the dose distribution in this
range region does not appear to be particularly sensitive tothe differences be-
tween QMD and RQMD2.4 [4]. On the other hand, in the distal part of the peak,
slight differences concerning the total released dose appear. These are due to
different implementations of nuclear interaction effectsin the two codes, which
are more pronounced at low interaction energies.

Figure 6: Dose distribution (arbitrary unit) as a function of the propagation depth for
a Fe beam propagating in the PMMA cylinder as in Fig. 5, at 400 MeV/A bombarding
energy. The cylinder front face is located at Z = 0 cm (origin of the abscissa axis). The
results of the simulation made with QMD + FLUKA (full circles) are compared to those
of the simulation with RQMD + FLUKA (empty stars).

5 Conclusions and perspectives

Fragmentation of ion beams propagating in matter can be simulated by dina-
mical models, considering nucleon correlations. Quantum Molecular Dynamics
models predict nucleon-nucleon phase-space correlationsin a straightforward
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and natural way and allow one to describe the dynamical evolution of nuclear
systems in the fast stage of heavy-ion collisions. In this paper results are shown
concerning particle and fragment fluences and distributions, originated by the
propagation and the interactions of different beams in low-Z targets. The simu-
lations have been performed with a QMD code coupled to the FLUKA Monte
Carlo general purpose transport code.

Especially gratifying is the reproduction of thick target data which are simu-
lated by a fully microscopical calculation of the primary and secondary interac-
tions. The obtained results are encouraging in view of theiruse in hadron therapy
and radioprotection in space missions. For this purpose, further simulations and
comparisons with experimental data to assess the ability ofthe code in predicting
heavy fragment distributions are at present under way. As shown in the paper,
charge fragment yields from symmetric central collisions are in very reasonable
agreement with the experimental data.
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