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ABSTRACT

The influence of binding is considered for the radia-
tive decay of a non-relativistically bound 3Sl QQ
state to a photon and an elementary spin-zero boson by
mixing with all relevant QQ states. For a pseudoscalar
boson, the sum reduces to a single term and one reco-
vers the result of free quark perturbation theory in
the limit wr < 1. For a scalar boson, binding effects
can be important in general, but in the combined
limit(mr)™! << wr << 1 << mr, the free quark perturba-
tion theory result is also approached, thanks to the
sum rule

Ryg(0) = J Rypr(0) < mP|r|ns>

among S—- and P-wave radial wave functions and dipole
matrix elements. Simple examples of the sum rule are
discussed.
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The Higgs particles H of unified electroweak interactions can be produced in
radiative quarkonium decay [1]. The decay rate of any 35, QQ bound state V
into H + ~ is related to that into ete™:

NV~ H+q) _ 2% My
I(V— ete) e M,

Here gy is the Yukawa coupling of the Higgs boson to the quark Q. Equation (1)

) (1)

is valid for either scalar or pseudoscalar H. Eqr: . ..on (1) is derived in the limit of
a loosely bound QQ system. Under what coaditi.2s might one expect significant
deviations from the result (1) due to hadronic interactions between @ and Q ?
Our result is that the expression (1) for the decay of a 35, state into a pho-
ton and an elementary spinless particle H (which may or may not be a Higgs
boson) is expected to be valid even for soft photon energies w , as long as these

energies satisfy AE << w << <r>"! where AE is a characteristic level spac-

ing and <r> is the size of the system. (For smaller w, the characteristic electric

or magnetic dipole rates I' ~ «? are recovered [2-4].)

Here
My M
w = —é-“ {l - E . (2)

The result follows from a duality between a free-quark and bound state descrip-
tion that is essentially trivial when H is pseudoscalar, but that is based on an

interesting sum rule when H is scalar. This relation is

RnS(O) = 2 RmP' (0) <mP|r|nS> ) (3)

where R 1), R,p{r) are radial S- and P-wave Q@ wave functions, and
<mP|r|nS> is a dipole matrix element (radial integral).

The relation (3) is implicit in several related treatments of this problem [2-4].
Nevertheless its derivation and implications are so simple we feel they are worth
pointing out.

We calculate the amplitudes for V — H + ~ via standard second-order per-
turbation theory, taking account both of spin-zero [5] and spin-one intermediate

states. If A, is the amplitude for the process V,, — H + 7 in the tree
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approximation of Ref.[1], we find the amplitudes to be

J(H) =0
2 . wr
A=A, ) % R,+0) <'”51.1.,(-2—)|n5'>
1 1
X [Em(lso) - E,,("Sl) 4+ w + Em(ssl) _ w} (4) ,
() = o*:
R,0)< mﬂjo(% )|nS>
A=A, {
5(0) Em(ssl) -
M mP (0)<mP|—-h[ﬂ'_ [_a(?:_air]l S>
+ R,40) %: Em(3Po) _ En(ssl) +w } . (5)

where M, is the mass of V, and mg is the quark mass. Equivalent results have
been obtained in Ref.[2].

For J°(H) = 0™, the result of Ref. 1 is obtained when (a)
wr < 1, j(wr/2) = 1, so only the state with m=n contributes to the sum,; (b)
w << E,, (as will hold if w < <r>"! for a nonrelativistic system), so only the
first term in the square bracket in (4), corresponding to the 0~ intermediate state,
is important; and (c¢) w >> (AE)yps so that the term w/(E,, - E, + w)
approaches 1. Similar results have been noted in Refs. [2, 3, and 6].

In the limit w << E,(35;) - E,(1S,) , the amplitude in (4) will behave as w ,
as befits a magnetic dipole transition.

For JO(H) = 0% , when wr — 0 , the expression (5) becomes
" [ M, My R ()<mPlrinS>
"M, [ My-w  R0) T E(P)-E(S)+w|

A=A (8)

Here again, as w — 0, the amplitude is proportional to w , as it should be for an

electric dipole transition.



-3 -

The ratio A/A, in Eq. (6) approaches 1 when (a) w << M, , (b)
|E(3P,) - E,(35))] << w, in which case terms in the sum in (6) dominate over
the first term in the square brackets; and (c) the sum rule (3) holds. This last
condition is just a consequence of nonrelativistic quantum mechanics, as we now

show.

Consider the expectation value of the commutator
#Ar;, p] = #(P5; (M
in the state |[nS> . Insert a complete set of intermediate states:

<nS|E@A|nS>ib; = Y { <nSo*Ar;| m > <mlp;inS>

- <nS|8(Apim> <mirinS>}. (8)

Only P states contribute to the sum. In configuration space we can express the P

state wave functions in Cartesian form:

Vidn =\ L Rukr) (6=1,2.9) ©)

Equation (8) then reads
8; (W02 =Y [ &r ¥ ((REMO; VE AP
m,k

X [ dg? WEHY )r! W (7). (10)

Here only the second term in (8) has contributed. Near r = 0 we find

3; Vi) ~ \/:—3; R,p (0)5; . (11)

After performing an elementary angular average, we arrive at the result (3).

The sum rule (3) in general is more slowly convergent than those for squares
of dipole matrix elements such as the Thomas-Reiche-Kuhn (7,8] or Wigner and

Kirkwood [ 9,8] sum rules, examples of which are

00
TRK: MQ 22 (EmP - EnS) I <mP|r|nS>|2 =3 (12)
m=

WoK: mg 33 (Eas - Enpll<nSiAmP>[2=-1. (13)

n==]
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Here mg = 2p , where p is the reduced mass of the QQ system. We compare
the convergence of (3) and (12) in Fig. 1 for a bb quarkonium system described by
a potential that reproduces the data [10]. The Wigner-Kirkwood sum rules con-
verge extremely rapidly, as the dipole matrix elements <nS|r{mP> turn out to

*
.

be very small for n > m

The most elementary illustration of the sum rules is provi-led by the har-
monic oscillator. The only non-zero dipole matrix elements for ¢he oscillator
between S and P waves link adjacent values of N = FE - 3/2 (we take unit mass

and coupling strength):

<N+ 1PN, 5> = 4 /22 (14)
N
<N-1,P|rNS> =~ \/—2_" (15)

The sum rules (12), (13), and (3) are all satisfied with only two terms.

In contrast to the harmonic oscillator, the sum rules for the hydrogen atom,
with both discrete and continuous spectra, receive contributions from very many
states. Our sum rule (3) for the 1S state of hydrogen has only 19% of its total
from the bound states. The bulk (59%) comes from the nearby continuum
(0 < E < a’m,/2) , with 22% from higher energies. For the corresponding
Thomas-Reiche-Kuhn sum rule (12), the contributions are 57% from the bound

states and 43% from the continuum.

Let us sum up. We find that as w — 0, bound-state modifications [2-5] to
the free-quark calculation of 3S; quarkonium — v + elementary spin-zero boson
indeed lead to a rate behaving as w3 , as expected for a dipole transition.
Nonetheless there are bound-state limits in which the free-quark results are
obtained. These involve photon energies small compared to inverse dimensions
but large compared to level spacings. We find this condition,

AE << w << <r>71 satisfied for a wide range of possibilities for a pseudos-

calar boson, but less likely for a scalar boson. Indeed, much more substantial

‘Our notation for P states corresponds to that used in atomic spectroscopy, where m is
vae principal quantum number. Thus the lowest P state is 2P.
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deviations from Eq. (1) have been found in the scalar case [4], when considering
radiative T and T’ decays, than for the pseudoscalar case. We interpret these
results in terms of a substantially larger level spacing E,(0%) — E,(17) in the

scalar case than in the pseudoscalai case.

Our main result and the purpose of this note: When .
AE << w << <r>"! holds for scalar boson produtior, it is the sum rule (3), a
consequence of nonrelativistic quantum mechanics, that guarantees the result (1)
if an explicit perturbation-theoretic sum is performed. We have illustrated this
sum rule and find it to be quite slowly convergent in practical cases. It suggests
several points for further study. First, its slow convergence emphasizes the
importance of Green’s function methods [2,3] for evaluation of the perturbative
sum. Second, modifications of properties of highly excited bound states (e.g., by
coupling to continuum states) could affect evaluation of a perturbation calcula-
tion for scalar boson production. Third, one can imagine useful generalizations of
(3) arising if we multiply (7) by an arbitrary function such as a plane wave

exp(i¥7). Related generalizations of this sort have indeed been examined in Ref.

[4].
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Figure Caption

Comparison of sum rules involving dipole matrix elements for quarkonium sys-
tems. We choose the confining potential discussed in Ref. 9, with

mg=4.9 GeV/éE .

(a) Thomas-Reiche-Kuhn sum rule (12);

(b) wave function sum rule (3).
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