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ABSTRACT

A new kind of moment for testing three -jet
semi-leptonic processes are discussed. A double
moment defined in terms of a new. fragmentation
variable Zg,¢ (Z,,¢ = 2|Pout\//6?, Pyt 1is the
so—-called out-momentum of an outgoing hadron) in-
stead of a usual one*), Z, and "triple" moments
which are made of both Z and Z,,. are intro-
duced. These (newly) introduced moments have
contributions from processes with three or mare
jets (because Zgyr = 0 for two jet processes if
one neglects non-perturbative effects) and can
obviously be expressed by the moments of the
structure functions and fragmentation functions.
This is the advantage of introducing such moments.
How to make a quantitative comparison with ex-
periment is discussed, taking the neutrino ex-
periment as an example.

*) On leave of absence from the Institute of High
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INTRODUCTION

QCD is the only serious candidate theory of the strong interactions up to
now, and it has many qualitative successes, especially the so-called perturbative
QCD approach which even has some quantitative successes; it gives us some insight
understanding of the scaling violation of the deep inelastic scattering and two -
jet phenomena and so onz). (We will call these processes the lowest QCD processes
later on.) Its predictions fit the data very well for these processes, which means
the perturbative QCD for the lowest processes works well. So what about higher
order processes, those due to a hard gluon bremsstrahlung or hard quark pair pro-
duction? This becomes one of the next interesting problems. In this directionm,
there are several papers3)’4), but here we emphasize the use of moments to test
QCD to see whether it works well or not for the higher order processes. We find
some generalized moments, which are calculable, relate to the moments of structure

functions and fragmentation functions obviously and can be measured directly.

Moment analyses are preferable where possible, as opposed to direct structure
function and fragmentation function analyses. The reasons are that the low values
of x and 2z for the structure function and fragmentation functions, respectively,
are experimentally inaccessible but do not contribute importantly to high moments
(N2 2) and the Q? dependence behaviour of the moments have an analytically
simple asymptotic form which can provide a solid basis for quantitative comparisonss
with data. So we are interested in finding some generalized moments for testing
high order QCD processes, say three jet processes. One more advantage of using
moments is that higher order QCD processes are always related to the structure
function and fragmentation function or their moments, but now the measurements
for the moments are better than for functioms, while the generalized moments

depend on the moments only.

The component, perpendicular to the leptonic plane, of the momentum of an
outgoing hadron, the so-called out-momentum, Pout? (Fig. 1) has contributions
partly from the transverse momentum PT of the incoming quark (or gluon) inside
a target hadron and partly from the deviation of the fragment from the jet axis,
namely, the so-called non-perturbative effects, mainly from the third jet effect
if we consider a three-jet event. The former is Q? 1independent and we neglect
it; the latter is what we are interested in. We can neglect the non-perturbative
effects when either Q%2 1is large enough and if the quantities which we are
interested in are insensitive to the small Zout region, or the effects can

cancel experimentally. Sometimes it is possible to show this using the property

of the Q? independence.
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In this paper we first give the differential cross-section of semi-inclusive
semi-leptonic processes, and based on them, give the definitions of generalized
moments. To illustrate the basic idea and for simplicity, we take processes in
which V(V) produce three jets as an example. We consider a non-singlet in-
coming parton and a non-singlet fragment parton; we give formulae in detail and
some curves of the generalized moments for getting some feeling for the subject.

Finally, we discuss how to use them to test QCD experimentally.

DIFFERENTIAL CROSS-SECTION AND MOMENTS

As mentioned above, we are interested in higher order QCD processes, namely,
three-jet processes, so we first give the differential cross-section of the semi-

inclusive semi-leptonic processes:
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The differential cross-section can be written as follows 7,
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where we choose the definitions (Fig. 1):
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and fi(E,QZ) is the momentum distributlon function of the i parton (quark or

gluon) in the target hadron A, and D (E ,Q?) is the fragmentation function
+

of the j parton to 7 . The sub—process differential cross-section:
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for the two—jet process (Fig. 2), and
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*) We give the formulae in detail here; we can see they are consistent with Ref. 4).
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for the three—jet process (Fig. 3), where the suffix a = 1,2,3 stands for dia-

grams of Fig. 3a, 3b and 3c, respectively. In Egqs. (4) and (5) the factor K
includes the coupling between the current and the interacting quark, for instance,
K = Cos ec for <d> - <u>, and the sign = corresponds to neutrinos and anti-

neutrinos. aS(QZ) is the running coupling constant:

\2
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The numerical factor Ca is due to colour
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According to the definitions, we have
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neglecting the non-perturbative effects.

The A é;, B, B' and c, in Eq. (5) are functions of X5 y and zp,

where
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From Eqs. (4) and (8), due to the factor 6(pT), the two jet processes
do not contribute anything for a p% # 0 event, if we neglect the non-perturba-
tive effects, so we do so. In Egqs. (10.1) - (10.15), A; and B; come from

the V,A interference. If we do the following substitution:

& , & (11)
Gy > T

and put all A' and B' into zero, the Egqs. (2), (4), (5) and (10.1) - (10.15)

turn to the correspondlng formulae for an electron or a muon semi-inclusive process.

Because we are interested in the behaviour of the Q? dependence, we change

the differential cross-section into a Q2 fixed one:
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AXdzdGARAE  9XEM Ax dzdyALdE 1y kTN

where Ev = ko, the coming energy of Vv(V). First, we consider the cases of

non-singlet targets and fragments, namely:
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where p = proton, and n = neutrom. And we have
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Now we introduce the so-called generalized moments. One of them, a double

moment, is
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where 1 = I,II,...,
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We choose Zout’ not Z = 2P'//—5, to make experimental measurement easier.

Now we have
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From (20) - (30) we can see E o1 (n m,Q ) are expressed in terms of moments of
the structure function and of the fragmentation function directly. Similarly,

we can introduce "triple' moments (if m > 1):
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One point which we should like to note is that, from the definitions, only when

2 2 + m/2, are the generalized moments calculable.

DISCUSSION

The reason that we introduce the generalized moments based on the differen-
tial cross-section is that it can be compared to experimental data more easily.

For Ev and Q given, the mean value of xn-lzm L <xn_1Zm-1>I’II, is

out’ out ns
j dx [dlgo\\? Sol& X" 204 dxiglﬂ};:;

Xwin

where Ko = QZ/ZMEv. It can be measured directly. Considering the differential

. . . n-1m-1 .. ..
cross-section property in the x " 0 region, <x Zout> is insensitive to

X . when X . <<1 andn> 2+ m/2(m>1). So we have
min min
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)

if Ev is very large, say Ev ~n 150 GeV, and 1 Gev? < Q% £ 20 Gev? when

n> 2+ m/2. Similarly, we have
T\ R I T30 ¢
I, -1
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To study the behaviour of the generalized moments (20) and (31), we choose
as an eiample EV = 150 GeV and use the latest results about moments, fv(n,Qz)
AT =T 2y,
and D<u> (m,Q°):

N ji. \/n
FomQ)H)=7 m, (34)
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the anomalous dimensions

LY
- - 2 —
&«—5%—_1& (-2 T4l ) (36)
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and A = .75 GeV, the constants V_ and C; are measured experimentally (see

LIl n,m,02) and VM (n,m,k,Q2)

(Figs. 4 - 9). From these curves we can see that EI(n,m,Qz) and HI(n,m,k,Qz)

Table)s). We calculate some curves of E
decrease very quickly when Q? increases in the region Q2 v 20 GeV because the
sign of the last term in (21) is minus, so that to use EII(n,m,QZ) and

. I
HII(n,m,k,Qz) to test QCD is better than E (n,m,Q?) and HI(n,m,k,Qz) because
when E(n,m,Q?) and H(n,m,k,Q?)

become more important.

are very small, the non-perturbative effects

and H(n,m,k,QZ)

There is no free paramiter in E(n,m,Q?)
moments fv(n,Qz) and D£E>—ﬂ )(m,QZ), so when fitting data, it is meaningful

if we input the

to study not only the Q? dependence, but also the normalization.

Only the non-singlet case is discussed because only the non-singlet moments

ﬁv(n,QZ) and DS’LTP-Tr )(m,QZ) are measured well. For the singlet case, it is easy

to obtain the corresponding generalized moments; this is a trivial generalization

but it can test the contribution from Fig. 3b and 3c as well as from Fig. 3a.

when fitting experiments, so for a v(V)
out the events with a fixed, high energy of the v(V)
band beam experiment or, alternatively, one can use a narrow-band beam.

difficult to collect many events, although it is possible in principle.

As pointed out above, one needs to know the energy of the incoming lepton
bubble chamber experiment we must pick

from others for a wide-

It is
It

seems that, using the generalized moments to test QCD for three jet processes,

the most accessible experiments are muon deep inelastic scattering experiments,

semi-inclusive or ideally exclusive ones, namely, ones in which every outgoing

hadron momentum is measured.

be changed a little bit.

In the case of a muon beam the above formula should

For example, we only have case II for non-singlet case

and
TABLE
N 2 3 4 5 6 7
0.519 0167 0.073 0.040 0.024 0,015
VN +0,029 +0.008 +0.004 +0.002 +0.004 *0.00!
c 0.318 0.209 0.158 0.132 0.120 o2
N +0.014 +0.011 #0.010 +0.009 to.ooq +0.008
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instead of (17). Also, we now have
b
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\
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instead of (18) and

1
2 \4 ‘h‘ v
E (MwQ)’»( [Q) X >(H (',T) (39)
V')
instead of (32). Similarly, for the "triple" moments, we have
H (o b, 6) ~ <)X g Z"‘)W w) (40)
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Figure captions

Fig. 1 : Configuration of the semi-inclusive process AN > 2hX and the defi-
nitions of momenta in lab. system.

Fig. 2 : The lowest perturbative QCD diagram.

Fig. 3 : Perturbative QCD diagrams:

Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

a) a harder gluon bremsstrahlung and the hadron fragmentation from
the quark;

b) a harder gluon bremsstrahlung and the hadron fragmentation
the gluon;

¢) a hard pair production from a gluon inside N and the hadron

fragmentation from the quarks.
4 : Some curves of the double moment EI(n,m,Qz).
5 : Some curves of the double moment EI(n,m,Qz).
6 : Some curves of the triple moment HI(n,m,k,Qz).
7 : Some curves of the douhle moment EII(n,m,QZ).
.8 : Some curves of the double moment EII(n,m,Qz).

9 : Some curves of the triple moment HII(n,m,k,QZ).
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