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Abstract:

Résumé

HADRONIC WIDTHS IN CHARMONIUM

J.D. Jackson*)
CERN, Geneva, Switzerland

Theoretical estimates for the hadronic widths of the s-wave and p-wave
states in charmonium (based on lowest order perturbation theory in QCD)
are compared with indirect inferences_from experiment. For the p-states,
the expected ratios of 15:n 1:4 for J C = o*+, 1*+, 2++  respectively,
are in accord with the present, rather crude experimental evidence, and
the theoretically less reliable absolute magnitudes are within a factor
of three or four. For the pseudoscalar (& = 0) states the situation is
less clear. Identification of the X(3454) as né causes difficulties

for QCD.

On compare aux indications expérimentales indirectes les estimations
théoriques des largeurs hadroniques des états du charmonium de moment
angulaire orbital £ = 0_et £ = 1. Pour 2 = 1, les rapports calculés

sont de 15:v 1:4 pour JFC = o**, 1++  2%* respectivement, ce qui est

en accord avec les données expérimentales, d'ailleurs assez grossiéres.
Les valeurs absolues de ces largeurs, pour lesquelles le calcul théorique
est moins sfir, sont correctes & un facteur trois ou quatre prés. La
situation des états pseudoscalaires n'est pas aussi claire. L'identifi-
cation de 1'état ¥ (3454) avec ﬂé cause quelques difficultés & la chromo-
dynamique quantique.

%) On sabbatical leave from the University of California, Berkeley, Calif., USA.



INTRODUCTION

The presently known states of charmonium below the charm threshold of approxi-
mately 3.8 GeV are shown in Fig. 1. The two J = 1~ states, ¥(3095) and ¢’ (3684),
are well established in all their quantum numbers. The existence of the three
states called x(3414), x(3508) and X(3552) is beyond doubt; the assignments
JPC = 0++, 1++, 2™ are consistent with all observations and are more or less
strongly impliedl). The remai?ing two states, X(2.83) and x(3454), have been more
2,3

firmly established recently , but so far have no quantum numbers assigned,

apart from C = +1. The number of states and the rough ordering are just what is
expected from a confined positronium-like spectrum, withn=1and n =2 'S, and
%3, plus n = 1 3PJ states (the 'P; state is reachable from the Y! only via two-
photon emission and is therefore expected to be seen only with difficulty). We
adopt this interpretation throughout. Only in discussing the ¥(3454) do we mention

another possibility, still within the "positronium" framework.

33, P! (3684)
n=2
3p, X (3552)
3p, ¥(3508)
(!'sy) ¥ (3454) :
° 3P, , Y (3414)
33, P (3095)
n=1
(*sy) X(2.83)

Fig. 1 Energy levels of charmonium

The basic properties of the spectrum, the size of the wave functions, and
the magnitude of matrix elements not involving spin-flip can all be understood in
terms of almost anyone's non-relativistic Schrodinger-equation description of a
massive charmed quark-antiquark pair (cc). Relativistic corrections (Fermi hyper-
fine interaction, tensor force, etc.) are less satisfactorily given, with the ob-
served %$1-'Sy splitting being a factor of three to five larger than expected,

but that is another subject.
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Our concern is the annihilation of these states into ordinary hadrons within
the framework of QCD, a non-Abelian gauge theory of flavourful quarks interacting
via colourful, massless, vector gluons. As is well known, such a theory possesses
"asymptotic freedom'", that is, the property that the effective coupling constant
g(p) becomes smaller, the larger is the energy or momentum scale (p) being con-
sidered. By uncertainty principle arguments this leads to the hope that at short
distances of separation of the quarks the coupling constant o, = g?/4m will be
small enough to permit the use of perturbation theory. This hope is the basis of
the terminology "charmonium", and the discussion of annihilation of the new part-
icles into ordinary hadrons in analogy to the annihilation of positronium into

photons.

Very much in the same spirit as the calculation of the expected value of

R = O(e+e_ - hadrons)/OQCD(e+e- - u+u_) from the materialization of the virtual
photon into a quark-antiquark pair, without inquiry into the messy details of how
the quarks manage to convert themselves into ordinary hadrons, the annihilation of
a (Cc) bound state is estimated in QCD by calculating the rate of transformation
into the minimum number of gluons permitted by selection rules. The assumption

is that the gluons are sufficiently close to their mass shell (even though they
never escape) that the subsequent conversion into ordinary hadrons occurs with
unit probability. This is certainly an act of faith that can be challenged, but
the plateaux seen in R as a function of energy indicate that this basic philosophy

4)

may not lead to gross error in estimating total rates of annihilation into hadrons ‘.

S=STATE ANNTHILATION

For 'S, and 3S; positronium states, the lowest order annihilation is into two

5)

and three photons, respectively. The rates are

I ( 130—-’ ¥ b’) = - I R (O)l (1)

[ (3,~¥YY) = go-(1%) le'?@l o

where o = 1/137, M is the mass of the decaying system and R(r) is the s-wave
radial wave function of the bound state. For bound states of quark-antiquark
these decay rates into photons must be multiplied by a colour factor of three and

a factor of e? for each power of a.

Q
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Another rate of interest is the annihilation of a massive charged fermion-

. . . + - . . .
antifermion bound state into e e . For quarks with colour, this rate is

-

(M

(3)

The transcription of the above positronium formulae, (1) and (2), to qq =
+ gluons involves certain factors arising from the non-Abelian nature of QCD,
namely the traces of the product of n SU(3) matrices (33/2). For m = 2, the
recipe is a? > 2a§/3; for n = 3 it is o’ > Sa;/18. Here a_ = g?/4m is the QCD
"fine structure" constant. For a bound >S; cC state such as Y(3095), the direct

annihilation into hadrons is thus assumed to be given by
‘[;:fec‘f(q'-,k) = F(“P"‘Jﬁ) 811T(1T q).__s__lrg O)I

The coupling of Y to ete is given by Eq. (3). The ratio of Eqs. (4) and (3),
1)

experimentally determined to be 10 * 1.5 , 1s

[ (¥=h) _ 5(1%-9) oF [2/3]
['e'(q,) 18T o<®

with the conventional assumption, e

9 = 2/3, the experimental ratio yields the QCD

coupling constant,

0.187 *0.10

The error in o is just from the experimental error in the widths -- the systematic
(theoretical) error is unknown! We can be gratified that a, = 0.2 for systems of
+ . . .
~ 3 GeV. So far, nothing is proved about QCD, but at least is has not been

shown to be patently ridiculous.

In passing we note that we can now estimate various rates for the pseudoscalar
partner of the Y, and also, from the observed ratio of Fe's for ¢’ and Y, for the

¥'(3684) and its pseudoscalar partner:

C(p-¥w) = 2O M) o

[ (P—~h) =%(—‘:—?)2-F(P-»m =738 ["(P%3) o



' [e (V7
[:ired‘(v"h) = —I:';T(\\—;—)z' ) Hired’ (V_" h) ®)

In Eqs. (6) and (7), P and V stand for the pseudoscalar and vector partners (nc,w
or né,W'). From Eq. (8) and the observed Fe(w') = 2.1 keV, we conclude that
Fdirect(w’ +h) = 21 keV, implying that only 21/228 = 9% of Y’ decays go directly
into ordinary hadrons. This is quite consistent with the book-keeping of the

1)

various Y’ decays

Identifying X(2.83) as s Eqs. (6) and (7) give I'(X =+ vy) = 6-8 keV,
T, (X) = 4.7-5.7 MeV, depending on whether one takes IRP(O)/MPI = |RV(0)/MV| or
only |Rp(0)| = [RV(O)]. The value 1/738 = 1.36 x 10 ° for the branching ratio of
n. > Y is a firmer QCD expectation. For the né, the widths are reduced by a
factor of v 0.44, modulo ratios of masses squared, from Fe(w')/Fe(w). The present

experimental situation on these widths for N, and né are discussed below.

P-STATE ANNIHILATION IN QCD

An opportunity for a test of the ideas of QCD, rather than merely a determina-
tion of parameters, is provided by the hadronic widths of the p-states6’7) [X(3414),
x(3508), and x(3552) of Fig. 1]. For the 3Po(0++) and 3P2(2++) states, the lowest
order annihilation is into two gluons, as indicated in Fig. 2a, while for the
3P1(1++) and the 1P1(1+_), the three-gluon or single-gluon plus light qq pair pro-
cesses of Fig. 2b presumably dominate. Since the even J rates are proportional
to ag, while the J = 1 rates are proportional to a;, and o = 0.2, we expect
¥x(3508) to show up more strongly in the cascade tranmsitionms, VoYX X 7 YU,
and less strongly in the transitionms, y! > v1X, X > hadrons, compared with X(3414)
and ¥(3552). This is indeed what is observedl), and forms a qualitative success

for the ideas of QCD.

e VO NS

(b)

Fig. 2 a) Two-gluon annihilation for 3P, and *P,, b) Three-gluon or
qq-gluon annihilation of *P; and 'p,
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The test can be made more quantitative . First of all, the relative values
of the hadronic widths of the p-states can be computed. Then, with less reliability,
the absolute magnitudes can be determined from the properties of the bound-state
wave functions. We sketch the basic idea for the two-gluon annihilation of the

++ ++ . . . . P
0 and 2 states. For an exothermic reaction proceeding via the s-wave, it 1is

well known that near threshold in the entrance channel the cross-section behaves

as O.a - ,3)._ * (conS""un‘f)

where v is the relative velocity (flux factor) and the constant is the transition
probability at threshold, for normalization of one particle per unit volume in
the incident beam. For higher partial waves, barring some peculiarity, one has

g = 1 -/F-dﬂ(cons"’amf>

A -

where p is the c.m.s. momentum in the entrance channel. TFor the same process
5)

proceeding from a weakly bound state of the incident pair, it can be shown

that the transition probability is given in first approximation by

[ =8 lim[ 23] R [ ®

where $ is a statistical factor that may occur because the spin and orbital angular
population of the incident beam may differ from that of the bound state in question,
Cl is a numerical factor, and Rz(r) is the unperturbed radial wave function of the
bound state of angular momentum £. For s-waves, & = 0, Cqo = 1/47, and T =

= %i?(VOO)IW(O)IZ,'the familiar result that led to Eqs. (1) to (3).

The procedure is thus to compute Og(p), isolate the ng dependence at thresh-

Z,Q) .

old, and hence find S(vcz/p The relative values for different J (but the same

%) will then give the ratios of widths for the exothermic process. For 3PJ - gg,
++_++ . . - ]

we have £ =1 and J =0 , 2 . For the collision process, cc > g182, We examine

the helicity amplitude (X1X2|Jbl%,%). Calculation shows that at threshold, the

two independent amplitudes are

for A3 Ao

1 _ -
—;F—< Iml > - { + C sin*e for A1 = X2 o

where 6 is the angle of the momentum of one gluon relative to the beam direction.

Since helicity amplitudes have the angular variation diu(e), A=X1 = gy, U =
= Xc - AE’ we expect dﬁo(e) for A\; = A, and dgo(e) for A\; = -A,. Inspection of a
table of d;M, shows that the matrix element (10) has J = 0 for A; = Ap and J = 2

for A1 = =Xz,
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) ) ++ ++ .

We can now compute the ratio of widths for the 2 and 0 = states to annihilate
into two gluons. There are two factors: (i) the integration over angles in the
final state, (ii) the different probabilities of the incident beam of cG to have

=0 and J = 2:

4
SAOQ)SWI‘G‘ ‘321,"/15 _ 8

Final state ratio = = =

Sa,ﬂ, 4 i5

The initial state of the cC plane wave with Ac = KE and £ =1, S =1 has a

spin-angular wave function,
X oxio = —%(3_—_0) +g(3=2>

The ratio of J = 2 to J = 0 in the incident beam is thus 2:1. For pure J = 2
or pure J = 0 bound states, we must therefore replace the "collision" matrix ele-
ments (10) by v3C and -v37/2C sin®? 6 for J = 0 and J = 2, respectively. This in-

troduces a relative factor of 1/2 in the ratio of widths. Thus we obtain finally,

[(2*"~99) _8 1 _ 4
[(o**gq) 15 2 15 o

This result is fairly specific to QCD, with two massless vector gluons in the

final state. If, for example, the gluons were scalar, the matrix element (10) would
be replaced by the single amplitude, CS(cos2 8 -2). This is a mixture of J = 0

and J = 2 Legendre polynomials in the ratio 5:2 in amplitude, leading to a final

state ratio of
j'AJZ Pz 2 4
(%_)z “Jm’"@}: &= IT/B N 115

Scalar gluons would thus lead to 2/125 for the ratio in Eq. (11).

Keeping track of all the factors leads to the absolute rate for the 0 ' p-

6)
r(o-!-'l' 93) 96 OLS

state 7,

R’(O)lz (12)
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where R/(0) is the derivative of the p-state radial wave function, evaluated at

the origin.

For the J = 1 states (°P; and 'P;), annihilation proceeds as in Fig. 2b.
Here things are somewhat trickier than for the even J states. For both ggg and
g(qq) final states, there occurs a singularity at zero binding, i.e. the matrix
element for the collision, divided by p, is not analytic for p - 0. Our simple

7)

argument must be augmented by more elaborate considerations ’. An approximate result

for the annihilation rate is

r

4m*
4m*-M%

(13)

where

"

128/31 = 13.¢  for 2,
N =

320/(]1[’ = {1.3 for P,

[g(qﬁ) dominates the °P; rate, while ggg dominates 1P1]. The presence of the
logarithm is a signal that Eq. (13) is more approximate than Eq. (12), even granting

all the QCD assumptions. Terms of order one relative to the logarithm have been .
neglected. The logarithm can be estimated in a number of different ways. One is

to say that the binding energy is of the order of a m,. Then

o ) =tk -

Another is to say that the binding energy is the difference between the charm

threshold of v 3.75 GeV and the x; mass of 3.51 GeV. This gives 2.1. The ratio
++ . . . .

of Jg=1" annihilation into hadrons to J = 2 annihilation into hadrons is thus,

from Eqs. (12) and (13),

((1 }l% 1-"_j‘:‘qi“() ~ 040 () =

The QCD prediction for the relative values of the hadronic widths of the triplet

p-states of charmonium is therefore
fhad .
L(0™):LLU7):[ (27) =15: ~1 : 4 (14)

Much less reliable are the actual values of the hadronic widths from Eqs. (12) and

(14). With a, = 0.187 and the favourite wave functions of Ref. 6, one finds
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[ (0"") = 2.2 MeV as)

Other plausible estimates of the derivative of the p-state wave function at
r = 0 give values from 1.4 to 1.8 MeV. Since |R’(0)|? depends on the inverse
iength scale parameter & as £°, and is also sensitive to the detailed shape of
the'potential, the value (15) should be taken only as indicative of the general

order of magnitude.

COMPARISON WITH EXPERIMENTS FOR THE P-STATE

We are now ready for a confrontation with experiment. There are data on the

‘ . . . 3,8
branching ratios B; for Y’ > YiXj for the °P_ final states ’ ) and also on the

J
3
products B;B, for the cascade v > YIXJ > y1Yay ), as shown in Fig. 3. From
these data, the branching ratio B,(J) for Xy~ Y2y can be deduced for each of the

three P states.

.5+
(By) 8 + 37
8

++

2.4
0.2 +0.87%

(3132)
s +0.2%

Fig.'é ‘(pr) Branching ratios B; in per cent for the radiative transitions, Y’ -
+ y1Xj. (Bottom) Product of branching ratios Bi;B, in per cent for the
cascade transitions, ¥ = YiXJ * YiYa2V¥

Assuming that the only significant competing processes are X3 > Y2y and Xy~

-+ hadrons, the width into hadrons can be expressed as

9 (35 YR
N () (B,_(v) 1/1‘;,13

If the radiative width were known, we would have an experimental determination of

Th(J). ‘Unfortunately, we have no direct information on FYZ(J). The next best

thing is to use some plausible estimate of the relative values of FYz(J) for dif-

ferent J and thereby estimate the relative hadronic widths for comparison with

Eq. (14)9). Specifically, we have



INCY/E 1'%1(3') B,(3) 41 L (16)

= -1
NORRO 58,00 | _@%%) 4]

The transitions ¥’/ - Y1Xg and Xy~ Yoy are plausibly predominantly electric dipole
transitions. For a group of initial states (XJ) in the same Russell-Saunders
multiplet, the dipole matrix elements can be taken as approximately equal. Then
the relative rates for a radiative transition to a common final state are just
proportional to k3. With this k% assumption and the data shown in Fig. 3, the

numbers are

++ 37 - -
P B3 - = e

I (2++) -/0-44.$ 3 _ 3 .
F:(i“) 'Lo.zisq)s[“i 1] }_,f‘;r ~-1:| ~ 3.4

We thus find
L) T (1) (2*) 65 : 1 :3.4

for comparison with Eq. (14). The agreement is quite acceptable, considering the
poor statistics on the experimental values of BijB;. Note, in particular, that for
J = 0++, BB, = 0.2 + 0.2% (based on one event). The ratio 6.3:1 is therefore
really something like (6.3 : ?,2):1! Clearly, better data are needed before a
strict test can be envisioned. The scalar gluon ratio of 125/2 for O++:2++ cannot

even be excluded at the moment.

To test the absolute magnitudes of the hadronic widths it is necessary to
have TYZ(J). One estimate can be made by using some bound-state model. If such
a model gives reasonable values for the absolute radiative rates v > Y1X5po it is
plausible to trust its predictions for the second transition. Even cruder is to
take a harmonic oscillator estimate, reduced by a factor of two to account for
the distribution of the oscillation strength over several levels rather than just
onelo). This gives FYZ(J) ~ 100 keV, 230 keV and 300 keV for J = 0, 1, 2, respec-

tively. Then one finds Fh(J) ~ 4 MeV, 0.6 MeV, 2 MeV, in the same ordering. The
corresponding QCD values, from Eqs. (14) and (15), are 2.2 MeV, 0.15 MeV, 0.6 MeV.
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Another method of estimating the magnitude of TYZ(J) is by the use of dipole
sum rulesll). With some assumptions about the underlying dynamics of the bound
states, these give upper and lower bounds on TYZ(J). The ranges are found to be
160-240 keV, 230-400 keV, and 280-480 keV, for J = 0, 1, 2, respectively, yielding
hadronic widths Fh(J) ~ 6-9 MeV, 0.6-1.1 MeV, 550-3.4 MeV. These are somewhat

. 1
larger than the cruder estimate, but not much .

For the 3PJ states the situation at present is that the relative hadronic
widths seem in accord with the expectations of QCD, although the data are subject
to rather large uncertainties at present. The absolute magnitudes, inferred some-
what indirectly from experiment, are a factor of perhaps four larger than the

rather uncertain QCD estimates.

THE PSEUDOSCALARS

We now turn to the alleged pseudoscalar states, X(2.83) and yx(3454). First,
the X(2.83). The experimental observation of this state is via three photons in

the cascade, ¥ - Y1X, X > y2Y3. The observed branching ratio product isz) (1.2 =

* 0.5) x 10", On the other hand, the radiative transition y - y;X has not been

. . 3 )
seen at SPEAR in the inclusive photon spectrum from y decay ’8). The upper limit

on the branching ratio is 3%. Thus we have the experimental inequality,

-4
I (%) > 3 .10 % 410

to compare with 1/738 = 1,36 x 10~° from Eq. (6). Since the error on the 4 is

t1.7, there is no immediate cause for alarm. If the transition y - yX is not

seen at the 17 level, however, there will be an order of magnitude discrepancy
3)

. . . 1 . .
between a fairly firm QCD prediction and experiment . Something will then have

to give!

The situation with respect to the identification of the ¥(3454) as the né

is even less satisfactory. No hadronic decays have been observed so far. It is
only seen in the cascade, Y'~> viX, X > Y20 with a product of branching ratiosa),
B1B, = (0.8 + 0.4) x 10—2. An upper limit of 57 can be set for B; from the in-
clusive photon spectrum from ' decaye). This means that B, > 0.16 * 0.08, cor-
responding to a large radiative width or a small hadronic width. There are various
ways of getting a handle on the magnitude of the hadronic width. The most nailve
approach would be to say that both radiative transitions are allowed magnetic di-
pole transitions with the same matrix element. Then the radiative widths are in

the ratio, FYZ/FYl = 3(0.340/0.223)3 = 10.7. From the upper limit, TYI < 0.05 x

x 228 = 11.4 keV, we infer 'y < 10.7 x 11.4 keV/0.16 = 0.76 MeV. This is a factor

of three smaller than the QCD expectation of about 2.2 MeV [see below Eq. (8)].
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Another and more intelligent way of proceeding is to observe that if the
x(3454) is the partner of the V! (3684) we expect their spatial wave functions to
be similar and so the first tramnsition, Y’ = yiX , to be an allowed M1l transition,
with a radial overlap integral of roughly unity. The estimated rate is 18 keV,
only a factor of two larger than the upper bound of 11 keV. But the second tran-
sition is another story. Since the Y’ and n’ are radial excitations, their spatial
wave functions are largely orthogonal to the ground state wave function of the
PY(3095). The transitionm, X - Y2y, is thus an unfavoured M1 with a very small
overlap integral. The unobserved tramsition, ¥’ - yX(2.83), is a similarly un-
28) ofF 1.17 for ¢! -+ yX(2.83),
corresponding to a width of less than 2.5 keV, one can expect the width for ¥ -

+ Yo to be no more than 3 X 2.5 = 7.5 keV 1u). Then we conclude Pt < 7.5/0.16 =
=~ 50 keV.

.. . .. 3
favoured transition. In fact, from the upper limit

Other ways of estimating or setting a bound on PYz lead to numbers nearer the
50 keV figure for Tt than the over-simple 760 keV. Thus there appears to be a
fairly serious discrepancy (by an order of magnitude or more) between QCD predic-
tions and "experiment' Zf the X(3454) is identified with the né.

An alternative identification of ¥(3454) as the 'D,-state (JPC = 27" has
been suggestedls). This at first seems unpalatable, but in view of the apparently
large "hyperfine" splitting between the X(2.83) and Y(3095) cannot be excluded.
The triplet d-states are expected just above the ¥'; the singlet d-state could
be depressed to 3454 MeV. The radiative transitions through the ID,-state are
both unfavoured M1's, involving spin-flip and an overlap of s- and d-state radial
wave functions, if the ¥ and ! are assumed to be purely 3s,-states. The expected
transition rate for Y’ - yi1X is so small as to be inconsistent with the observed
branching ratio of B;Bp, = (0.8 * 0.4) X 10_2. This 1D2 interpretation only makes
sense if there is an admixture of 3D; in the ¥ and Y’. This is quite plausible
on general grounds, QCD having in it a tensor force contribution to the binding
potential. With the simple quark model estimates) for allowed M1 tramsitions,
one finds FYI ~ 18 €6 keV, FYz ~ 187 € keV, where €_ and €/

D D
fractions of d-state present in the { and y!. The upper limit of FY < 11 keV
1

are the intensity

sets the bound, 66 < 0.6. The lower limit, B, > 0.16, merely implies Ft < 1.2 € MeV.

The percentage of d-state in the y is probably quite small (eD ~ 0.01?7), but so is
the expected width of the 'D, statele). There is thus no inconsistency apparent
yet in the identification of ¥x(3454) as the !D,-state. This assignment means, of
course, that the né is still to be discovered! One problem has been replaced by

another.



- 12 -

Added remark (in answer to a question of M. Jacob)

In estimating the hadronic widths in QCD one computes only the lowest order
annihilation into gluons, treated as real massless vector particles with only two
transverse states of polarization. Might not these estimates be modified drastic-
ally by the inclusion of the longitudinal polarization state of a gluon by making
it off mass shell by coupling to a light qq pair? Admittedly, there is another
power of o  present, but perhaps the longitudinal contribution is so large as to

cancel out the factor of us ~ 0.2,

The answer is that for an allowed process like N, > 88 the addition of the
Dalitz pair contributions only contributes a small correction (ignoring the ques-
tion of double counting). Specifically, the Dalitz-Kroll-Wada formula for the

relative addition is

P = &;..(}-[LL(MZ/WI?-) -%]

T2T

where M is the mass of the decaying state and m is the light quark mass. With
M = 3.5 GeV, m = 0.34 GeV and ag = 0.187, we have p = 0.05. Omitting the -7/2

term raises this to p = 0.20, still a small correction.
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