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ABSTRACT

We postulate a heuristic relation between
crossing odd Regge contributions and the dominant
diffractive component. The connection comes from a
universality in impact parameter distributions of
particle and antiparticle cross-sections. This re-
lation, successfully compared with experiment, is
used in order to investigate diffraction. A satis-
factory description of the ISR derivative cross-
section oNd5/d4ns is obtained froma dual periphe-
ral model for the non-diffractive amplitudes. The
underlyingPomeronexhibitscharacteristic features
large oscillations with an exponential fall-off in
square root of momentum transfer and a universal
length scale of the order of 0.5 Fermi.

A theoretical interpretation of our results
from the +t channel (accumulation of n Reggeon
cuts) and the s channel (effective Regge cut in
the impact parameter plane) points of view is sug-
gested.
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INTRODUCTION

The distinction between diffractive and non-diffractive scattering processes
has existed for a long time. Diffraction, which is mainly invoked for elastic
scattering, is analogous to the scattering of light by a dark disk and gives cross-
sections which are more or less independent of energy. By contrast, non-diffractive
processes decrease with energy as a power law and display different structures in
momentum transfer distributions. Any attempt to explain two-body strong inter—
actions is faced with this double aspect of scattering. For instance, the con-—
ventional Regge-pole approach seemed to give a unified description in terms of
t-channel singularities, diffraction being connected with vacuum exchange and
non-diffractive processes with other quantum numbers. But soon many features appeared
to be different, such as the peak shrinkages, duality properties, etc. Many interest-
ing attempts were made to understand these differences, in particular recent works

1)

using multi-Regge duality diagrams and their topological properties 7.

Here a rather different way is taken, based on geometrical properties of two-—
body scattering, i.e. properties of the interaction region in the impact parameter
plane b. Recently numerous works have been devoted to this intuitively simple
approach. Concerning diffraction let us quote among others, the eikonal modelz)
and the geometrical scaling (GS) hypothesisa), where typical geometrical concepts
like form factors and interaction radius play the main role. In non-diffractive
processes, impact parameter properties are particularly simple: the dual geometrical
modelsk’s) insist upon the peripherality of both dominant resonances and high—energy
amplitudes. More generally, a kind of universality of the geometry seems to emerge
from numerous amplitude analyses and models for inelastic reactions and their dif-

&)

ferent helicity amplitude

In this work we intend to show that antiparticle and particle-proton elastic
scattering differ by their interaction radii, the impact parameter distributions
remaining essentially identical in shape. This leads to a geometrical link between

diffractive and non-diffractive processes.

Section 2 analyses the diffractive and non-diffractive contributions to elastic
scattering from this simple description of s-u crossed channel (pip, Kip, ﬂip)
elastic scattering (Section 2.1). Then the relation between the imaginary part of
odd-signature amplitudes and the Pomeron derivative with respect to energy, is com-
pared with data (Section 2.2). The even-signature amplitudes are then considered
(Section 2.3), since a phenomenological definition of the Pomeron contribution at
non-asymptotic energies is given. The resulting geometrical relation allows a fruit-
ful enlargement of our knowledge of two-body scattering, since a description of non-

diffractive processes can be transposed on diffractive contributions and vice versa.
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In Section 3 our way to a geometrical Pomeron is traced. Noting that non-
diffractive and diffractive observables linked by our relation must share the same
functional dependence, the parametrization given by dual geometrical modelsh’s)
particularly the dual peripheral models), is chosen for the non-diffractive part.
Then an amplitude form is deduced for the Pomeron, describing ISR data in terms
of predicted geometrical characteristics except the typical scale which is divided

by two (Section 3.2). The connection of this approach with various theoretical

schemes, especially with a t-channel point of view, is given in Section 3.3.

Finally, some conclusions and a survey of results are given in Section 4.

A special emphasis is put on possible further developments.

RELATING NON-DIFFRACTIVE SCATTERING TO DIFFRACTION

2.1 General considerations

Diffraction exhibits nice geometrical properties and seems mainly governed by
the interaction radiusa). However, in the spirit of any s-channel approach there
is no reason to limit oneself to diffractive processes. Indeed, considering the
unitarity condition for a given elastic process, it is difficult to assign the dif-
ferent multiparticle intermediate states either to diffraction or non-diffraction.
Looking for connections between these contributions, let us start from an ideal

exchange degenerate scheme where their separation is clear.

Some of the amplitudes possess an imaginary part Im P entirely diffractive
(pp, K*'p, ... , denoted by index 2), whereas the s—u crossed ones are non-exotic

(pp, K'p, ... , denoted by index 1):
Im M, = Im P

In-._m1 IHLP'O-QIV}'\N‘-

Our basic hypothesis is the following: the effect of the non-diffractive
amplitude Im N~ will not introduce a different dependence on the interaction radius
R but will only modify its value, resulting in an apparent increase AR? of the inter-

acting area between the two colliding particles.

Taking the average value of the two radii as a reference:

R? = él (RerR:)

the non-diffractive contribution is given at a fixed energy s by:

~2Irn, N§ = ImP(ﬁzi' %Bz) - Inxl)(ﬁxa~ %_@‘2) . (la)
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In order to factorize the AR? dependence, an approximation of (la) is also intro-
P P

duced:

2Lin N™ = OR? %—;_%;f(ﬁz) . (1b)

Formulae (la) and (1b) will be considered as the finite difference and differential

forms, respectively, of our basic assumptions.

A typical property of these formulae is the expected peripheralism of Im N—,
obtained when the edge of the impact parameter profile of the Pomeron, P(R?,b) only

3
moves with R2. This is the case of all models satisfying GS ), for which
2
P(rRLb) = F(K/RY) .

Consider the example of the optical model. Starting from an impact parameter

profile
2
PREE) = ce 'R o iB(4- bYRY

where 6 is the step—function, ensuring a smooth or sharp cut-off at b = R, one gets

2
Im P = sree® %%  or SR 3, (RVF) Sy 2)

and consequently

. -
2ImN™ - (1+E_2_(‘)({R/4’c»r J, (RVE)
4

——

s AR?

When R is around 1 fermi, the peripheral character is evident. The different energy
behaviour of the two sides of Eqs. (1) can be taken into account by a decrease of
ARZ.

At fixed transfer it is always possible to define an appropriate change of
variable [s <> R(s)] such that Egs. (1) are verified. But the dynamical non—trivial
hypothesis is to identify the function R(s) with the interaction radius R. In parti-
cular, these relations cannot be reduced to a crossing property between particle

and antiparticle elastic scattering.

2.2 The pratical case: negative signature amplitudes

In the following we shall focus our attention on Eq. (1b):

I N7 (s, t) = AR* ;_),_'Z‘_”_‘..F(f’zz £) . (3)
s 7 QRZ
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Observables for elastic reactions are defined by

de - IP4C@£)!€
dt 16 m

and

o, = Im M(sg).

In the following we shall neglect s-channel helicity flip amplitudes.

Im N~ is deduced from pip, Kip and ﬂip elastic reactions with the usual ap-
proximations7’8). A reasonable estimate of the right-hand side needs a good know-
ledge of R? and of the Pomeron dependence on it.

Except in the case of an exponential diffraction peak [for which Eq. (2) states
that if do v eBt, B = R2/2], there is no unambiguous way to define the radius. In
order to take into account the bulk of the diffraction peak we consider the slope
value averaged over a large transfer range 0 S t $ 1 GeV?. This choice allows a
realistic cut-off in the partial waves. The very forward slopes, appreciably higher
than the mean ones, are more dependent on the tail properties of impact parameter

distributions. Everywhere in the following, we shall identify R?/2 with the effec-

. . . + x + . .
tive slope B. Data are shown in Fig. 1 for p p, K p, and T p elastic reactions.

Figure 1 illustrates how 9 Im P/3B can be determined. In the ISR energy range
secondary contributions of non-diffractive events can be neglected, and since the
B slope rises logarithmically with energy, one can replace 3 Im P/3B by
9 Im M/3 1In s with a good accuracy. Moreover, non-diffractive effects being pro-
bally much smaller in exotic channels, we extend this approximation to the Fermilab
energy domain for pp and K+p scattering. Thus the radius dependence is replaced by

an energy dependence.

Let us consider an energy s , where Im N (s,t) is experimentally well known
(cf. inset Fig. 1). The averaged value B of the ptp slopes at this energy are given
by the shaded area of Fig. 1. Following (3) the quantity 8 Im P/3B must be deter-
mined at a high energy s, where the pp slope reaches the mean value B. The shift
in energy is large enough to draw an interesting consequence: Eq. (3) relates non-
diffractive and diffractive components of elastic scattering at rather different

energies where they are easily distinguishable.

This relation takes a particular simple and interesting form at t = 0, thanks

to the optical theorem:

AT (s (4)

A7 (s,) = Z°¢

D
|}
LA\
|9
@



._5_

where Ac(so) and op(S) are, respectively, the difference between total cross-—
sections for anti-particle and particle scattering on protons at the energy so
and the Pomeron contribution at the enmergy § (cf. inset Fig. 1). Thus the left-
hand side ratio of (4), typical of non-diffractive scattering, is related to the

cross-section side at high energy.

The quantity 30/9B is taken as a constant A for Plab 2 50 GeV/c. Clearly
demonstrated in the context of GS ®) for the very forward slopes, this property
is also valid for averaged slopes over the whole diffraction peak. This provides
us with the right-hand side of (4). Exact parametrizations are given in Table 1
without error, since this quantity is better determined than AB. In Fig. 2 the

experimental differences AB are compared with the function

A0 /3r = ATy
oB

obeying a power law in energy. In order to give an idea of uncertainties, two

different parametrizations have been chosen!?s!!) and collected in Table 2.

+ +
Relation (4) holds remarkably well for p p and K p scattering down to low
energies; in particular, the AB energy behaviour is exactly comparable to those

of Ao in agreement with our conjecture.

Results are less convincing for ﬂip scattering where large experimental
errors and uncertainties obscure the situation. In particular, our choice of
shapes is slightly arbitrary in this reaction (for instance, there is a large
discrepancy between the works of Akerlof et al.!2?) and the Fermilab Single Arm
Spectrometer Groupla) at Py, < 100, 200 GeV/c; cf. Fig. 1) and results must be

considered as only indicative in this case.

Some years ago, raidalovl*) showed that data on elastic processes in the
y g P

forward direction supported a fixed energy relation such that

g, = %, = 4945 .

The analogy with the forward relation (4) deserves some comments.

i) The Kaidalov relation implies exact peripheralism in the sens that odd-
crossing amplitudes, vanish at b = 0 in slight contradiction with TN amplitude

analysisls) for instance.

ii) The exact equivalence is obtained when GS is assumed, since then 0/B = con-
stant, but GS is true only at very high energies, doubtful at lower

onesls’17) [compare with the validity range of relation (4)].



- 6 -

Equation (3) can also be confronted with experiment in the non-forward direc-
tion. The non-diffractive contribution N is obtained from differential cross-

sections do; and doj,:

B = Ad .
Im NGO [ = A "Aeloy oy ) ©

where Ado = do, - do;. The right-hand side of (3) can be expressed in terms of
very high energy differential cross-sections dgas’ neglecting real part and pos-—

sible change of sign:
Im P“'é)/\/l?s? -2 VZG;'S * (6)

Thus (3) becomes

A doy - AB oVda, [/ R \1
V& (

7 J - 4 7
(clay + e u3) 2 3 Ins 2lns

The left-hand side of (7) is taken from an Argonne experiment7) and the other

side from ISR results:

Vo,
dlns

= (o(eff ‘i) \/ da.}SR . (8)

The ISR effective trajectory has already been determined!®). However we prefer
to use a more recent and accurate determination'®) over all the available t-range
(0 < !t] < 4.2 GeV?). 1In Fig. 3 these two trajectories are compared and found

to be well compatible. The quantity /EBEEE is taken at the mean energy of the
ISR range, v's = 33.8 GeV, from an interpolation of all available results. In
Fig. 4 are shown jointly the non-diffractive part of the relation (7) at

= 5 GeV/c (full symbols) and the diffractive one (open symbols). The two

P
lab
data sets reflect the peripheral behaviour of both the imaginary part of odd-

crossing amplitudes“) and the Pomeron increase with energyzo).

A quantitative
agreement is not reached: the position of zeros is not the same and the magnitude
of effect (such as the ratio of the first to second extremum) is different.
Nevertheless, it must be emphasized that energies considered do not correspond to

the ones related by our scheme. Figure 1 shows that the 5 GeV/c domain for the
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odd crossing amplitudes is linked with the Pomeron at 100 GeV/c, an energy where
it is not available in a model independent way. We do not intend here to enter
into a detailed and quite hazardous analyse of (7), but postpone the discussion
to Section 3, where a complementary approach based on dual geometrical models

will be presented.

2.3 Exchange degeneracy breaking

Up to now we have restricted ourselves to the study of odd-crossing distribu-
tions. Let us explain how other exchanges enter into the scheme. There are many
arguments against strong exchange degeneracy. The study of inelastic reactions
seems to indicate that even-crossing contributions are not peripheralzl). In
fact our conjecture implies an exchange-degeneracy breaking and a well-defined
extrapolation of the Pomeron at non-asymptotic energies. Denoting the energies
where the slopes of the diffraction peaks By and B; are equal (cf. inset of

Fig. 1) as so and si, respectively, the finite difference form (la) becomes

2Im Ns,t) = ImP(s,,6) -ImP¢s,, E) . (9)

This equation defines the Pomeron at the intermediate energy sp: Im N‘(so,t) is
given by the difference of elastic differential cross—sections and Im P (si,t)

deduced from asymptotic energies.

Now let us concentrate on the forward direction. At high energies

(P1ap 2 100 GeV) the Pomeron grows like the slope of the diffraction peak Bi ®):
9 (s,) = AB,(s) (10)

where A is the constant ratio o/B (cf. Table 1). However, since our starting
hypothesis is based on a fonctional dependence of amplitudes on the Pomeron
interaction radius, it is legitimate to extend Eq. (10) to the whole energy

domain, and straightforward to show that Egs. (la) and (1b) become identical:
A6 (s) = G (5)-G(s) = A B (s)-A5,(%)

One must be aware of approximations used. In particular, these remarks rely
on the assumption that contrary to other observables, the mean slopes Bi(s) are
not too sensitive to violation of exchange degeneracy since the Pomeron slope is

inferred from the exotic process.

Incidentally let us point out that, though our study of 7N scattering is
not very conclusive (in fact the situation is obscured by technical difficulties

such as precise determination of forward slope differences, the lack of exoticity
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arguments, etc.) an even worse situation could have occur: in TN scattering and
contrary to other reactions, the mean slope value B stays in the non-asymptotic
energy domain (cf. Fig. 1). The 7N ratio 390/3B is no longer constant and even
could be negative since Trtp total cross—sections decrease simultaneously when the
slopes increase??). Thus one would obtain negative values for the right-hand side
of (4). The former discussion gives another argument in support of the high-
energy constant value 00/0B, experimentally valid only above 100 GeV/c, but

extrapolated to lower energies through the Pomeron contribution.

From standard decomposition of amplitudes, we easily derive the imaginary

+ - . . . . . .
parts C and C of odd and even signature contributions in the forward direction:

C*(s) -C°(s) = 03(9- AB,(5)

C's) = o5 (9 - AB, (g *} A0¢s) .

In order to illustrate these remarks we have plotted in Fig. 5 the total cross-
sections for pp [OT(pp)] and pp [OT(ﬁp)] together with the central values of the
slopes rescaled by the A-factor. The approximate equality of shaded areas down
to quite low energies is another way to ascertain the validity of relation (4).
A strong exchange-degeneracy breaking is obtained, since for instance the Pomeron
contributions to OT(pp) is 30 mb only at 7 GeV/c. This characteristic feature and
the linearly increase with log s of the Pomeron contribution are quite similar to

recent results23) obtained through a perturbative approach to Reggeon calculus.

A GEOMETRICAL MODEL FOR THE POMERON
FROM NON-DIFFRACTIVE PROCESSES

3.1 Inducing the Pomeron from s-channel models
of non-diffractive reactions

From the above discussion rather convincing phenomenological arguments sup-
port the geometrical relation. Here we wish to obtain a better understanding of
diffractive amplitudes from geometrical studies of non-diffractive ones through

this relation:

To N 05,65 = K 2T Psy av
dlnys)

where we recall that K is the following function of energy:

K = ABwe) 45 98 (3

Iins 12
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so and s are again defined by the energy shift sketched in Fig. 1. Two models
have popularized geometrical ideas: in the dual absorption model of Harari%) (DAM)
imaginary parts of negative signature non-flip amplitudes possess a very simple

peripheral structure:

Im N (s,E) ox T (RV-E) (13)

where Jo is the zeroth-order Bessel function and R is around 1 fermi. In the
dual peripheral model of Schrempp and Schrempps) (DPM) a very successful extension

of DAM is given by the parametrization:

Im N (s8) = Im [CAG) ¥ (b vE) ] (14)

where ¥, is the Hankel function of the first kind. Note that this model is mnot
valid in the very forward direction. Now the interaction radius bo(s) is a com-—
plex number and A(s) an unknown residue function. The radius controls both the
peripheral structure by its imaginary part and the exponential fall-off by its
real part, since an approximation of the Hankel function, valid already®) at

-t 2 0.25 GeV? shows clearly:

V-E

- =/ - b (s :
I N (5,.1:) a~ (-é) * e Tmbo(*) cos (Re_.bo(s)V—-b -lf(s)) . (15)

Moreover, since the function A(s) is expected to be approximately real at moderate

energies, the phase ¢(s) is quite similar to the Hankel-function one:

AN "_ r ] (
?(s) ~- z + i.. a C-/‘f (Ifnbots;y,Re bo(‘.sj) )

This model appears firmly predictive and has been successfully tested on inelastic

reactionss) .

From the preceding section, we have some reason to hope that the quantity
3 Im P/9 ln s has something to do with the parametrizations (13) and (14). At
small t we already checked that the related experimental quantity (8) has a
peripheral structure (cf. Fig. 4). 1In the same figure this quantity together with
its nmon-diffractive counterpart is described by the same functional dependence

given by DPM:

R

K (5, ~2) \/lTror, = 968 mb2GeV™? I [ LA (B VES] (16)
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A do 2.8 mb2 GeV! Im[c P (b VE
/\/S(ela~+d¢') " © m[ P (5 ©VE)]  an

4 a4

-1
with b?(s) = 5.1 + 1 3.71 GeV , whereas the radius obtained from the non-

diffractive contribution at 5 GeV/c 7) is bI:D(S) = 6+1i1.05 GeV !,

These fits illustrate the mechanism of relation (11): the two related quan-
tities have the same functional forms, but with different values of interaction
radii. Real parts are both near 1 fermi, as is expected from non-diffractive
s-channel trajectory propertiess). Imaginary parts differ strongly but, in con-
tradistinction to the real parts, are known to vary rapidly with energys). Thus
the shift in energy inherent to such a comparison should be attributed to them.
Our lack of knowledge on the Pomeron trajectory and on the non-diffractive peri-

pheral trajectory at very high energy impedes us from going further.

1
In Fig. 6 we have plotted (-t) h v/ do/d1lns as a function of V-t and com-—

pared with the approximation of the Hankel function:

y w -3.ZVE -
(-9 Qs - .emb™ v e ces (5.4 V-E -11) (18)

dIns

where the v -t exponential behaviour modulated by an oscillating function is
exhibited. Also we tried a Bessel function Jg £fit*). Figure 7 compares the two
DAM and DPM results. The exponential fall-off in square root of the transfer

variable is clearly favoured up to the largest t-values.

3.2 A geometrical description of the Pomeron

In order now to get the Pomeron amplitude, we are faced with the problem of
integrating relations like (16) or (18). The main difficulty lies in our
ignorance of the energy behaviour of parameters. In particular the s—-dependence
of b]g(s), the "s-channel singularity" of the Pomeron, cannot be inferred from
non-diffractive processes. Thus we present an inductive solution, in good
agreement with ISR data, to be chosen among the family of solutions suggested
by Eq. (18):

k(3.8 ImPst) = € DV sinpyvEe ) an

where |, a, B and ¥ can depend on £ = 1ln s.
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From a phenomenological point of view we expect that the experimental
quant1t1es v dOgg corrected by an appropriate factor, share the same properties

as (-t) T 3 v do,g/0& namely, an exponential fall-off and regular oscillations in
/=t (remember Fig. 6).

The —— somewhat arbitrary but successful —- choice of the v -t dependence
of the u factor was made by analogy with the simplest optical model [cf. Eq. (22)],

where

2Im P ~ JL(RV-E) [ v o VEE x oscillabons
?}RQ' IrnP /KJ (Rf ,i

and from Eq. (18):

H(3,VE) = (-¢)

The quantity (—t)%‘ /do is shown in Fig. 8 for all available ISR energies. Some

striking regularities emerge immediately:

- an exponential fall-off in /-t exactly comparable with those of the
derivative (compare Figs. 6 and 8),

- regular oscillations in /=t of larger period than in the derivative
amplitude; 1in fact the real part of the radius is roughly reduced by half

(i.e. ~ 0.5 fermi) in comparison with the previous one.

These characteristics must be precisely stated in order to provide a quan-
titative description of ISR data. Our reasoning is mainly based on the presence
of a zero in the imaginary part of the Pomeron amplitude near }t! ~ 1.4 Gev?,
appearing clearly as a sharp minimum in Fig. 8. This allows one to explain this
strong breaking of the universality of the hadron radius and to determine the

parameters of Eq. (19).

The argument is the following: it turns out that 9 v do/3E contains the

zeros of both Im P and 8 Im P/3, since we have:

Vdo~ =~ [T P} = &€ ImF

W YV a g ADmP
EE 23

where € is the sign of Im P. Then a zero of Im P induces a discontinuity in

3 v do/dE, which becomes a sharp dip when secondary effects (real part, flip
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amplitudes) are considered. The above mentionned zero in Fig. 8 can be seen also
3

in 3 V' do/3&g (cf. Fig. 7). The ?rigin of the doubled period in (-t) h v do becomes

clear: one of the zeros of (—t)A‘BV do/d9E 1is not a zero of 9 Im P/3& but the

reflection of a zero of Im P itself.

To be more precise, let us factorize the expression (18):

Ve _arr V&, L
?__i@_‘ = € Sin (.85 VE +.235) cos (2.55 VE £.235) (20)

2%

and assign a zero of the sine function to Im P and a zero of the cosine function
to 8 Im P/3%. Extending this factorization to all the t-range (except
ltl < 0.25 GeV?) -- here is the strong approximation of the derivation --

and referring to the general solution (19) we obtain

—algjVEE

Tm P(st) = g -6 % e SER{BIE)VE + (7)) - (21)

The averaged values of the parameters a(£), B(£), and Y(£) suggested by the

factorization (20) are

a(g) ~ 371 GeV?t ; /9(5)::2.55 GeV~* ; 1}1(5)5.23..(22)

Then if & Im P/3& is proportional to cos [B(E) V-t +w(E)], the parameters g and

a(f£) must be energy independent. One then writes

)% QInmP _ ~aVE -
¢) S_gf_a e cos(ﬁ(g)\/-t +I,«’I(E)) (%W*Lfg‘k) (22)

and

g -1 = clg[BE)VE+ )] (a%lg VZ +5§¢) . (23)

The corresponding fits are shown in Figs. 3 and 8. Some comments are in order:

i) The predicted energy independence of parameters g and a(f) is clearly con-

firmed by the existence of a universal straight line tangent to all data in



- 13 -

Fig. 8. lMoreover, the parameter a(f) is identical to Im blg deduced from the

fit of & / do/31ns, namely 3.71 GeV '.

ii) The oscillations are correctly reproduced for v -t > 0.5 GeV. Discrepancies
for lower values are expected since the validity of the DPM model and there-

fore of the functions we started with are subject to this restriction®).

Parameters obtained are listed in Table 3. A global solution is reached with
the constant value 2.55 GeV~! for the radius real part B({) deduced from the
study of 9 /do/d31n s. The corresponding effective trajectory is plotted in
Fig. 3. The derivative dy/d& which enters into Eq. (23) is computed from the

extremum values of the fit and the y value chosen is the average of these numbers.

The remaining problem is the inconsistency of the initial geometrical
picture. If Eq. (11) is true, Im N and 9 Im P/3f have similar t-dependence,
allowing for possible alteration due to the energy shift from sy to s. Quite to
the contrary, the phenomenological analysis has shown that the scales which govern

)

the zero spacing are strongly different: near 1 fermi for Im N but 4 fermi
for & Im P/dE. (Incidentally note that this does mnot involve the first '"peri-—

pheral" zero of both functions but arises from the existence of the second one.)
We have no satisfactory answer to this puzzle but let us put forward two possible

conjectures:

i) The geometrical relations is valid only at a functional level: mnon-
diffractive and diffractive scattering are qualitatively connected through

. . . . D .
geometrical variables, but not quantitatively to the extent that by 1s not

directly related with bIaH?

ii) The geometrical relation involves the quantity v do and not the imaginary
parts of the amplitude. Then the equality of geometrical scales for non-—
diffractive and diffractive processes is recovered. Our quantitative results

would not change since there is essentially difference between vdoy - v do:

and Ac/v doi +do2 .

In spite of its limitations, the solution we found is satisfactory enough to
reveal the simple geometrical properties of the Pomeron. As a final illustration
we have plotted in Fig. 9 the differential pp cross-section at the mean ISR energy
(Pheam = 26-7 GeV/c) as a function of t. Oscillations in v/ -t reprodutaze the dip
structure and the property of tangency to a curve proportional to (—t)_/2 e 72 /-t

is nicely illustrated.
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3.3 On s- and t—channel interpretations
of our parametrization

In this section, we discuss some theoretical questions raised by the solution
we find for the Pomeron derivative with respect to energy [Eq. (18)] and its ap-
proximate integrated form [Eq. (22)]. The DPM formulation corresponds to a com-

plex pole in the impact parameter plane:

For (bs) = Im Az-sz{S) . (24)

From duality arguments the peripherality of this model is inferred from the peri-
pheral character of resonances, embodying the Harari ansatz"). Now a first ques-—
tion concerns the compatibility of this s-channel property of d ¥ do/0E with the

idea of GS, which means a special behaviour of the diffractive amplitude

Vdas) = FIb/R?)

and of its derivative

d Vo) _ _ 43 F'(6%ns QR
S & PR

Since the slope is compatible with a ln s dependenceg) (R? = Ry + YE) we have

33\/";a~'rw = (yRY? @ (ERe) (25)

where

¢(x) = -xfx) .

Equations (25) must be compared with Eq. (16) translated into the b-space

%__\g’* = Im[ 7 (B -2 ], (26)

Ignoring extra s—dependence, our solution can be related to a geometrical
scaling in the complex radius bg instead of R?. The question whether a sup-

plementary energy dependence exists or not is unsolved as well as the more
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general problem of the s-channel trajectory b%(s). For instance, the approximate
solution we find [Eq. (22)] does not verify explicitly GS. Nevertheless, a

lesson can be drawn from a general solution of Eq. (26):

2
b, (§)
Vo (b) = Im[f _H_ﬂ.’ﬁl_de (27)
b -x

where bm is a constant and w(x) an unknown function. Differentiating (27) with

respect to & gives

(28)

VAT 8) = Im [w(8) b (8- 82)7]
oF 1

which is compatible with (26) when w(b%)Bb%/BE is real.

Solution (27) is nothing else than a cut definition in the impact parameter
plane with a moving end point bo(£) and a discontinuity given by w(x). In the

DPM model, high-energy non-diffractive processes are related to the s—channel
2 .
resonance
do with reality, the Pomeron would be dual to an s—channel cut with an end point

resonances which must lie on a trajectory b If (27) has something to

bzut, in nice agreement with topological properties of duality diagrams con-—
tributing respectively to Regge poles and the Pomeron!) . Consequently, our
geometrical picture says that vector Regge poles and the Pomeron derivative share
the same functional dependence —— complex poles in the impact parameter plane —-
but with different values of the trajectory. The non-diffractive one is con-—
nected with s—channel resonances, but the diffractive trajectory would correspond

to low—energy singularities of the cut type.

A t-channel interpretation of such results is not clear at first sight since,

up to now, all our discussion is based on direct-channel considerations. However,

24)

an answer may be found in the papers of Anselm and Dyatlov where, from a t-—

channel approach, similar parametrizations are deduced:

R (E)VEE

Im P(s,t) cos ( Ry (§)VEE + ¢, (§,VE))

1]

F (¢ vE)E€E
R, (Z)VE (29)
dImPest) - F(3,vE) e 7T

a3

cos (R, (§) VE + & (§.VE) «
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where Fy, Fo, ¢, and §o are smoothly varying function of v -t. This family of
solutions contains without modification our set (22) with a particular choice of
the unknown functions in (29). The t-channel ingredient used by the authors of
Ref. 24 is the accumulation of Mandelstam branch-points, i.e. n-Reggeon exchange
cuts. They show that away from the very forward direction the high n cuts would
dominate the scattering. These results do not depend strongly on the detailed
dynamical structure of cut discontinuities except for a crucial (--1)n factor due
to t-channel unitarity conditions. This interpretation leads us to conclude that
typical effects of accumulation of n-Reggeon cuts alternating in sign are present
already at small momentum transfer in the ISR range. The fact that such effects
can play a role up to the highest momentum transfer values incites us to draw a

parallel with analysis of large Py elastic reactions®:2%>26),

where parametriza-—
tions of type (29) are used. While a detailed comparison would be instructive,
the similarity of the parameters found in Ref. 25 and in this work is quite

encouraging.

SUMMARY AND OUTLOOK

From a simplified picture of elastic scattering, we conclude that non-
diffractive amplitudes (odd signature imaginary part) and diffractive ones
(energy derivative of the Pomeron) have a related functional dependence on their
geometrical characteristics, namely the complex radius of interaction. Pheno-

menological support for this view comes from the following:

i) The ratio of differences of total cross-sections to diffraction-peak slopes
for s-u crossed reactions scales at all energy to the value of the asymptotic
. . + + .
rise of cross-sections with 1ln s (clearly true for p p and K p scattering,

+
more doubtful for m p).

ii) The same function, up to a change in the complex radius, describes the odd
signature contribution in pp scattering at Piap = 5 GeV/c and the asymptotic

quantity deduced from ISR data 9 v do/d1lns.

A new geometrical picture of the Pomeron emerges with the following interest-

ing characteristics:
i) The appearance of one length scale of order 0.5 fermi.

ii) Large oscillations and a universal exponential cut-off, both in terms of

the variable VvV -t.

From the initial geometrical relation, verified at zero transfer, we kept only
the functional dependence between non-diffractive and diffractive related parts.

The difference of scale between these components remains a little mysterious.
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The knowledge of the s—channel trajectory of the Pomeron would be a crucial step
towards a better understanding of this phenomena. This could lead, in particular,

to an explicit relation between the Pomeron shrinkage and those of other Reggeons.
Finally, let us mention some possible development:

i) The connection with Gribov calculus suggested by results of Ref. 23 needs

a thorough study.

ii) The similarity of our results with recent analyses at large Py 25,26) gug-
gests that geometrical ideas control a large domain in energy and transfer,
irrespective of properties of inner constituents of the hadronic matter.
However, note that the question of whether there is any indication of internal
structure in two-body strong interactions is open. This would imply a kind

of geometrical universality between all elastic channels??).

After completing this work, we learned that some geometrical aspects of
elastic scattering have been studied using the Fermilab data, in the framework
of GS 3%). The results quoted are in agreement with our starting hypothesis
(Section 2.1). Our analysis shows that geometrical properties are quite general

and valid in a large domain of energy and transfer.
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Table 1

Asymptotic parametrization of slopes and cross—sections

values of Bg/0Og are compatible with those found by Grein and Kroll

¢)

[B] - [ﬁz](1.o + 0.068 1n s)

(Ref. 17).
Channel Bo Oo Bo /0y
(Gev™ %) (mb) (Gev? mb)~!
PP 7.73 28.2 0.274
Kp 5.56 14.1 0.394
mp 5.9 16.92 0.349

Table 2

Fit parameters for the total cross-section differences:

= a EIZb (Bartel-Diddens, Ref. 19)
and
= ¢ s %% (Barger, Ref. 10)
Channel a b c
(mb) (mb)
PP 51.66 0.575 69.6
Kp 17.76 0.531 27.1
™ 4.7 0.370 12.4
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Table 3

Values of parameters describing ISR data

g = 5.6 vmb /GeV;

B = 2.55 GeV™';

a = 3.71 Gev~!

Ppeam | 11.5 | 1L.8 15.4 22.4 | 26.7 | 31.5
(GeV/c)
P 0.12 0.125 0.145 0.18 0.20 0.285
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Figure captions

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Slopes of elastic diffraction peaks as functions of laboratory momentum
for 0 S ltl $ 0.8 GeV?, Open and full symbols correspond, respectively,
to antiparticle and particle beams. The following data have been used:
a) pp: Ref. 27 (2, 3 GeV/c), Ref. 12 (5, 6 GeV/c),
Refs. 27, 28 (9, 12 GeV/c), Ref. 29 (25, 29, 40, 43 GeV/c),
Ref. 13 (50, 70, 100, 140, 175 GeV/c), Ref. 30 (ISR energies)
b) Kip: Refs. 7, 31 (3, 3.65, 5, 6, 10.4, 14 GeV/c), Refs. 12, 27 (10 GeV/c),
Ref. 29 (25, 29, 40, 43 GeV/c), Ref. 13 (50, 70, 100, 140, 175 GeV/c).
c) ﬂip: Ref. 7 (3, 3.65, 5, 6 GeV/c), Ref., 29 (25, 29, 40, 43 GeV/c),
Ref. 13 (50, 70, 100, 140, 175 GeV/c), Ref. 12 (100, 170 GeV/c).
Solid lines are asymptotic B (for details see text and Table 1), shaded
areas are the mean slope values B. Furthermore, in an inset, the ptp

case is sketched in.

Test of the geometrical relation in the forward direction. Symbols:
B Ref. 13; ORef. 29; @Refs. 7, 31; X Ref. 12; ® Refs. 27, 28;
A Ref, 27.

Effective trajectory for pp scattering at ISR from Ref. 18 (full circles)
and from Ref. 19 (open circles) compared with a(t) = 0.085 ctg(2.55V-t +0.2).

Illustration of the geometrical relation up to |t| ~ 1.3 GeV?. Diffractive

data from ISRao) and non-diffractive data from Ref. 7.

Predictions for non-diffractive contributions in the forward direction.
Central points of elastic slopes B are rescaled by the ) factor

(cf. Table 1) and reported together with total cross-sections.

The quantity 3F:E(aeff - 1)/ do for pp scattering at 600 GeV/c 30) plotted
versus V/-t; Open circles for negative values and full circles for posi-
tive ones. The curve corresponds to the approximation of the Hankel
function: 0.6 e_3’71/:g cos (5.1 /=t - 1.1). The solid line is pre-

dicted to be tangent to data.

The quantity (aeff - 1)v¥do plotted versus t. Symbols and references

same as before, but now the curve corresponds to:

e—3.71/:?

0.6 cos (5.1 /=t - 1.1)

The inset presents also a DAM solution (dashed line):

0.434 Jo(4.53 /-t)e2 82t

compared to the DPM solution (solid line).
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Fig. 8 : The quantities (/=t) % /do are plotted versus V-t at ISR impulsion
beams (Refs. 30, 32)
a) 11.5, 11.8 and 15.4 GeV/c
b) 22.4, 26.7 and 31 GeV/c
Curves correspond to a Hankel function fit with parameters given in

Table 3. The line is the predicted universal tangent 5.6 e_3‘71 -t

Fig. 9 : pp differential cross-section at ISR impulsion beam 26.7 GeV/c.

Regularities predicted at large momentum transfer are exhibited.
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