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Supersymmetric Higgs effect

Rigorous supersymmetry implies the existence of supermultiplets made up of
fermions and bosons with equal masses. If supersymmetry is to be relevant for
the physical world, it must be broken, either softly or spontaneously. Spontaneous
breaking of global supersymmetry gives rise to the appearance of a Goldstone fermion.
When global supersymmetry is promoted to a local invariance by coupling supersymmetric
matter to supergravity, the Goldstone fermion disappears as a consequence of a pheno-
menon analogous to the Higgs effect of ordinary gauge theories. We describe now in
some detail this supersymmetric Higgs effect and consider its possible application
to the construction of realistic models. We follow some recent work by S. Deser
and the author [1], to appear shortly*). Observe that the supersymmetric Higgs
effect gives a possible solution to the problem of the apparent non—existence in
Nature of the Goldstone fermion of spontaneously broken supersymmetry. As we know,

this cannot be identified with the electron neutrino, because it would satisfy low

energy theorems which contradict observed properties of the neutrino spectrum E3]

Spontaneous breaking of global supersymmetry generates a Majorana spin !/
Goldstone fermion [4s5], which we shall call A. Irrespective of the particular
field theory in which it arises, its properties can be described, following Volkov

and Akulov [4], by means of the non-linear realization of global supersymmetry

SA = ’(ij X + (a Zy"A Dm A (€D

where o is the infinitesimal supersymmetry parameter and a is a constant which
measures the strength of the spontaneous breaking of supersymmetry. The non-1 inear

Lagrangian for A, invariant (up to a divergence) under (1), is given by

Lo =-:2—';;,ocw (Sn™+iaXy™2.2)

=L _ Xy I
i.).f +

2q%

This description is perfectly analogous to that used for the pion in non-lineaxr

(2)

pion dynamics. However, while the chiral group SU(2) x SU(2) is also broken exx—
plicitly by a pion mass term, if we assume that supersymmetry is broken only spon-
taneously the above description is expected to be rigorous and to be actually ~ralid
for a suitably defined field X in any renormalizable model in which a Goldstone

fermion emerges.

%) Volkov and Soroka [2] were the first to point out the possible occurence of a
supersymmetric Higgs effect. However, in spite of its formal similarity, their
point of view is essentially different from curs.
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Let us now try to promote (1) to a local transformation with parameter a(x)
and to make (2) invariant under it by coupling A to the supergravity fields ema
and wm. Without describing the complete Lagrangian, which is rather complicated,
one can easily find the first terms in an expansion in the coupling constants a

and K (gravitational constant). Under the transformation laws

S A :://- X (X) 4 e
a
é:é?,” = ¢ K of )""L," (3)

21#’” ="%9W°(+...

the Lagrangian

/ l:——' ,..,'_"__.— . s 08
L—x:—zte—-?)vr’g/\ Z“A)/’U‘f'

e = del e, ¢

changes by a divergence. To (4) one must add the usual supergravity Lagrangian E6]

(4)

|

I : Emne _
Lo=-greR-£e™ Rppdy - ©
The sum L + Ly is invariant under (3). The transformation low for the field A shows
that it corresponds to a pure gauge degree of freedom and that it can be transformed
to zero by means of a suitably chosen local supersymmetry transformation. In other
words, the field A can be absorbed into a redefinition of the fields ema and Y,

The resulting theory is described by the Lagrangian (5) of supergravity plus a cos-
mological term (plus possible additional terms from the supersymmetric matter part

which gave rise to spontaneous symmetry breaking).

This result is puzzling and disappointing. It is puzzling because the dis-—
appearance of the Goldstone particle (Higgs effect) gave rise to a cosmological
term, instead of generating a mass term for the spin 35 gauge field, as one would
have expected. It is disappointing because the empirical smallness of the cosmo-
logical constant -1/2a’ seems to destroy any hope that the spontaneous breaking of
supersymmetry will be large enough to be responsible for the observed mass splitting

between bosons and fermions. In the following we discuss these points.

The above puzzle is immediately resolved if one observes that, in presence of
a cosmological term, one cannot quantize in a Minkowski background, but one must
take instead as a background space a solution of the Einstein equations with cosmo-
logical term. The simplest and most natural is the corresponding de Sitter space.

Now, in de Sitter space the concept of mass is rather delicate.
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It has been recently observed [7,8] that one can add to the supergravity

Lagrangian (5) the sum of a cosmological term and of a spin % mass term

2 ’ Lmnn .
3P e~ peE b 2 mn Vi
% z Yefsembe, (6)
- !
2 mn = 7 [ x m,dn]
without spoiling local supersymmetry. Indeed the sum of (5) and (6) is invar{iant
under a modified supersymmetry transformation in which the usual transformatijion

law

2
SV = = 1 D )
is replaced by
—__ 2

(there is a corresponding change in &“mab)’ The existence of this local super—
symmetry shows that, in spite of the apparent mass term in (6), the spin % field
has the number of degrees of freedom appropriate to the massless case. It is also
easy to see that the Lagrangian (5) plus (6) admits a global supersymmetry, obtained
by taking o independent of x. It is the global supersymmetry of the corresponding
de Sitter space of radius u™', which has 0(3,2) as the maximal Lie subalgebra*) .
When the cosmological term and the spin 3/, mass term are related in the particular
way given in (6) there is local supersymmetry and, with a sensible definition of
mass, the spin 3, field is massless. When they are not related as in (6), there
is no local supersymmetry and the spin % field is massive (this is true in parti-
cular when there is only a cosmological term, which resolves the above mentioned

paradox). Then the equations of motion imply the constraints

Y™ =0

9’"}0’"-{-0“ =0

(9

/

where the dots are terms of higher order in k. These constraints are exactly of
the kind that gives the right number of degrees of freedom for a massive spin 34
field. The classical equations of motion are still consistent, even though there

is no local supersymmetry, and no anomalous propagation hypersurfaces occur,

%) Here we disagree with Ref. 7, where the spin 3, mass term is interpreted ag
giving rise to a breaking of global supersymmetry.
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The existence of the invariant (6) can be used to resolve the second problem
mentioned above. We observe that the sign of the cosmological term in (6) is fixed,
and corresponds to a de Sitter space with 0(3,2) invariance. On the other hand,
that of the cosmological term in (4) is also fixed and is the opposite. Adding
(4), (5) and (6), one can adjust the constants so that the cosmological terms can-
cel. Before, however, one must modify (4) so as to make it invariant under the
new transformation law (8). This is not difficult, to the order considered here,

and requires adding to (4) a term
.-z/uAA o . (10)

The meaning of this term can be understood as belonging to the invariant Lagrangian

for a Goldstone spinor in a de Sitter space of radius T

Now one can cancel the cosmological terms between (4) and (6)
I 2
—, = 3@ _ (11)
2Za K¥*
If we assume that the spontaneous supersymmetry breaking is responsible for the

observed mass splittings between mesons and baryons, the order of magnitude of the

constant a must be given by a hadronic mass, say the proton mass,

_/.. L sz (12)
a t
We find
#”(Km'p)mP J (13)

where Kmp, v 10" !%. The mass of the spin b field is very small, but we have

hadronic mass splittings of reasonable magnitude and zero cosmological constant*)

Geometry of superspace

We shall now describe how supergravity can be obtained from the geometry of
superspace. If one takes the differential geometry of superspace to be (super)
Reimannian [10,11], the connection with the space-time formulation of supergravity
[6] is not very direct and requires a limiting process in superspace [12]. This
is due to the fact that the field equations in Riemannian superspace do not admit

as solution the flat superspace [4,13___[ of ordinary global supersymmetry. It was

%) The compensation between cosmological terms of opposite sign was considered by
Freedman and Das [7,9] in a specific model. In that model difficulties seem to
arise when one attempts to complete the combined Lagrangian to a locally super-
symmetric invariant (private communication from D. Freedman).
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for this very reason that a different differential geometry in superspace yag
introduced by the Wess and the author [14] and, independently, by Akulov, Vvolkov
and Soroka ElS]. The superspace of global supersymmetry is a special case of
this kind of superspace. Furthermore, the equations of supergravity take a very
simple form. We describe this below, following a recent paper by Wess and the
author [16].

We begin by considering a general affine superspace. Its points are para-

metrized by coordinates M= (xm,6H) where the x™ are the commuting space-time

coordinates while 6" are anticommuting variables. More precisely, x™ are evyen

and 64 odd elements of a Grassmann algebra. Latin letters will denote vectorial

(bosonic), Greek letters spinorial (fermionic) indices. The supervierbein matrix

EMA(z), where A = (a,a) and its inverse EAM, can be used to transform world tensors
into tangent space tensors and vice versa. The submatrices Ema and Euu consist of

. o
bosonic, Em

vierbien can be viewed as the coefficients of two one-forms

A M- A B M B
E=dz"E, y qé,q =dz C}b,«q},q . (14)

a .. .
and Eu of fermionic elements. The superconnection QM,AB and the super-

Here the differentials dz™ are taken to anticommute with each other and with the
d6H, while the d6H commute with each other. Similarly, E? anticommute with each
other and with E*, while E® commute with each other. Under a linear transformation

in the tangent space
A_ LB x.°
svil=wv B

. . A . . .
the supervierbein Ey~ transforms like the vector vA, while the connection transforms

2
, Suy =< )(A “g , s

B B
59;4 ? = ?gA ¢ Xdz - XA d¢<‘ - XA Y (16)

and one can define the covariant differentials

A B
Z'U'A =JUA+'U"B@B ) @uﬁzduﬁ-iA U.-B, (17)

The notation of differential forms is compact and convenient and takes automat ically
into account all the sign changes due to the Grassmann nature of our variableg .

Many properties of Cartan forms generalize in a simple and natural way tooyr Jdif-
ferential forms with Grassmann variables [ 14]. Because we write the different ials
on the left, the differentiation operator d = dzM 9/0zM operates on a product start-

ing from the right. For instance, if {, is a p-form, d(2,Q,) = 2,d9, - (-1)Pa2,Q,.
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The theorem d(df?) = O is valid and its inverse also applies with obvious restrictions
on the topology of the domain of variation of the bosonic variables. In terms of

covariant derivatives, defined by 9 = dzM‘J)M, the formulae (17) become

A _ 0 A bm B A
Buv'= Z v+ () v bus

9 (18)
Dp bea =5t YA~ T, 4 “_a o

)bm

where the sign factor (- is defined by the convention that m = 0 if M is vec-

torial and m = 1 if M is spinorial, and similarly for B. The torsion and the cur-

vature are defined by

A A B A | v, M A c¢_8 A
(19)

B B ¢y B N, M B
R, =d‘f’A +‘I)A ‘l’c = dz dz Ruwa =3E Rpc A

As a consequence of their definition, they satisfy the Bianchi identities
A 3%’ A Bp A
(20)

B c B Cp, B
dR,” +R, " - ¢, R =0 .
Written out in terms of coefficients tensors the Bianchi identities take the form
c_B._A ( 2 T D c’ D D
EETE A 8c, T 7;‘3, TC'C, - RAB,C =a

(21)

¢_B8.A F c’ >
E'EE (’DAR.BC‘/D + 7;;3, Rc'c/D )=0
where

M
ZA =E, 2 M '
In order to give more structure to our superspace we must specialize the group in
the tangent space. The simplest would be to require the tangent space to be a
super-Minkowski space. This would mean, assuming the existence of an invariant

. ab . . s . .
numerical tensor, Mg = (-1) NpA and, with the further restriction of vanishing

torsion, would lead to a Riemannian superspace. Except for the use of vierbein
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and connection, the geometry would be equivalent to that described in [10,11]
directly in terms of the metric temsor. For the reasons explained above, e
choose a more restricted group in the tangent space and require the existepce of

.. . . B . .
a basis in which the matrices XA satisfy the relations

Xa’s:;)(“b:o ) Xabr- L@b(?)

(22)
X =t L. (Z00)°
x - 7 w b o¢ J
where Lab is an infinitesimal Lorentz matrix, L,y = -Ij, and zba = 1/4[Yb’Ya]-

g
In words, Ly

spinors. Our group consists therefore of ordinary Lorentz transformations, put

describes the same Lorentz transformation as La when applied to

. . B
dependent on both x and 6. Since the connection and the curvature R, are matrices
belonging to the algebra of the tangent space group they both satisfy the game re-

. B .
strictions as X, . 1In particular RCD,aB = RCD,ocb =0,

R =-R ! (z*
- —

€D, ab ¢p,ba Rcom/s- ZRCD,aL A AP

The equations of supergravity can be stated as simple restrictions on the torsion

tensor in superspace. We take

c . ¢ Y
T"(ﬁ =2(.(X “/3 y 7—;/3 = 0 (23)

‘Talx/s 57:/5

while we leave the components Tap

Y <
=0, »7;1» =0 (24)

Y which correspond to the gauge invariant Rar1ita

Schwinger field, undetermined. A number of relations can be immediately obtgined

by combining (23) and (24) with the Bianchi identities (21). Among them are

d _
Rep,c® =0

(25)
) v /e 5
R,(L//, d +Ra,« =26y )«/s Tew, =0 .
d '
‘Rdb,c . - RNC/L - 2" (b,d)ol/g .TZC, P =0 (27)

DRyt + B Rt w21 (1l Reg et oo
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Furthermore, with a little algebra, one can see that (26) actually implies
o Ty P
— (29)
! ap cb, = o,

and therefore also, from (27) )

b
— (30)
R“L, c e O ]

This in turn, through (28) tells us that

'R&L,C ‘ = O ‘' oD

Finally, combining (26) and (27) and remembering the relation

d cy &
R“L,ﬁg= é‘)?“"/“ (ZJ )/s )

one finds that

wa,cJ =.2¢:(m’)“/1 'T:J)/a ) (32)

The simplest way to extract field equations from our superfield equations is to

observe that it is possible to choose a gauge such that, as 6 > 0, the superconnec-

%)

tion O . ap Decomes the usual connection in four-space, the supervierbein becomes
b

E, “= en”(x) Ep "= L, (x)

a o o
EI‘ =0 E{,, ""Sf* )

. . .. o . . .
where ema is the usual vierbein in four-space and npm the Rarita-Schwinger field.

b
o« ol
v =Tn =FKpva =0

b
Rmv,a = e-m ¢ Sv A E

(33)

It follows that, in the same limit,
(34)

c./Q,a Y

%) The higher powers in 0 are also expressible in terms of the physical fields and
their derivatives, provided one fixes the gauge appropriately. The coordinate
transformations in superspace which preserve the choice of gauge can be expressed
in terms of a coordinate transformation in ordinary space time and an x-dependent
supersymmetry transformation (local supersymmetry transformation).

ot
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while Tmn 2 and Rmn,ab become the four-space torsion and curvature tensor, which we

b
b . . C _+ A
shall denote by T;mn,a and “Rmn,a . Using (33) and the relation Tyy = = Ey ENBTBAC

we see that (23) and (24) imply the connection between the torsion and the gspin

density

Ton, ~ =% Yo “[J'C)«/A%ﬁ= ©.

(35)

On the other hand (29) gives the Rarita-Schwinger equation in the form
) T, * = B__m, why bpy B
(I d/$ '3 JJ =0 J ,Z.;d/ "ec €. .p”k -Dn‘k.. P (36)

where D is the covariant derivative used in the second of Ref. 5, and (31)

gives the Einstein equation in the form

ﬁa‘,o ‘ + % CL”’%" “(Y“)"‘ﬁ TLC/ IB= 0. (37).

The equations (36), and (37) are equivalent, but not identical, to those giyen in
Ref. 5. To establish the equivalence of the two forms of the Einstein equation

observe that the Rarita-Schwinger equation implies that
(.X 3 )«/! Zala , =

Instead of taking all of (23) and (24) as basic equations, one can take some of

cd
'é' aaL TCJ, o (38)

them and some of the equations we have derived from them through the Bianchi iden-
tities. A particularly interesting choice includes (23) and (25) among the pasic

equations.

Finally, let us observe that the above formalism permits the construction of
superspace scalars. On the other hand, one knows how to transform a scalar into
a density. One multiplies it by the det EMA, where the determinant of amatrix
with commuting and anticommuting elements is defined in Ref. 11. By this pro—

cedure one can construct invariant actions in superspace.
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