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ABSTRACT

Using planar dual amplitudes as a guide, we discuss some features of
Reggeon amplitudes which are relevant in the context of the Topological
Expansion. We look into the analytic properties and, in particular, dis-—
cuss the validity of Finite-Mass-Sum-Rules for Reggeon—Reggeon scatter-—
ing. We investigate the form taken by planar unitarity when a multiperi-
pheral assumption is added.  The integral equations obtained are not of
the standard Chew-Goldberger-Low type. We find that pure pole-type solu-—
tions (i.e. without Regge cuts) to planar unitarity are possible in a way
consistent with the symmetry and factorization properties of Reggeon—
Reggeon amplitudes. The appearance of "good" FMSR in the unitarity inte—
grals follows from a careful treatment of phase space -- all possible
configurations are counted uniquely -- and is crucial in achieving the
cut cancellation. Throughout the paper we emphasize various subtle points

that have been overlooked in the literature.
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INTRODUCTION

A recent approach to hadronic physics, known as the Topological Expansion
(TE) or dual unitarizationl) has received much attention in the last few years.
This approach is conceptually located between a fundamental approach to hadron
physics in which everything can be calculated from a given input (such as a
Lagrangian or a good dual model) and a purely phenomenological approach (such as

2)).

Regge-Mueller phenomenology of inclusive reactions

3)

As discussed recently by one of us™’, the TE has a natural place in a future
"theory" of strong interactions which starts from the Lagrangian of Quantum-

4)

Chromodynamics (QCD), proceeds through dual models ° and ends up with Reggeon-—

. 5 . . .
Field-Theory (RFT) ) through successive use of non-perturbative expansions of

1,6)

the "large N'" variety

Despite much beautiful progress in quantum field theory, the possibility of
computing the spectrum and scattering amplitudes of QCD seems rather remote.
Hence, at this stage, the TE can be used as a surrogate of a more basic approach.
The TE allows us to relate several aspects of hadronic physics and to introduce
a small dimensionless parameter into strong interaction theory. Imn this way,
several interesting results have been obtained for low energies (hadron spectro-

9

. 8 . .
scopy)7), present accelerator energiles ) and super asymptotlic~energies .

One of the most important and most difficult parts of the TE programme is
computing the zero-order term of the expansion —- the planar S-matrix. Attempts
in this direction have so far involved abstracting some properties of planar
dual models and then utilizing them together with some phenomenological input in

10)

planar unitarization. Bootstrap constraints have emerged when a multiperi-

pheral picture is assumed for the planar production amplitudes which saturate

unitarity at large s and small t. Planar dual models with almost linear trajec-

tories seem to be close to fulfilling these constraints, provided the intercept

and coupling of the leading planar Regge pole (the p-f system) are appropriately
11)

chosen . The values obtained do provide a more or less correct normalization

of hadronic amplitudes.

In this paper we maintain the attitude of looking to the dual model as a
guide. In particular, we study properties of Reggeon amplitudes which are rele-

vant in the TE programme.

In Section 2 we examine the analytic properties of Reggeon amplitudes in

Reggeon-particle (Rp) and Reggeon-Reggeon (RR) scattering. For the former, analy-

tic properties are rather simple and Finite-Mass-Sum-Rules (FMSR) are
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12 . . .
straightforward ); however, for the Reggeon—-Reggeon amplitude the situation is
more involved. Turning to the dual model example, we find that certain asymmetric

FMSR are ''good', that is, they are free of fixed pole contributions.

In Section 3 we derive the integral equations for Reggeon-particle and
Reggeon-Reggeon scattering that follow from planar unitarity combined with stand-
ard multiperipheral assumptions. A no-double-counting condition (NDC) gives non-
trivial limits of integration. Consequently, the equations are not simply dia-
gonalized by a Mellin transformation. Instead, the careful treatment of kine-
matics in the unitarity equations yields precisely the 'good" FMSR of Section 2.
These equations are easily solved by pure-pole solutions and are consistent with
the symmetry and factorization properties of Reggeon amplitudes. No contradic-—
tions arise in several self-consistency checks. The final outcome is a bootstrap
condition on the triple Regge coupling and the trajectory identical to the one al-
ready analysed by several authorslo’11’13~15). Just how cut-cancellation works

term-by-term in the energy plane is spelled out. The dangers of over-simplifying

the planar bootstrap in rapidity variables is emphasized.

Section 4 contains a summary of our conclusions. Some typical technical cal-

culations are given in the Appendices.

ANALYTIC PROPERTIES OF PLANAR REGGEON AMPLITUDES

2.1 Definition of Reggeon amplitudes

Complications with Reggeon amplitudes compared to particle amplitudes arise
already at the level of definition. For spinless particle-particle scattering,

the invariant amplitude Aa (s,t) has two basic properties in the planar limit:

b-a'b'
i) Normal analytic structure in s for fixed, negative t;

ii) Regge-pole dominance with an asymptotic behaviour

s o [t)
Aq (st) —> X0 O, O M Cutt)) (5)

ab—sao'b §—>o00 .

The power of s is independent of the external particles and their masses.

The complications of Reggeon amplitudes follow from the impossibility of de-
fining them so that properties (i) and (ii) are obeyed simultaneously. Consider
first Reggeon-particle scattering. The amplitude is extracted from the appropriate

limit of a six—point function A . Referring to Fig. 1 for notation, if

abcsa'b'c’
we take s/M?, s'/M? large then we expect
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Here ARla—>R1'a' defines the Reggeon-particle (Rp) amplitude. Starting from
(2.1) one can argue, using field theoretic or dual examples that this ampli-—
tude has only normal threshold singularities in M?. However, the large M’ be-

haviour is given by

4
= g (t)gﬂ‘k"(t)t‘)

(
DCSCM ﬂk’a——)ﬂ'aa' M*’——?m . P(d(f) + 1) (2.2)
(Mt) o 1) - o ) A () .
* \so

where Bp 1Ry , (£, t1) is the triple Regge vertex. Thus a t—channel Regge-pole re-
sults in a large M? behaviour with dependence on t1 A more natural definition

of a Reggeon-particle amplitude is perhaps

A — ) () Fg (87 (-xeD) [¢-att!)) -

) «((ty) ) ) (2.3)
)au [ s ) ’q«‘a.—ak‘aa‘(m’t’t')

abe—sa'bc

Obviously the asymptotic behaviour for AR 2R, 'a’ is simple:

(t) Jg ¢, 1)

3
|

'Y DiscM,_ Ra—>Rp& Mm*—> oo l"l(a((t)-»-a) (2.4)
)a(('t)

.
On the other hand, if A does not contain kinematical singularities, then A' does

OL(t'l)+oc(t'f))

(due to the factor (M2) Hence, the application of FMSR to A' is

. . L. . 12 )

delicate, while for A 1t 1s straightforward ). Our work hinges a lot upon the
correct analytic structure of Reggeon amplitudes and upon the validity of certain
FMSR. Therefore, we must be careful in the definition of Reggeon amplitudes to

be used and also in the study of their amalytic properties.
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tion A

The Reggeon—Reggeon (RR) amplitude is extracted from the eight-point func-
abedsa'b'e'd’ depicted in Fig. 2.

Going to the limit s, s;, s,, s/s; and
s/s, large, we write (our definition differs from that of Kwiecinskil6) by some
unimportant factors):

<

Ambc& —a bod T ):A (t"))/b'l' (t'*)d;c (£ (t2)-

(=) PEa)[ i) J-oits)) -
(3 IO (51 ) M) (s YA sy y )

1 E
° HR.RQ(ML} S-Sx/s)t)t.)t,‘)

where

2L 2L\t 'y
sy ) M (Pt Py ) = M e
$,5¢,5, »enrae. )

Introducing

—

. W )+ alt) ¢ 2 (t7) + (s
A= (%)

AKR 2.7)
)

we expect AﬁR > (Mz)u(t). But AﬁR should have a rather complicated singularity

structure.

It is not completely trivial to define a RR amplitude which has just
the correct threshold singularities in M?.

To find out how to use FMSR for RR
scattering we resort to the explicit example provided by the dual model.

2.2 Reggeon amplitudes in the dual model

In the planar dual model the Rp amplitude has the form17)

Pl g, = F Byl-trr arsaier) - )
' v

(2.8)

As for the RR amplitude, in Appendix A we study the dual eight-point func-
tion corresponding to Fig. 2

By a straightforward use of Beta-transform tech-—
niquesl7) we find:
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where

- +
oA ; = oltgy) +alt;") -1 (2.11)

Notice that in AR R of Eq. (2.10) the dynamical M? singularities appear explicit-
1R2

ly as poles in B,. Hence, the analytic structure of ARR is relatively simple.

For large M’ we have Mi = M? and

Bl{ (—P-d“)*d“a' *dcal*’“" I‘) - d('“a)) 74_9_-:—’9 o0

vollt) ~ob % ~ 2~k (2.12)
F(’P“"lf)*dc),nim_-‘-g,-s k)(- o ML) r 0" G2

L)

The leading term of AR1R2 is (k = 0)
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A similar result holds for the Mueller discontinuity:
L D; =
T tsc -
ac M2 ﬂk-ﬂt

2
" (’(,"z)dlﬂ—dc_,r-d(.‘{z. (F(dlt) +())
[ 1t)+1) [(act) - ode, o) [ (6) - %e,e)

9

(2.14)

Using the high M? limit of Eq. (2.8) and the standard form for A

*
find the desired factorization property )

DlsaM’_ ﬂ

b+a'b'(M2’t) we

RIE)R (K5 )= RIEH)RIE)

h

DI'SC ﬁ LR
ar ab—>a'b (2.15)

D«‘scM,_ A,u(;)o.—e R(t})a) D 0SC AR 1ts)b =Rt Y
X

. vl
:D(SCM: ﬂqb—-ﬂa'b' D:scﬂ,_ ﬁab —a'b

*) Notice that Eq. (2.14) gives a singularity in Discyz2 AR,R, (and in Discy2 Bg)
at a(t) = -1, -2 .. Bg itself has no singularity at these points. The pre-
sence of these poles comes unavoidably from factorization [Eq. (2.15)] and
from the non-vanishing of DISCy2 B, at a(t) = -1, -2 .. The way out of
this is probably the introduction of the new 'B-trajectory" of Hoyer,
Tornqvist and Webber'®), which collides with o at these points. Elimination
of these singularities is also welcome for building the Pomeron in the TE.
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Note that in the asymptotic limit ARR depends on the external Reggeon masses
al(t)-0. ;=0n ,=2

vo(M? Cs1 TCs2 Ty,
(ARIRZ ™M) )

AI‘RR it will have a more complicated singularity structure in M?.

If, as in Eq. (2.7) we define the more natural

In Table 1 we summarize our definitions. The correspondence with the dual

model is:
+ M (<) +1)
yi)—>3 ) ) — 3 [ (o le) ~%c,1)

2.3 FMSR and Mellin transforms of Reggeon amplitudes

For the planar Rp amplitude ARa one expects the following FMSR to hold for
12)

suff_i;ciently large s
g AN | \ A L4 4t =
[aur w007 2 Dise y, Rpo AL ET) =
°

B Z (3 )d(t)—o(c_),-!-‘n oa.(t)f‘*) Yoar (0 (2.16)
/¢ A(E) Alt) —ole,y + M l"(o“t)'*") °

which is trivially consistent with the dual model amplitude (2.8).

Notice that Ap. obeys a FMSR of a simple form. The '"natural" entity AI'{
a
[see Eq. (2.3)] does not satisfy an integer moment FMSR. Defining a Mellin trans-

form over %a 2
8 t L L -J-1 L4 b o
AKQ(I’t)t')E !JM (u*) Aka (Mm% ,t« ) 5 (2.17)
[

. . . +
we note that FMSR (2.16) hinges upon the absence of fixed poles in KRa(J,t,tl) .

Namely, the latter vanishes at J = -1, -2, -3,

Turning to RR scattering one wonders whether any simple FMSR holds. The ex-

tra complication here is that the variables s, M?, s; and s, are not independent
.. .1 . ..

[see Eq. (2.6)]. Kwiecinski 6) has proposed the following decomposition of ARR’

based on a hybrid Feynman diagram model:

=%, 2
ARR: (-Mﬁ) F(')(M,;M-L)t)tf)t: )+ (2.18)
- - 1 +
CHE) T P M )
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It is F(l)(i = 1,2) that are presumed to satisfy integer moment FMSR. The dual
model example does not contradict this proposition. However, we shall now show
that there are particular, asymmetric moments of the full ARR.for which naive

FMSR may hold.

In calculating a FMSR for ARR one has to specify which variables in the
. . . 3 3 . 3 . *
eight-point function of Fig. 2 are kept fixed while M° is integrated over ). We

consider here two cases that are relevant to the unitarity equation:
‘i) s and s; kept fixed, and s; = M2 (s/s,) (or the equivalent case with s; <> s3);

ii) s/s; and s/s, kept fixed, and s, = M2(s/s,), s, = Mf(s/sl), s = Mfﬂs/sl)(s/sz).

In the first case consider the general Mellin transform (i = 1,2):

~Mas
A (3s,5,1,80)

.

2 +
-J~ - H L8 2 (2.19)
g Im* (M*) & DiscM,,ﬂ, (5451) sz Ma( /s.)) M A
0

From Table 1 we see that, for the RR amplitude, Eq. (2.19) corresponds to a

Mellin transform over an asymmetric entity:

a T =J= acq*
¥ (n et )z [amt (™ ML
R J xe

(2.20)

e 4t b 4
'b‘s",qtﬁﬂ,ﬂt (”; M.L,‘t)ti ) ,

where the asterisk over R, indicates which way the asymmetry goes.

~ +
In Appendix A we show in the dual model example that A;SR*(J,t,tE) vanishes
1R2
at J = -1, -2, -3, ... ; that is, no fixed poles occur at these points. Ab-
stracting this property from the dual model, we deduce that the RR amplitude sa-

tisfies the following asymmetric FMSR:

s ol , ti 1 + ~
[du> (H*)™ (ML) - 17 Dise A g, (MM 6) =
o

ML
PO,
9(t,t7) (1, z). (%) oL te) (2.21)
[ar+1) QB —cdey + (menbhm s

*) It is also crucial to take into account only the "physical' singularities in
M?, i.e. those related to states in the missing-mass channel.
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Here for sufficiently large s only the leading pole contribution has been kept,

and terms of order (Pf/;) - neglected (g >> Pf).

Notice that the asymmetric transform (2.20) has zeros also at J =
T 1 -m(m=0,1,2, ...) for P2 =0 (1 = M*). For P, # O they dis-
appear (unlike the zeros at J = -1, -2, -3, ...). This is seen in the term by
term expansion in powers of le (see Eq. (A.7) and discussion following it). We

do not know whether the re-summation of the series re-establishes these zeros.

For the second (symmetric) case the appropriate Mellin transform is

n~s 3
A2 (5,90, %0, 1,00 2

[ $ (2.22)
-7-1 + 4
o

or, equivalently (see Table 1)
g -
AR?R,, (J-,t,i‘(:) =
~J-1 + +9, 2 1 { (2.23)
sty T LD e 5 ML)

8

Q\—-\

Our study of the dual example in Appendix A shows that for P =0 this trans-
form has zeros at both J = occ’l—n and J = ac,z -m (n,m = 0,1,2, ...). Both sets
of zeros seem to disappear when Pi # 0, at least term by term in a power expansion
in P?. However, we cannot rule out the possibility of these zeros reappearing

after the re-summation of the Pf expansion.

) sy as .
P =0 t h t f .
Notice that at P, both ARle and ARle ave two sets of zeros in J In

fact, in this limit the two transforms are related by a simple shift in J:

(T+ 1)“3""' — (3~ "%')sam. (2.24)

In order to preserve this simple relationship and thus overcome the effect of
transverse momenta on the fixed pole contributions in (2.20) and (2.23) one may
define a modified transform with (Mz)_J—1 replaced by (Mi)_J-lz
L §
T, -
A“.R’,( J-;t)tt ) =
20 ( v + (2.25)
-J- Ko 4ol S 42 2 {
9 8 3- t ' AR _L ” M.L t'
2 b} '
[dut(uz)™ (M) it Disen Mk 7
o
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This symmetric transform does, indeed, vanish at both J - ac’l = -n and J - ac,z =
= -m (n,m = 0,1,2, ... ), for P, # 0 as well. Moreover, the analogous asymmetric
transform is obtained by the simple shift of Eq. (2.24), and therefore has zeros
at J=-1-nand J = uc,z - uc,1 - m for P # 0 as well. This interesting pro-—
perty of &' will not be studied further in this paper since such an object does
not seem to enter in the unitarity equations. On the other hand, unitarity plus
multiperipheral dynamics will lead us automatically to FMSR of the type (2.21)

which will be used repeatedly in Section 3.

CONSTRAINTS ON REGGEON AMPLITUDES FROM PLANAR UNITARITY

3.1 Multiperipheral cluster production model

Planar unitarity provides a set of non-linear constraints on multi-particle
amplitudes. In order to derive integral equations from these constraints, some
multiperipheral assumptions have to be imposed on the production amplitudes (which
are relevant for saturation of the unitarity sum at high energy and small momentum

transfers).

In this context, a model with both theoretical and phenomenological appeal,
is the multiperipheral cluster model. In this model, the extreme assumption of
multiperipheral production of stable particles is replaced by the weaker assump-—
tion that some relatively long-lived resonant states (clusters) are first pro—
duced multiperipherally, then decay independently into the final state. In the
planar dual theory the identification of clusters with low-energy resonances is
almost automatic and restricts considerably the concept of clusters. Some theo-—
retical justification for the validity of a cluster picture within QCD has re-—

3)

cently been discussed by one of us™’. The phenomenological validity of the pic—

ture has been distussed by several authors7’8).

However, when one tries to classify an event in terms of clusters, a deli-—
cate problem arises of avoiding double-or-under-counting of final state confi-
gurations. For instance, suppose that a set of particles which are adjacent in
the planar diagram forms a cluster if the invariant mass of the set obeys s; < s.
Then two adjacent clusters of masses s;,s, should satisfy not only s;,s; < s but
also (at least) the constraint s;, > g, where sy is the invariant mass squared of
the system 1 + 2. Furthermore, this system may be sometimes split into two ad-—

jacent sets in other ways, 1' + 2', such that S 158, < s. Should one count such

21
subdivisions separately or not? This type of question has been dealt with in the

literature. Essentially, two possible attitudes can be adopted:
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i) Clusters are physical. In this case, suppose that below s the system is

dominated by sufficiently narrow resonances, and above s is described by some
rather smooth Regge exchange amplitude. The two events 1 + 2 and 1' + 2' men-—
tioned above can be safely counted separately. The symmetric no-double-counting

7,8,15,19,20
condition (NDC) ’°° 9,20)

se< S Si,in > (a8 <) (3.1)

should be appropriate to avoid either double counting or under counting of events.
This is, of course, an approximate statement which may never be exact (strictly
speaking, this NDC double-counts some special configurations). In this case, s
has a physical meaning, output parameters will depend on it, and should be chosen
in some optimal way (similar to what is done with FESR). These clusters are of

the type discussed in Ref. 3).

ii) Clusters are mathematical. From this point of view s is a mathematical pa-

rameter; a device used in order to group final state particles into bins over
which averaging out of individual particle properties is achieved. Double count-

20)

ing is avoided by the asymmetric NDC of Finkelstein and Koplik and Freeman and

Zarmils). The condition states that a cluster (or bin) is a set of particles
such that i) its invariant (mass)2 is less than g, and ii) the addition of the
next particle adjacent to this set on the left (or, alternatively, on the right)
results in a new set whose invariant (mass)2 is larger than s. Thus in the mno-

tation of Fig. 3, for a given particle configuration divided into n clusters

(bins) we have:

) - ’

sc< S , s s (s 1y, (3.2)
$s €T .

Thus, every cluster is defined in a manmer which correlates it to the gap lying
between it and the next cluster, except for the last ("left over") cluster. 1In
this scheme, clusters have nothing to do with resonances, or better, nothing to
do with narrow resonances. If one wants to derive integral equations with this
classification of the intermediate state, one has to use Regge exchange between
adjacent clusters even when the gap separating them is small, or even if, e.g.,
the last particle of one cluster resonates with the first particle of the next
one. This model is therefore expected to be good only when there are essentially

no physical clusters (large width limit, see Ref. 3)). Note, however, that count-

ing of events is precise, and results should not depend on the bin cut-off s.
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In this paper, our attention is focused on delicate cancellations and on
qualitative properties, and therefore the second point of view is adopted.
Let us stress, however, that for practical applications, the model with physi-
cal clusters is more appealing. The extension of our conclusions to the case of
physical clusters would seem very desirable. We shall comment again on this case
at the end of this paper and from now on we shall work with the asymmetric NDC
of Refs. 15) and 20).

3.2 Integral equations for Reggeon-particle amplitudes

The equations that can be derived from planar unitarity and multiperipheral
cluster model constrained by the asymmetric NDC (3.2) are represented in Fig. 4,
where a box represents a finite mass object and a blob - an unrestricted mass
object. The two equations stem from the two ways of counting, or classifying,
the intermediate state (starting cluster assignment from either end of the chain
of Fig. 3). The second equation (Fig. 4b) is not an integral equation. It re-

presents a self-consistency check on the RR amplitude.

a) Equation of Fig. 4a in the energy plane

Consider the equation represented by Fig. 4a. At the level of six-point
functions it has the form (without specifying it, all equations from now on

deal only with the imaginary parts of amplitudes):

({)] + — fi
A‘(s,su,t,t,*): HG Gan, 8, 80) + Tg (5505, 6,8) 5 (3.3)

1 . .

where As ) is the low-energy, one-cluster amplitude, playing the role of the

inhomogeneous term, and T, is the homogeneous term. In the appropriate kinemati-
+ . . .

cal limit (s/sz3 >> 1, t; fixed) we can extract Rp amplitudes as in Eq. (21) and

write:

Q) +
Ay, Gom, 80) 2 Ry 00,187 ) ¥ T G BT
(3.4)

A'gn = 855 Ara

. . . . ks
From factorization and by keeping the leading poles in the t, channels, one

gets for T¢ (we have confirmed this explicitly in the dual model):
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3 S/
T, = 80535~ f _{s_ii [ dss j)é,_, chtf.')t);‘c,(tf)r‘(—d(f.'))f'(-d(,6."))

o
+
e JU=d 163)) E otty) Con 7T (xft) - dH) (-5,) it VL s,b)‘m’l)
(3.5)
4 5
.(S’)d(n,)"'l“ L)HR (,.,-—'L-—-i>¢)t,*)ft)AR (:’) f':)

>/

where the loop integral is converted (using strong damping of transverse momenta)
into an integral over t§ denoted by d¢, (d¢, = N/16T x dtzdth 6 (-\) (—)\)_%, with
A the usual triangular function) and over s;,s3. The limits of integration over
s, and s; are determined by the asymmetric NDC (3.2) which implies here:

s, < s, Sp3/83 > s (always in units of sy = 1/a' 2 1). In performing the inte-
grations, s1» is not to be regarded as an independent variable. Rather, one

substitutes

Sig - Say \ et
Si= Shay (2:7)%= %5, 52

. (3.6)

. (3.5) now becomes:

T, 9(&,-—5))’ () 9, (¢ NE—e)) [1-21th))

o) ) dlf; -~ _
) ) j.té Pt )N t)) onit (4= )
S"/s (3.7)
ole, +! .
(S’3) ‘l flsl f"‘) (51.. ) ° A‘.Rg(sa”:,t) tl ) :) A‘Q‘.(Ss,{, t:)

Here a . are defined by Eq. (2.11). Using the definition (2.1) of Rp amplitudes

’
we get

v) ?
fe Foa e = 32000 by, ™

R

s Sn/s

s [ 4sa (4 Ao Lot t, ) Aopalintits) 9
o

L]

° (s 1,8) -
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Here,
- _ - + o N _d(t+
n.= «t2)) [N %1E])) con T (1E0) V) (3.9)
The s3 integral can be done by use of FMSR (2.16):
S‘_ - + *(*)-d‘-.b
;;/’A (st g D WAL (s/3)
S =It
Late M PR [1(ettt) +4) att) =,y (3.10)

Moreover, the integral over s, is precisely of the type free of fixed pole contri-

butions. Using FMSR (2.21) for n = 0 we get

3 + o (4) ~

> L d‘;' + ( 4 t)ﬂ - S (t)t'*) 3(60{") (r ) o
IJS,_(S,_ ) AR\‘L sa)sz,,t)t; =/t /7(0!('(’)4‘") ““’"’d‘,l .
o (3.11)

Inserting Eqs. (3.10)-(3.11) into Eq. (3.8) we find

o) =, =) £y F
- _= (’ ! gtflt.) “nft) .
’R,m—ﬂ(hs 5) (s 3) /I(a((t)+:)

¥ fafé gt ¢3) (3.12)
[ (1ty+4) 2" ()~ o%,2)"

On the other hand, from Eq. (2.2) we expect

[)R.a. ‘q Ra = e e {lfi)‘), (t)
lf C.'- 9( [}
"'-)( L 3 7 2 aa
B (say 3 S33) 2 P(d”)+")

(3.13)

.

Thus, complete agreement with a pole-type solution is possible provided the boot-—

strap condition

L R +
_ /T ¢ g’ (t)t"’ ) - i
L= P(dl.f)“)g 2 12 (wet)~ e )™~ (3.14)
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is satisfied. This is precisely the condition derived in Ref. 10) and studied

in Ref. 11).

Comparing our Eq. (3.14) with Eq. (4) of Ref. 11) we find, using our defini-
tion of d$, and the dual expression for g (see end of Section 2.2 with the ap-—
propriate Neveu-Schwarz shifts explained in Ref. 11)), that they agree up to a
factor of M. This factor was overlooked in Ref. 11) and should be introduced on
the left-hand side of Eq. (4). One should also multiply d¢,, in Eq.(4) of Ref. 11),
by a factor of 2 (planar unitarity has non-identical particle phase space) but
this is compensated by another factor of two which one gains by adding cyclic and
anticyclic permutations in the duality diagram. The final correct result of the
bootstrap calculation of Ref. 11) can thus be found to be:

o(0) -!

Oyti- = Cata* & 5 mb ('s)

which is probably a little too large. Using the arguments of Ref. 3), one finds
that this is actually an upper limit to the cross—section. The factor by which
it has to be reduced (because of clustering) is indeed about 1.5. On the other
hand the fact that we obtain approximately the right normalization of the cross-

section is already quite remarkable.

While the last calculation shows that a Regge-pole is consistent with the
integral equation, it does not demomstrate how Regge cuts are cancelled. In a
series expansion of the integral equation, the n-cluster contribution will ob—

viously have cuts in J.

b) Equation of Fig. 4a in the J-plane

We now turn to the J-plane in order to see how cut-cancellation takes place.

Consider the Mellin transform of T Using Eq. (3.8) we find

o o Ra'—I-, . +
Tk a (T)t)f.t) = JJSu (533) 'R.a (s33,0,87) =
\ o

L
3 1 69 (3.15)
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Changing variables s,, S3, Sz3 = S2, Sz, X = S33/8283, we obtain
-—

~ : - Tl ey~ de, L, 2
-Tl;s a= J.Jd)»"\'u & ‘L‘&(st)d"'ﬂ (520 i ‘ﬂ‘\/’z(s"s&"t’t“ )
\ o

0
~J-2 +4c,0" o I Wl R
.J}x X J j J;,(s,) AR a.("at tf) (3.16)

/50 Flsax

The lower limits of integration over s; and x result from the NDC (3.2). Due to
the non-zero lower limit of integration over s;, the expression for TRla does not
immediately contain the Mellin transform of A'Rza' Writing TRla naively (as is
commonly doné) as a product of Mellin transforms leads to inconsistencies and
makes cut-cancellation in the J-plane impossible. One way to proceed is to intro-

duce the inverse Mellin transform:
CHi 0 )
~

> K o
/)h,fs‘,f)ti)s I ’ér‘{ HR o Tt )

c-i by . (3.17)

Performing now the s; and x integrations we find:
s

L %, +! n +
lk‘a. (‘T)-t)t\r) = 5'(¢1-‘11. }‘S,.(S:) ! Qn\gt (s;,g,_ ,t,t‘ )

—-) ¢ ole, g~ '
1P s —T-l ¢ ele,am %, ~ gy (1B
AT 5) A, (Ttt))
e ) > R 272
AL (F4q) (T-T 4o =) T2 .
Due to the special form of NDC we use, the cut—off Mellin transform over AR R is
1Rz
converted into a '"good" FMSR of the type (2.21). Hence, defining J = j - a T 1,
J'=j'—0cc2—1wehave ’
~ o )‘3'
- = (%) (t, ¢
—r;‘ab(a dc, p) )| ) g (lt)"") Jd’l"]’v
(3.19)
4
) A ST e
iy 3% A (F-%,tt)

ani(}‘w«c,,)(}-é‘) (ut)—oky)  Ra2 .



- 17 -

We thus see that, in general, Eq. (3.19) is not a standard integral equation of
the type discussed by Chew, Goldberger and Low21) as it is not diagonal in j.

The j' integration contour is to the left of the pole at j' = j and to the right
of all other singularities. In order to avoid a cut in j, KRza(j' - (XC,Z -1,

+ . . . )
t,ty) must vanish at i' = a. ., (J' = -1), which is exactly what one expects for
3

planar Reggeon-particle amplitudes (see discussion following Eq. (2.17)). Writing

(F-%am, k) =

5t Jea (-t)g(t‘t,, / 3 -k k@,ttz) (3.20)
’1(,“.0_,.4) 3 —oltt) d(t) ok, 9

{\l
Aa

we get by closing the j' integration contour to the left
r~ . E 4
ott)- ¢

q\(t) g(ﬁf't) (‘S.) '[ (d)t) (3.21)
Plat)+ 1) g —okt) >

with I(a,t) given by Eq. (3.14). Notice that h is a smooth function of j' satis-

fying h [j' = a(t),t,tf]z 1 and that only the residue of the pole at it = a(e)
of A G' - ac,z - 1,t,t§) is picked up in Eq. (3.19). Using the bootstrap con-
dition (3.14) one finds
‘I 0(“‘)
~ o N 0 ALED) 2
Tga (37O bE8) = R+ 1) om)
' I ¥ (3.22)

This is exactly the form expected for TR P since by Eq. (3.4)
1

r~e ~ @) .
T (j-ok,~Ht &) = H (G, b)) - ;4 @3- R

V&
o0
- . L it 4) =41 022
= 5};[) (s,‘t,t.t) s'?-““t):J s it J d
J R,a F(o(('l')-* 1)
S

s
_ 5 Ka () §ttY) 3 i

[ (#(®+1) 4o




Finally, we get the expected form of XI((I;:
1
n~a -
AR (3 a,_’,-l‘t't )= /4 -’7}\@—:
&

Yaw O IE) | T g pq? .20
[i(etrt)+ 1)) 'g-dto[mawc,) M”t’t' )

Y

_(_S,)-(m-; ]

At this point one can regard ARa of Eq. (3.20) as the solution to the inte—
gral equation (3.19) with the inhomogeneous term given by (3.24). This amounts

to writing the solution as:

n~ . Q)
Ag o (340708 ¢d)= AR (G~cteu~, 4t E) +
1
—_ )’ca.‘ d) 9”){31) C g)’”“-a . .25
ety +4) g -olte) ‘ | )
. 9206 tst) [ 4% (g)dm-a]
P(:(e)«) dwz"lg_ (§-%,) ()~ dca)Ld&) e X1

T A©O-) P RGAN
1 - @ s el e

-
The second term in Eq. (3.25) reduces to the explicit cut-free form (3.22) of FERla
provided the bootstrap condition (3.14) is satisfied. The series expansion of

the fraction in Eq. (3.25) gives the cluster expansion of the cross-section, and
shows that the n-cluster term has explicit cuts in the j-plane. Notice that all
the complications in the j-plane structure of K ra 2T€ buried in the inhomogeneous
term A( ). The homogeneous term does not exhibit the detailed form of the full
amplltude (it is independent of h(j,t, t2) since only the value of h at j =a, i.e.,
unity, appears in TRza)' This is achieved because of the correct manner in which
the j' integration contour has been closed to the left. In general, one does not
know whether closing the contour to the right is allowed. Let us see what happens
if this is nevertheless done. The result is that in Eq. (3.19) the j' integration

picks up only the pole at j' = j to give'

(04 . ct)
Age (=% sb) = ,q

dtr=) 9It)t" - o) 1 £7)3.26)
& (t pu(f) 4)JJ¢‘7'- (4 oeg) (o (£ 0 ) /4&4.(3 e ”Q’)
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This diagonal form has been used, for instance, in Ref. 13) for s = sg = 1/a' = 1.
However, in general, only the more general form (3.19) is valid. To illustrate
this point, the reader may easily convince himself that Eq. (3.26) leads tc a boot-

strap condition that reads:

— g” (t tL ) i +
% (1 tt =1
) f *vl’- (1) - Pea D> h LA (3.27)

Since no new physics should be obtained by j-plane considerations that cannot as
well be derived in the energy plane, the only solution to (3.26) is a Rp ampli-—
tude with h= 1 for any j. Thus, unlike the more general Eq. (3.19), the dia-

gonalized form (3.26) serves as an integral equation for an Rp amplitude with a

restricted, simple form. As we shall show later on, the situation for RR ampli-

tudes is such that contradictions arise if one is not careful on this point.

Another way to overcome the complication of non-zero lower limits of integra-

tion in Eq. (3.16) is to extract from the homogeneous term T
~(2) 15),

term ARa

Cfg‘a.u' =) AN /,}R (§~oe, =%, 87) _,,’S'R‘Q(;‘-a&‘,-')t)t‘t)

Rya’ the two-cluster

(3.28)

For § , one easily finds the expression

'3} “_(é-de_,o‘l>t)t.i)=fJ¢’_7l’. f.ls,_ (si) ! (s,_) Rant A (s s,_) tE)
[

RRq

(3.29)

-

s/Sa_

o0 . oo .
- oL - ol
. j dx x Al Sls, (54D I+ ﬂk,.ﬂ-(s“’t'f:) .
s

Here the lower limit of the s3; integration is independent of x and s, due to the
extraction of the two-cluster term. The effect of the NDC becomes: s; < E,

s3 > s, sz3/s3 > s. We clearly have
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’lsb (SS) "' ﬂk (’3)t}ta, ) = AR (9» dc 2," t 'fz. )

K
_.3; o (1 °’:,~"tt',,) (3.30)

The integral equation thus becomes:

[Foulirsert )= 0 (G-, bt 0] =

N (2) +
(9 d‘a' t t )

s .
oo\ H .
+JJJQ"’]LIJS,,($:) o (s2) 2*":,;/)&&'(5’ Sx 51, ) (3.31)
o

™ C

o0
-l 4e ). )
- AXX 3 “% . Z (.-% a--' t t:) -A (4" d(“_-‘)t) tﬁ.t)
Rpo ‘4% 27H7, Ro®

-

S /5’,

[ 4

After the x and s, integrations (the latter again becomes a '"good" FMSR) we find:

— . + @) . +
LIA\'R‘Q (2—‘*#‘. t .) A 9 d( N ) t' )_I: 5R\a. (ﬁ-%al—')g t‘ )
9(&, ¢d)

t At} J
+4(tt°) (3 .
(3.32)
t ns (I) N r
~ ) _
[” (4~ % g";i}tm) -A (3= 1,42 )}
Ke2 ! Re2 .

Thus an ordinary integral equation with a factorized kernel is found for
AR Aél) rather than for KR The inhomogeneous term is l(z) -- the two-cluster

a a Ra

term. Using the explicit factorized form of Ké 2) as calculated in Appendix B and

x(1)
employing standard techniques one can solve for AR;a R1

tion (3.25). Thus, independently of the detailed form of AR a’ the solution
1

and find the solu-—

of (3.32) is a cut-free amplitude provided the bootstrap constraint (3.14) is

obeyed. The difference between this integral equation and the ones commonly

found in literature is that on the right-hand side of Eq. (3.32) A( ) is, in
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)

a
equations Zi(z) is a factorized product of Mellin transforms). Only for the re-

21)

1 . . .
general, not cancelled by the AI({ piece of the integral (in usual CGL type
Iy 1

. . *
stricted example with h(j,t,t7) = 1 does such a cancellation occur, and Eq. (3.26)

is obtained.

c¢) Equations of Fig. 4b in energy and J-plane

The second way of constructing the unitarity sum for a Reggeon-particle ampli-
tude results in the equation depicted in Fig. 4b (here, cluster assignment is be-

gun at the right end of the multiperipheral chain). In the energy plane the equa-

tion is:
+ " + > Y
A6 (S’st,’t,t‘ )= A‘ csas’»?)t)*‘ )+ T‘ ($'$1)>t, f‘ )
(3.33)
Here, similar to Eq. (3.5) we have (i = 1,2)
3 Su/s
) L - -
T) sy5an b t8) = 8D, [dsy | 45, [ddy 07, €0 0 (67)
° o
oA1ET) et Aty )+E))
ek N-atD) N, () s ) (521) 530

. ﬂ,‘; Ra (s’": S:)t)‘t?') Aﬂ,f\-("’) t)b: )

Repeating the procedure leading to Eq. (3.8) we find at the Rp level:

= [Jq‘,n] . (s;-.)dc"'

~ ol
T (513, 87) = 06ay 3> ()
T oswlE

oq_'-n-\ L + +
'5“” J Isn (52) AR.KQ(S"S‘Jt)t‘ m&‘-("’gtﬂ-) (3.35)
o Y ¢

Again, the s, and s; integrals can be done using FMSR (2.16), (2.21). The result is
simply

T! =

Ra TRa 4 (3.36)
It is thus proven that the same result holds starting the NDC from either end of

the multiperipheral chain.
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In the J-plane things are not as trivial. One has (similar to Eqs. (3.15)-—
(3.16)):

5
o2 STV ek - ok
T e (T,587)= (A6, [ 45,60

9

/4 ﬁg,«.(s') '*:)

b RITPETRLY S T 4ok, \
- J- LI - Piuks NINUL TS ¢ (3.37)
o ax x Jdvs,_(s,) (s
2/53 S/;,x

L +
’A&K,L(S;)Sz)‘t) tt' ) .

In analogy to (3.17) we now define

~as
%,n’,q (gas tt) ‘l (3) ¥ (J')tt't)
(Sa.) Rl 227200, . R\ Ro V7272707 (3.38)

A;;R is the same creature as occurring in Eq. (2. 20), with the asymmetry this
2

time being due to the legs on the left-hand side (t1) Here the x and s, integra-
tions are straightforward, converting the s3; integral into a FMSR of the type
(2.16). Again, shifting J = j - OLC,I -1and J'= 3" - OLC’Z - 1 we obtain the
analogue of Eq. (3.19)

) = dtf)"é
T “(T)t,tn )" (S)

;T L ]
ta' ) L+ f #:a

~as
SM g/tt ) A (7“@:"'“‘)(339)
274 (5= o,a) (4- 3) (a(lt) "‘ca) R Ra

Aai has a zero at J' = -1 (see discussion in Section 2.3), or at j' = o .
RIR, c,2
Therefore, its most general form is
T +
~as . 't't-i) - R I, )gﬂ')tb)_ [
AR*R (9= Y% ) = Jiad+ 1) 4ot

v R

-

(3.40)

4""—4.) ( t?
,)Ha t¢:)

(o( 1¢)- ol
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+ . . . . . . +
H(j',t,ti’) is again a smooth function of j' satisfying H(j' = a(t),t,ti) = 1.
Closing the j' contour to the left we again pick up only the pole at j' = a(t)

and find

: R Y s B DRk
oLy it -x X . — It
TR‘a,(G ey ,>t» RESS /‘lout)*l) 3ottt 22

(3.41)

Here I(a,t) is defined by Eq. (3.14). This general result does not depend on the
detailed form of H(] "t’ti)'

Notice that in this approach one does not end up with an integral equation
for ARa' Rather, Eq. (3.39) constitutes a consistency check on RR amplitudes.
Another point worth mentioning is the delicacy of closing the j' contour in the
correct way. Had we closed the contour to the right (see discussion preceding .
Eq. (3.27)), we would have obtained again an equation diagonalized in j (analogue
of Eq. (3.26)). The latter would again lead to a highly restricted form for the
solution (3.42), namely with H(j',t,tf) = 1 for all j'. That this is not easy to
satisfy for RR amplitudes can be seen as follows. According to our definitions,
A?(;Rz G - occ,2 —l,t,ti) has a zero at j' = o, As discussed in Section 2, it

is not inconceivable that it may have a zero at j' = a, , as well. Let us assume
b
for the moment that this is indeed the case. One then has

) 3 '7..0(' . +
Hpyttl) = 22 6 (3%, 40)

a (t)= ol (3.42)
)
+
with G(3' = a(t),t,t;) = 1. Closing the j' contour to the right in Eq. (3.39) one
~ +
i th ole at j' = j and finds T i - o -1, t, t7) =« (3 - o .
picks P P J J R;a (] eyl ~21)’ L) G c,1)
Hence TRla vanishes when j -~ OLC’I. As a result ARla = ARla + TRla Icioes not van-
ish there; this is inconsistent with the analyticity properties of A and leads

R,a
to cuts in j. This example is only meant to indicate that, unlike the case of

Rp amplitudes, with RR scattering one expects a more complicated j-plane structure

so that closing the j' integration contour in the correct sense is essential.

If we try to solve the integral equation implied by Fig. 4b by our second

method, namely, by separating the two-cluster term (analogous to Eq. (3.28)):
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LAY M
+
Rl R\"
) (3.43)
one can easily write an equation for S (analogous-to Eqs. (3.29) and (3.31)):

l

S (4 +ok, +
Sea (A== GE5)= (46, ].(:,cs,) Y Agea 3 E)

oo R . e,
e S S "'*""(sg)J ‘;QM (s, 5, 6, 4)

3/5a s

(3.44)
R N y 30t ts)
= ):a‘ i) () P‘“‘t)*'” S 9:)]9.. (é""Q‘z)(altt)-dc,z)
r~a s T 1- _ N ayas | ot i't)
[ﬂ“-}h'(? %.a ) )t‘,) HR.*R;(G °@2- 1%~ ]

We obviously cannot "solve" this equation as, again, the right-hand side involves

RR amplitudes. However, using the high-energy behaviour of A.RR

~ a
W2 GGttt )= A )2 G o, 8,100
R\ kﬁ. \ L & |
_SMEY) 3t (3)"“)’3 (3.45)
=% T+ 1) 4 - ett) S
we find: ,
) _ (%)
ﬁ,ﬂ.m— Aga - %)R‘& +
+ g« tf)-29
- 3(” ));o (f) (_.s ) 7T J "] 3"{1‘,1‘_:) (3.46)
/* F(d(z‘)«*l) 4- olt) [‘l(d(t)H) 2 L(f-ela) @it ~%%,2 )

Notice that, trivially, AI({ Zl RI({Z) Hence, using the explicit form of the two-—
1 14

cluster term, found in Appendix B, Eq. (3.46) becomes identical to Eq.(3.23). This
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procedure merely provides a consistency check on RR amplitudes. Thus, no incon-—
sistency is ever found in the study of Rp amplitudes if care is taken of the cor-—
rect limits of integration and of the analytic properties of Reggeon amplitudes.
A pure pole solution is consistent and the only output constraint is the s-inde—

pendent bootstrap condition (3.14).

3.3 Integral equations_for Reggeon-Reggeon amplitudes

To complete our consistency study, we look at the integral equations for RR
scattering. Starting in the energy plame with the eight-point function of Fig. 2

one has an equation depicted in Fig. 5:

)

A?;' g? +_T;

(3.47)

where Ty is the homogeneous term. In analogy to Eq. (3.5), one now writes an in-—
tegral expression for Tg. Extracting the appropriate kinematical factors (see

Table 1) yields an integral equation for the RR amplitude (similar to Eq. (3.8)):

1 $,2 O] i N o
A“‘Rg (523, %3 )t)t.)ts ) —HR\RQ, (515,854 ,8,¢,, t3 ) = lﬁ.ﬁg'
- o, = X,y e, 2
9(515’2) (333) IJébylL(sag) .
(3.48)

U'!

1Y

%, *! L £, %
J 53(5’.’) /"‘R‘Rz(sg)sb)t) é, )t’.« ) Y
[

Q\_-'-\v\‘

/)ﬂ ga(& s, t:,t’f‘)

On the right-hand side we now have two RR amplitudes each appearing in a ''good"

FMSR (fixed pole free type -- see Eq. (2.21)). The result is

Q)

Aeg,” A =
R,
£ Ak (3.49)

g(t ¢2) gLt ta) )ouf)— Ve, =%, 3”2
r'(ut (t) + 4)
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This exactly agrees with the high-energy behaviour of RR amplitudes, provided the
bootstrap condition (3.14) is satisfied. Hence, nothing new is found by looking
at RR scattering. Moreover, the bootstrap is consistent with an ARR which is sym-

metric in the external legs although the counting procedure is asymmetric.

In turning to the J-plane, various Mellin transforms may be considered (see
Section 2 and Appendix A). Let us begin with the asymmetric transform defined in
Eq. (2.20). We have -

— \
~as s as Js. (s y I et
/4 ¥ -— A » - 533 2y (Sg;) ®
R. ﬂ‘b " k§ T
(3.50)

4 ¢ ¥
Tr gy (530523, %, 60,8 )

4. - . . .
Taking sp3 = s23 for s;3 > s we use our standard techniques (see derivation

of Eq. (3.19)) to find an integral equation (not diagonal in j):

n~as . + t ()43 + +
—de ¢~ o =1, L ¢ ¢ -
AR‘R: (,’ dc,l )t)t|)t3) H‘ 3 (4 L). ) Yo , 1 ) =
. 2?
o) -3 + 7C A J’
3 £t d — — .
5) ?(’ ") JU( )+ 4) ¢ 'y,L 9.n¢(1)-%’,_)(}-}>)
(3.51)
+ ~
£ as . '
Btr-cdc,y) Faka .
AE:R* has a zero at j' = oL, (see Eq. (3.42)). Again by closing the j' contour
3 >

of integration to the left we find that the cut is killed and, independently of
. as
the detailed form of AR2R§’

A% (32,20 67 =
ﬂkka (7 °’cu ,).)t ) - \Rb (? 1) 3) 3,52
j(tt. )Q(t‘f (E)Wﬂ‘a
* Pldety+1) I - wit) 2

provided the usual bootstrap condition (3.14) holds.

Notice that each term on the left-hand side of Eq. (3.52) is asymmetric. How-

ever, the shift J > j - ac LT 1 and the neglect of pi in sp3 for sp;3 > s result
bl

in a symmetric form for the difference.
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Another possible (symmetric) transform, not discussed beforehand, is the fol-
lowing:
o

~ 3 ~J=-) e * +
A&Rb(f)t)ta )'t;) = SJS;) (524) AR.Rg(S"'S‘b’i)f' ){‘3 )

[

(3.53)

L -
It is easy to show that in the approximation s,3 = sp3 (for sp3 > s) this trans-—

form and the other symmetric types discussed in Section 2 also yield self-consist-
ency namely,
. - . O
A gy -A7003) = A 3)-A L, ()=
R“) a k."b Rlﬂ} ) 3 é-

~ . _ [nd (() . (3-54)
B ey (370 = %572) = ) (h-ses 4,372)

all being equal to the right-hand side of Eq. (3.51), and hence also to the right-
hand side of Eq. (3.52). These relations do not constitute integral equations for
the symmetric transforms, since the right-hand side of Eq. (3.52) includes the asym-—
metric transform. To derive integral equations for each of them, we again separate
the two cluster terms to obtain, for example (analogue of (3.32))
r sy .. s . Naos
CA (i)-A 2 ]=R 3 +
ﬂiﬂ‘} R' > Rnk‘,
S
- 6
-3 7T SJ& 9() 2 )
’~—7b (4 -, 1) (A1) =%, 2)

° (3.55)

)
9(t,t") )"
271
[ ) +4)

~ S . N(u:'j .
EAROREPWRE

Civen the form of the two-cluster term in Appendix B, the solution of Eq. (3.55)
is straightforward. Its form is analogous to Eq. (3.25), and,using the bootstrap

condition (3.14),becomes identical to the right-hand-side of (3.52). Similar

equations (diagonal in j) obviously hold for A LA and A2° % with the ap-
RiR3” RiR3 R1R3~(2)

propriate shifts in j. However, for the symmetric transforms, the A term can
never be cancelled by the A(l) contribution to the integral (see, e.g. Eq. (3.55)).
. a . . .
As for the asymmetric transform AR?R*(J - o . - 1), in general, the cancellation
3

b

is not possible, except for the restricted possibility
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O G 7 NG L ot o,
0,k ’ Mot +4)  j-dd) dey-cea

(i.e., H= 1 in Eq. (3.40)).

In conclusion, no inconsistencies arise in the application of planar unitarity

to RR amplitudes.

3.4 Cut cancellation in the energy plane

Apart from the various integral equations and self-consistency checks satis-—
fied by planar Reggeon amplitudes, it is instructive to examine how planar self-—

consistency works term by term in the unitarity sum.

Consider, for example, the case of a RR amplitude
'y L t b o
AR{ k”’ (”, MJ__’t)-t()fm )

The two-cluster term, calculated in Appendix B, has the form
LS
) 0 = 908, ¢ ) 9(t¢4*) (M,_)_.lc'c-.ec‘,&-,_
Re Ra [ilettty +4)

of (¢
pestout) Bcut=3) Ca?) O Tet) 4
(3.57)

) +
_ (¢,¢.%) o,
peut 32 —= ﬂlé") ? , (%) K
1 (@ig)+4) Ve (efrt)- %)

(;) a (ett)=9c,y)

The first term has the "pure pole" form in the limited range s < M®> < s2. The

2 has an explicit cut in the J-plane (we

second term, which takes over at M2 > 5
remind the reader that all our energy variables are scaled in units of
Sg = l/OL' = 1).

The calculation of the three-cluster term is more tedious but, again, straight-

forward, giving
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HH-3) [ty +4) 46, Ta— s
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By induction one proves that the form of the N+1 cluster term is
A Wey - 9d)t~€:)ﬁ({}f¢t) (Mz)—“gc‘dgn,‘ L.
ReRn ~ —  [u(atrt)+1)
a(t) . N
{6‘(5”"-,«‘)9(,«‘-?”) (M*) I =t
_pcM3Y)C, (ML e) T(ATE) (3-59)
= A+ 'y
+9('“ s )C”H ('“)t)k s
with N ¢ )
7{ J(b‘ 3 (‘ v
Cam (Mtit): Z{F(*lf)*l) I 'Vl‘ (au(-)-°(¢)¢)
(:
Ly (V) L) S i)
M) " * (3.60)

N o (,[¢ 93 lf)fg) 1) = %k )
'_'_" (p(-uf)-M) “"]4‘ (€8 = Y)Y ey - e, b .
k#¢

The C terms will have explicit cuts in the J plane.

=
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At a given energy M’, the maximum number of clusters that our NDC allows is
g

— | B
Nrmu:l_/%\—g-— +1

This gives

Pomox = ».
Lg)‘mx < Ml< ) ma X
The value of the amplitude is given by
”'MAK
1. - (N)
A (My3) = D
RC R'I, N—‘L ﬁkc KR' (3.61)

At the given value of M all the "pure pole" terms (Vv (Mg)oc(t)-occ’sz,-occ,r—Z) vanish
due to their © functions, except for the last one (with e(gNmax - M%) oM _gNmaX'l)g

= 1). Moreover, provided the bootstrap condition (3.14) is obeyed, all cut terms

cancel in pairs, except for the last one coming from AéNIEaX):
L r

BteS) Pt tn) Aty = Ae e~ %~ 2

t,3)=x1 Mm*
nﬂckm(M >s)=J F® 1) (M%) +
g tE) et ts) (Mg)"“t,c'dgm“q'.
[ lxtt)+4)
(3.62)
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The last step in Eq. (3.62) follows from the definition of L M? < (E)Nmax).
Thus, at any given M® > s the pure pole term is contributed by those phase-space
configurations that require the maximum allowed number (Nmax) of clusters (popu-
lated bins). The cut terms which appear in each k-cluster term are cancelled

successively.

Mellin transforming the N+1 cluster term (using e.g., the symmetric transform

defined in Eq.(2.23)) one can prove by induction that
oo Ae g+t o t2
o~ _J’—l 2 Ce n
V) s £t ¥\~ L 2 M 7] y)
A [/ (J)t)f()‘t,‘)_jﬂM (M°) = (ML) .
[

r
(vt

v 4 ¥
e £4<M,; Myt te )fn. ) =

A

«t6)-J

)‘7(0( ®+ 1) T- e (t) e (3.63)
R30I 8 t*) )
( J " T3 ,,) @i = e

st UL ) (5)

w

Ntee)+4)
It f ?-" (t) t’:‘) J’, 0((_)" _ = oct) -]
N1+ 4) “7"- (7- de, ) (B = %,5) | ot 1t) - oL, s

This form has an explicit cut in the J plane. It is precisely the N + 1

cluster term one obtains from the series expansion of the explicit solution of
~8y ~(1)s . s
Eq. (3.55) for ARQRr - ARQRry' In fact, by a straightforward summation of the

geometric series (whose N-th term is Eq. (3.63)), or by using the simple recur-

~

. N+1 ~ . .

sion relation between A( )Sy(J) and A(N)éy(J) one can easily derive Eq. (3.55)
RgRr RoRy

and its solution (analogous to (3.25)). Thus the geometric series adds up to a

pure pole in the J-plane.

3.5 Pitfalls in the rapidity formulation

A number of works on the planar bootstrap have used the rapidity language.
At first sight, rapidity seems a natural variable for multiperipheral cluster
models. Particles are arranged along the rapidity axis in clusters of sizes (Li)
up to a maximum extent.;; Reggeons are exchanged across the gaps between clusters.
Kinematics and NDC are easily translatable into this language. Despite its intui-
tive appeal, the rapidity formulation may easily lead to pitfalls that spoil pla-

nar self-consistency.

The basic problem is the simulation of the correct analyticity properties of

amplitudes, in particular, FMSR. The naive approach, whereby simple Regge
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behaviour is assumed for amplitudes down to threshold (L = 0), is incompatible
with a self-consistent bootstrap (even if a NDC is applied). 1In other words, for

a RR amplitude whose asymptotic behaviour in rapidity is

s FeFuty e
Ak( RQ(L)t) _ ¢ (V) Fe (3.64)
L>>L 9
the corresponding FMSR is not given by
- L et - %)
L L e -1
SJL e A g, R,L(L)t) Fe * o) ~ e .
(9] (3.65)

Instead, the analogue of the '"good" FMSR discussed in Section 2 should be imposed:

L T (A18)~%,2)
f dL c‘*‘l' ”x (L,t) = Fe®) Fp (D

o

ot) ~ %e e

4 k’b (3.66)

This peculiar form, in which the lower limit piece is missing, mocks up the low—
energy behaviour of the amplitude at threshold (L = 0). The physical explanation
is that a zero size cluster is not empty. It includes, at least, the single

stable particle intermediate state.

Keeping track of these analyticity requirements while maintaining strict no-—
double—counting in the unitarity integral is extremely delicate in the rapidity
picture. Only a particular order of integration over clusters and gaps readily

15)

yields self-consistency Other orders of integration require care in keeping
track of the L = O singularities. Otherwise, double-counting errors are commit—

ted.
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REMARKS AND CDNCLUSIONS

In this paper we have studied the important interplay between analyticity and
proper counting of events in planar unitarity. This interplay is essential for
guaranteeing self-consistency (i.e., pure pole solutions to the bootstrap) of
planar amplitudes. Abandoning either element destroys full conmsistency (i.e.,

no cuts) although consistency at the pole may be possible.

The notion of clusters used in this paper is that of mere mathematical ob—
jects —— essentially dividing phase space into bins (sets of particles) over which
one averages using the known (or the assumed) analytic properties of Reggeon am-—
plitudes. It is thus only appropriate that the results are independent of the
cluster mass cut—off s. The only constraint resulting from this approach is the
bootstrap condition (3.14), originally derived in Ref. 10). A numerical study of

11),14)

this constraint has shown that it yields reasonable values for the Regge

trajectory and the triple Reggeon coupling.

An extension of our results to models with physical clusters (e.g., narrow
resonances) seems worthwhile, in the hope that entities of phenomenological con-—
sequence may be constrained. TFor such an approach (see also Ref. 3)) one expects
the results to depend on the cluster size cut-off. The symmetric NDC (3.1) is

8
)’19)’20). However, with this

generally assumed to be appropriate in this case
. 15 . . . -
NDC, it has been shown ) that cut cancellation is possible for s = 1 (in units

of sy). For S > 1 cut cancellation is still an open problem.
Let us conclude with a few remarks.

1) Revealing the analyticity properties of Reggeon amplitudes is a delicate
matter. Using the dual model example as a guide we have extracted certain "good"
FMSR which are expected to be satisfied by appropriately defined Reggeon ampli-

tudes.

2)  Proper counting of events leads to the appearance of these '"'good" FMSR in

the unitarity summation.

3) Another consequence of the NDC is the non-trivial limits of integration over
Reggeon amplitudes in the integral equations. As a result, the j-plane integral
equations are not diagonal in j if the single-cluster term is chosen as the in-—

homogeneous term.

4) It is possible to write integral equations which are diagonal in j for the
amplitudes minus their single-cluster terms (the two-cluster contribution then

becomes the driving term).
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5) The solution of the bootstrap yields the precise form of the high-energy
part of the amplitude (a pure Regge pole) and not the low-energy (single-cluster)
part. Moreover, the low-energy part is only constrained by FMSR. Its full j
plane content never enters the bootstrap. The mechanism of cut-killing is that
of "promotion" of a cut into a pole, unlike the cut cancellation in the AFS
case22)23). Here at a given energy M2 > s we have a sum of multi-cluster terms,

all positive definite adding up to a pure pole (i.e., pure (Mz)u behaviour).

All non—leading terms cancel successively, and the (Mz)u plece remains. This
piece comes solely from the term with maximum number (Nmax) of clusters. Notice
that the N configuration includes the events, which in the ordinary multiperi-—

m
pheral modei§2)’24)

, are the most probable ones -- those of uniform particle dis-
tribution (in rapidity). It is the latter configuration which in the usual multi-
peripheral picture gives the leading (M%) term. Here, by properly including
all possible events (not only the most probable ones) we are able to eliminate

the undesired non-leading terms.

6) The use of rapidity in formulating multiperipheral models is convenient.
Rapidity enables one to construct a simple intuitive picture. However, the
rapidity language may obscure important features of the problem. The main as-
pect is the analytic structure of amplitudes which is naturally studied in terms
of invariant (mass)? variables. In particular, the appropriate form of FMSR has
to be imposed in the rapidity formulation. As a consequence, the integration

s s 15
over clusters and gaps becomes a delicate matter ).

7) Multi-Regge kinematics are essential to our approach. Moreover, we had to
assume simple Reggeon exchange across gaps between clusters even when these gaps
were small and we have kept leading Reggeons everywhere, which is probably quan-
titatively incorrect (one should add, e.g., T-exchange), but did not seem to

affect the question of self-consistency of a pole solution.

Finally, toin effects have been neglected. A rough estimate indicates that
tmin effects build up singularities which are lower (by at least one unit) from
the cut we want to cancel. tmin effects will influence quantitatively the boot-
strap attempted in Ref. 11) and indications are that they improve the agreement

2
over a range of t 5).

8) The low—energy behaviour of planar amplitudes plays a crucial role in attain-

ing full-consistency at the planar level. These amplitudes may then be used as

input for the calculation of the Pomeron (cylinder) 8)’14)’25). Although off-
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hand one might think that only the high-energy behaviour of planar amplitudes is
relevant to the calculation of the Pomeron parameters, this is not obvious. Iter-—
ating approximate forms for planar amplitudes may lead to the accumulation of

15)

serious quantitative errors in the calculated Cylinder amplitude

NOTES ADDED

After this work had been written, a paper of I.G. Halliday (Imperial College
preprint ICTP/75/12, 1976) came to our attention, where FMSR for RR scattering
are discussed in a Ad> example. The author's conclusion is rather pessimistic
concerning the possibility of obtaining naive FMSR for RR scattering, of which
our dual model example provides an explicit realization. It seems to us, how-
ever, that Halliday's analysis has not fully exploited planarity, which is crucial
to our analysis. This could be the reason why we can get around some of his prob-

lems.

Subsequently, we also received a paper by P. Hoyer, N.A. Tornqvist and
B.R. Webber (LBL preprint-4854, 1976) in which FMSR for RR scattering are dis-
cussed. It is argued that naive FMSR can be written down for certain double dis-
continuities of ARR' Our explicit calculations indicate that FMSR free of fixed
pole contributions might also exist for those single discontinuities of ARR which

enter in the unitarity equation.
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APPENDIX A

Reggeon-Reggeon Scattering in the Dual Model

The dual amplitude By may be written as a multiple beta transform17) over
the nine "energy variables" shown in Fig. 2. By taking the leading poles in the

Reggeon legs, four integrations may be trivially dome to yield:
a!(t.‘) atlt)) ot ) (4,*
3 (- #7S.) (-3)) -°5) s ) v
+i 0 + (00 $(0 +{G0 +(%
JJ"'M&J&TIIT J ,lQ"f d@°
) -9 - % - 100 - 00
— — a4 T &’ 2
PN PR )P ETIED (M) . @)

[1(=att7) +% + T ) P (=attN+ % @Y ratt) + TR ) [M=at )47+ &)
By (=T, = XA))

(awe )"

By (ot ttr + o, + ol g+ 2 ~F- X2 XG4 T 44 T+T>)

The last B, in Eq. (A.1l) can be expanded in poles of Ty? with the numerator terms

of the expansion-polynomials in T and T'. The T, integration is now easily done.
P M g y

By exploiting the expansion

~

Z 3,,,(-4)3 (—r+m_ X +1) R (4.2)

X ﬁmm

where gm(—r) is a polynomial in r of degree m, we may combine

M%) (&) =

(A.3)

n -
2 (—1)'L é"’! j&‘( (-~ )—'(—T’H’)
{’:0 :

— — ' - —
(and similarly forrq(—T') (‘r')r ). After introducing BZ T + T' + T + T' and
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Y= T + E'; the three integrations over T,T' and Yy may be performed explicitly.

The RR amplitude extracted from B, according to Table 1 may now be written as

9 r .ty _qt 5 e
ﬂﬂ'h(u,m.,t)t,,t,.)—g 2 Cy

k=0 (, l'=e

[(-AE0) DA+ ) P-4e5) ¢)) Nt ve)
PEa)) [ E4whH) N(-oits)) [ e ettd)) ’

mo} c—n)P P(—P+(+1')P(P-*,.-OI"(P—*,;*) (Mf)-P_

I am Pl=ok, 1+ 848" ) = ole g -1 +£+2°)

-t

By (P Ot + p #AX K, —o(M2) )

(]

1
are numerical factors resulting from the various expansions (i.e., the

L
Here CK
index K runs over poles in T2 mentioned after Eq. (A.1)).

To calculate the asymmetric Mellin transform AR R*(J t tl,tz) of Eq. (2.20)

we first expand in powers of PZ_E (p + pd)2 about P2 = 0. Then, integrating

over M? us ing

Cof
jlx X ;lt_,; B"( w X)
i 1 e Yo O (A.5)
F(.f) meo f-w—l-i-"m )
we find K
'fz”as —SLZ“ Z— Ctt' M2 +¢) P(.,.(h('*) «?))
"N e X QEwe) RN

o0
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T A0 r'("d(fz,)) meo (A.6)
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After combining the polynomial gm(B + J - a., + n) with T'(- B +2+4") via

b

Eq. (A.3), the B integration may be explicitly performed. The resulting term-by-

term j-dependence of (A.6) is:
> >
(F- g sm+ 0+ F [ (T4 o, +2=C-€"~9)

[ (T+1) TOT1+ 0ty = %, 0 +7) (T-a(t) + ey HIAMTKIM ) (4.7)
2

as )
% vanishes
Ri R}

term—by-term. This result does not depend on the lower order poles in M? (i.e.,

where 0 q, q' & m. Thus, at J = -1, -2, -3, ..., the series for X
K # 0) or on the non-leading terms in the Pi expansion (i.e. n # 0). We shall

assume that the series itself has a zero at J = -1, -2, -3 ... . Note that the
leading (n = 0) term, also has a zero at J = o -0 - 1 although (A.6) does

c,2 c,1
not vanish there for n # 0. The poles in the numerator factor (J + o + 2 -

2 - &' - g) are clearly spurious —- they can be at arbitrarily high valﬁé; of J.
One can easily trace the origin of these poles to divergences from large values
of B in (A.6). But this large B behaviour cannot be trusted because various B,'s
in the beta-transform (A.1) have been replaced by high sub-energy forms (1i.e.,

B, (-T,a(s)) = F(—T)(a's)T). Notice that the poles which come from the high M?

part of the RR amplitude are explicit in the denominator of (A.7).

Since A;TR§ vanishes at J = -1, -2, -3, ..., we take the high M? form of the

RR amplitude (A.4) to derive the following asymmetric FMSR having no fixed pole

piece:
dc,9.+' 'y + +
dut (M")q(MJ}) ;S‘_DiscM._ Ag‘k,_ (M, My )t) t')t—l«)

)~ +N
) (et et)+4) [ eie)+1) 1 Vf)‘” e « (A.8)

SR DUt e ) ) =,)  Pla )+ )~ ode,1 4w’

=" um

(oot )

This is a special case of Eq. (2.21), which is used throughout the paper.

£+ 0+
To study the symmetric Mellin transform x5y (J,t,t],ty) of Eq. (2.23), one

R1R2
replaces the integral in Eq. (A.6) by
LY 4 ‘5 , _ o =) _ 3
J AB1)F B+ £+0) [1(B-%, =) UP~%a) | 1(p- %, ~Ae,a=2+
L AT M(pt T-dmda 1+ m D | P(p-%1dea2) .

S (P4 Tt |
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Unlike the asymmetric case, the n # 0 terms now pose a problem. After absorbing
the polynomial in B in the curly brackets of Eq. (A.9) into T'(-B + 2 + ")
~sy

through use of (A.3), we find the term-by-term J-dependence of AR R is:
1Ro

(T-1 —ete, = Ae,0 +¢ resmy™ [(301am-e-¢ ' -2D
TP (T e tn O[T Aga D (Toet)Em ki)
P4

(A.10)

where 0 & r' < mand 0L r {m+n. For P, =0 (i.e., n = 0) each term in the

O‘c,i - s (1=1,2y s =0,1,2,3 ...).

However, in general (i.e. P, # 0) there are no term-by-term zeros for any value

expansion of A;TRI has an explicit zero at J

of J. Of course we cannot rule out a "magic" cancellation in resumming the various

expansion coefficients.
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APPENDIX B

Two-cluster term

Using the dual model as a guide, we establish the form of the two-cluster
The expression is identical in form to Eq. (3.48) with

term for the RR amplitude.
s; is limited not only by the NDC (sj3 < S53/8)

one modification (see also Fig. 5):

but also by the cluster size cut-off (s3 < g). We find

d‘l

(¢ 9 _ - ;(c’, - O(C' -2 .
ﬂ”} = B (53300535 3 5"4’1"‘1_("’) .
s : Say /3

3
S [_ fo‘ss 6say- 3%) +J ds,

_ ,e‘,,i-l A+ |
D(s"—’n)]('s;‘,') (s2) "¢ g1y

4 t,2 L + T
sy. 8, F
AR\KL( s3,5, %4 ){" ) #ﬂzﬂa( i St ) .
Now we use FMSR of the type (2.21). Note that although the upper limit of the

s; integration in the second term of (B.l) may be small, we nevertheless use the

FMSR to y1e1d the leading behaviour.
dt - “C 3- t R

_——glft )g(t{;-) S» - % . .
ﬂﬂ 77 ipe 1) »)

)
L) + (B.2)

1,2t
" gletE) Aea zam)-auc.,}
_— —_— e (533) (%) ’
8 (5332 Y) Mat)+1) ‘(J 2 e (A1) 2)" >
2

Note that a condition for no cluster over-—

A
{0(3‘-3,))9(5‘3‘3) (sa4)

where I(a,t) is defined in Eq. (3.14).

lap is s>so = 1/o' = 1.

The symmetric Mellin transform of Eq. (2.23) becomes

¢ Ty —d)e3  2(4)-T)
N(’.)s.a 7t 3(’, .)aft)t’3 ? S - S Ik(,f)""

A,"R) Pleity+ 1) T - ellt)
t
;z 's‘“’”*’“”f; gl(f, ta )
[(oth)+4) 27 (£16) = 0%, ) C T- #¢;2)
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which may be written (using the explicit form of I(o,t))

s

A ('l)s'g - ;Z‘ gl‘t)t‘t)g(t;tf) (_s,_)d(f)-I

YT J 31“3 ftt) J- %, z o H-]
[&t)+4) j ¢"7‘L (x(t) - %,q) (3 e, 1) ([ A6) - o v

(3.3)

We emphasize that this form of the two-cluster term depends crucially on analy-—

ticity via the FMSR and the NDC. It is not of the standard form

_ ~ *,x, - | =~ £ ¥
(g)«&) J j" b7, P o (568,409 E Gt 4,53)

J—olea Re Ry

where gRR is some cut—off Mellin transform over a Reggeon—Reggeon amplitude.

To obtain the two-cluster term for Reggeon-particle or particle-particle

scattering, replace the appropriate Reggeon leg(s) of (B.2) by particles. For

. + . *
example, to contilnue R;(t3) to particle a, replace AL 4 - -1 and g(t,t3) > Yaa' (t)
’
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FIGURE CAPTTIONS

Fig.

Fig.

Fig.

Fig.

Fig.

Kinematics of six-point function and definition of Rp

amplitude.

Kinematics of eight-point function and definition of RR
amplitude. Solid lines - Beta transformed "energy" variables;

dashed lines - untransformed variables.

Binning intermediate state particles into clusters according

to asymmetric NDC (3.2).
Planar unitarity equation for six-pointed function.
a. Cluster assignment begins at Reggeon side.

b. Cluster assignment begins at particle leg.

Planar unitarity equation for eight-point function.
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