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INTRODUCTION

1)

theories, was able to obtain a Reggeon calculus and a non-relativistic

It is by now well known that Gribov , by studying model field

field theory useful for studying £ plane poles and cuts and their inter-
action, and which is such that the partial wave amplitudes constructed
from the Green's functions of such a field theory automatically satisfy

the so-called Reggeon unitarity equations 2 .

In such a field theory a Reggeon is a quasiparticle in two-space and
one-time dimensions; the space dimensions being conjugate to the two-
dimensional momentum q(q2::—t); and the time being essentially the rapi-
dity, conjugate to theNa;gular momentum of the Reggeon E(E=1-j). The
field theory is non—relati&istic because the energy momentum relation

usually chosen is:

where AO:31-'QO, o, being the "bare'" intercept of the Reggeon.

The massless theory (AO::O) has been investigated in the infra-red
region (E::qgﬁfo) by use of the renormalization group 3) with well-known

results.

Recently people 4)’5) have considered Reggeon field theories with
gquartic couplings where the bare intercept o, is greater than one, i.e.,
AO<:O. A classical examination of the non-relativistic theory indicated
that the theory exhibited spontaneous symmetry breaking and that, when the
original Reggeon field was shifted with respect to its developed non-zero

vacuum expectation value, two things appeared to happen:

i) the intercept o, was pushed back to one as a conseguence of the

spontaneous breaking of the symmetry, and
ii) the theory developed a triple-Reggeon coupling.

The purpose of this note is to examine these points in more detail,
going beyond the classical level by using functional techniques to develop
Ward identities and to examine the Goldstone theorem 6 for this problem.
Specifically, we discuss the compatibility of the reality of the vacuum
expectation value of the field and spontaneous symmetry breaking with the
existence of an imaginary triple Reggeon coupling, known to be necessary
in Reggeon field theories with triple coupling in order to give the correct

sign of the two-Reggeon cut.



We conclude that such a compatibility does not exist by showing that
if one component of the original Reggeon field develops a non-vanishing
vacuum expectation value (VEV), the component of the original field with
the VEV is unstable asymptotically, or has zero wave function renormaliza-
tion constant. This gives an equality constraint between the effective
triple coupling and the VEV which will give an imaginary triple Pomeron
coupling only if the VEV is imaginary, but this will be shown to contradict
the original boundary condition used to pick out the symmetry breaking

solution in the first place.

In Section 2 we write down the Green's functional for a Reggeon field
theory with quartic couplings and AO<<O. We indicate how one can pick
out the solution which spontaneously breaks the symmetry by adding a term
to the Green's functional which has less symmetry than the original
Lagrangian. We also derive a Ward identity relating the vacuum expectation
value of the real part of the field, ¥, to that of the product of two x's
(imaginary part of the field).

In Section 3 we derive the Goldstone theorem from one of the Ward

identities and make the compatibility check mentioned earlier.

FUNCTIONAL TECHNIQUES

The Lagrangian for our problem is
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with
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The Lagrangian, given in Egs. (1) and (2), obviously has the phase symmetry
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for ©=a constant. The reflection symmetry usually discussed in theories

with quartic couplings would have © =T,

We add a term to the Lagrangian to pick out the broken symmetry solu-
. . 2 . . .
tion 1e|¢(5,t)— c| , assuming first that ¢ 1is a non-vanishing real con-
stant. We set € =0 at the end of our calculations. The Green's function-

al becomes
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We write
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and ;
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where <X==0 due to the X—-Xx symmetry as a result of the boundary con-

dition implied by the 1ie¢ term.
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Making the change of variables

& (x0) = ¢’ gy, t)

and using
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we obtain the basic identity
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<]5‘>.€ j represents the vacuum expectation value of a function of fields
?
in the presence of the ie term and the sources Jq, J2.

Differentiating (9) with respect to J we obtain the Ward identity
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and x:z(z,f).

THE GOLDSTONE THEOREM AND 7 =0

p

We may do a Fourier decomposition of the two-point function in (10)
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where we may write generally:
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Defining
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we obtain
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If V:%_i% v(e) #0, then

(15)
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This is the Goldstone theorem, i.e., to have a non-vanishing vacuum expect-
ation value of the field, 4), its imaginary part must have zero mass.
This says nothing about the massiveness or masslessness of the real part of
the field. In general, the real part of the field would be massive giving
different intercepts for the real and imaginary parts of the field‘and

changing the form of the propagator 4 .

Now the wvacuum expectation value, Vv, should be insensitive to the

magnitude of c¢ as long as c#£0, i.e.,
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The Goldstone theorem does not require the mass of p to be zero,
however, if A =0 (which would be interesting for a true triple Pomeron
coupling, since the coupling pXX 1s naturally generated by the spontaneous

symmetry breakdown), then

ol AR SR (20)

unless Z =0, E:f. Eq. (18[,.
P
If we consider a Reggeon field theory with interaction Lagrangian

2, = A (970)?%, then after the shift of fields : ¢ = Re O=p+v and
x = Im ¢: X, the Lagrangian has the form

£0x) = fox ) (Nan’) pox) 1) )+ 9o SR gy X))
(21)

where
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It is known that 7) (at least in the chain approximation) %=0 may

be realized in a way which keeps the theory local by the conditions :

such that %(gi/M2)—>-)\o < @, since Zp can be shown to be

|
—_—

%‘ - ot A / (25)
3,

is the self-energy for p and dn<o)/dA is finite for finite
p

(0)

P
(hopefully zero) Ap ; (Ap is the renormalized p mass).

where 1
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Using the Lagrangian in Eq. (33), the action may be written
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with N defined in Eq. (6). The term
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becomes in the limit given in Eq. (24)
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we get a local theory with quartic couplings. For consistency Ko must
equal the quartic coupling constant, /4, which is the coupling of four X

fields in the original Lagrangian. Equations (23) and (24) yield

.’L:-l: ~.%‘:_'_ (28)
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To satisfy (29) for gi <0 (i.e., g_  imaginary) would require A, <0

o
and A <0, or A >0 and ) > 0. Since Eq. (28) says

what we wish to emphasize is the compatibility of the reality or non-reality
of g, with our boundary condition for picking a spontaneous broken solution.
The two criteria for gi < 0 would imply that v=1V, 1i.e., is imaginary.

This contradicts our boundary condition embodied in the ie term.

If we go back to the 1ie term, we have :

4 -\’



-8 -

We originally assumed c¢ to be real which means that v 1s real
*
(since the phase of c¢ 1is the phase of V) ,

[g-c12z 41?2y LT 2 42X+ ¢t (30)

which means the real part of the field breaks the symmetry and it was on
this basis that we derived all our results (including %): 0). So if v

is imaginary, implying c¢ is imaginary, we would have

[ d-c |7 UL I N [ gy xlrer-2c X, (51)

which means that the imaginary part of the field breaks the symmetry. This
is a contradiction of our original choice of boundary condition and hence
the symmetry with respect to x = -% which we know must exist in the theory

as implied by the derivation of the Ward identities.

DISCUSSION

We have examined a Reggeon field theory of a complex scalar field with
real quartic coupling. We find that the spontaneous breaking of phase sym-
metry in this problem leads, in addition to the Goldstone theorem, to the fact
that the component of the field with non-vanishing vacuum expectation value,
if massless, must have vanishing wave function renormalization constant.

This gives a certain criterion which relates the effective triple coupling,

the bare mass in the problem, and the quartic coupling constant.

Replace ¢ by e ¢ ; restore the e term to original form by the
change ¢—*ela¢. Since the Lagrangian is phase invariant, the new Green's

functional differs from the old by J(x)—*J'(x)::elaJ(x). Then v'=e “v.



We find that the reality of the vacuum in the theory with spontaneous
symmetry breaking implies the satisfaction of this criterion with real triple
coupling. To the extent that a Reggeon field theory must have imaginary
triple coupling (to give the correct sign of the two-Reggeon cut relative
to the pole), our analysis indicates that a Reggeon field theory (such as
we have described - including one with higher couplings) cannot undergo

8)

spontaneous symmetry breaking .

We expect these conclusions to stand for any Reggeon field theory with
interactions which are even in the number of fields with real couplings,
since the basic criterion stems from the necessity of having an imaginary

triple Pomeron coupling after symmetry breakdown.

Another point we wish to make is the apparent utility of using functional
techniques to examine certain problems in the Reggeon field theory, just as

one uses them in standard relativistic field theories.

ACKNOWLEDGEMENTS

The suthoress wishes to thank Professor D. Amati for reading the manus-
cript and to acknowledge useful discussions with R. Savit and J. Ellis. She
also acknowledges the hospitality of the CERN Theoretical Study Division
during 1974-75.



- 10 =
REFERENCES

1) V.N. Gribov - Soviet Phys. JETP 26, 414 (1968).
2) A.R. White - Nuclear Phys. B50, 93 (1972).

3) H.D.I. Abarbanel and J.B. Bronzan - Phys.Letters 48B, 345 (1974) ; Phys.
Rev. D9, 2397 (1974) ; Phys.Rev. D9, 3302 (1974).

4) H.D.I. Abarbanel - Phys.Letters 49B, 61 (1974).

5) S.S. Pinsky and V. Rabl - Ohio State University Preprint C00-1545-140
(1974).

6) J. Goldstone - Nuovo Cimento 19, 154 (1961).

7) B. Jouvet - Nuovo Cimento 3, 1133 (1956) ; 5, 1 (1957) ;
J.C. Houard and B. Jouvet - Nuovo Cimento 18, 466 (1960) ;

M.T. Vaughn, R. Auron and R.D. Amado - Phys.Rev. 124, 1258 (1961) ;

R. Zimmerman - Phys.Rev. 141, 1554 (1966) ;

H. Hayashi, M. Hirayama, T. Muta, N. Seto and T. Shirafuja - Fortschr.
Phys. 15, 625 (1967).

8) J. Ellis and R. Savit (to be published) arrive st a similar conclusion
using different techniques and assumptions.



