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The introduced differential cross sections are related to the cross

sections of the corresponding processes via the relation:
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iii) Distribution functions for inclusive processes (I) and (II) are
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where ni is the number of particles of "c'"-kind, produced in channel (III),

and ni and né are the numbers of particles of "c'"-kind and "d"-kind,

produced in channel (IV).

The distribution functions £ (s,ﬁc) and f (S,Ec,ﬁd) are normalized
abr¢ ab-+cd

in the following way:

£ (s k)dk, = <n >0 (s) (1.9)
ab~>c ab>c



1. Physical Characteristics for Inclusive Processes

To describe the inclusive processes

a+b>c+1IA, ¢9)
PR | :
i
a+b>c+d+lB, (11)
i

where Aj and Bj are some fixed hadron groups, and I denotes summing over

all possible channels, it is possible to introduce the %ollowing characteristics:

i) The total cross section for inclusive process (I) is

ab +(2) B ; %ab > c(i)A. 1.1

and the total cross section for inclusive process (II) is

o (s) _zo (s) :
ab + cd 5 ab >c +d + Bj (1.2)

where o (s) and

(s) i
ab >+ Aj cab > o+ + Bj are the total cross sections

for the processes

a+b->c+ Aj (1I11)
a+b—>c+d+Bj aw)
respectively.

ii) Differential cross sections for inclusive processes (I) and (II) are

= ¥ (1.3)



where
[ do
o (s,V;) = —3332‘%-&3kc d3kd (1.13)
ab-+cd d"k d7k
c d
Vi
and
1 f 3
> >
«an> = £ (s,kg,kq) ok, &y (1.14)
Vi o (s,Vy) | ab»cd
ab-+cd Vs
i
From (1.12) it is clear that
N o b (39Vi)
aan>= % <anp, —2L . (1.15)
cd cdV,
i=1 i o (8)
ab+cd

Subdomains Vi of the phase volume should be chosen from physical reasons (see

sections 4 and 6) which would correspond to the given mechanism of particle
generation in inclusive process.

It should be noted that the behaviour of average <n n.> and <n n. >
cd CdVi
As generally speaking the processes with

small multiplicity but large production cross section, as well as those with large

may greatly differ from each other.

multiplicity and small production cross section, may make contributions to sum
(1.15).
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f (s,kc,kd) d kC d kq = <ncnd> o (s) (1.10)

ab > cd ab > cd

where <nc> is the average value of multiplicity for the particles of
"e"-kind in reaction (I), and <ncnd> is the average value of the multi-

"e¢"- and "d"-kind in reaction (II).

plicity product for the particles of
It should be noted that if in reaction (II) detected particles are of the
same kind, i.e. if ¢ = d, then in formulae (1.8) and (1.10) the following
change n o, - nc(nc - 1) 1is to be made.

Due to the fact that particle generation in reactions (I) and (II) may
develop in different parts of phase space in different ways (e.g., via different
production mechanisms: pionization, diffraction dissociation, ete.), then one may
expect that the distribution function in different parts of the phase space will
be of different asymptotic behaviour. When studying such a characteristic as
average multiplicity (when integration is performed through the whole phase space
of the detected particles), the effects, related to different mechanisms of
particle generation, are smeared out. If one wants to observe these effects it
would be useful to introduce average multiplicity of particles into the subspaces
of the phase volume. Such a characteristic of particle generation may give a more

detailed information on particle production in inclusive processes.

By the example of inclusive process (II) we will give a definition of the

1,2)

new characteristic average multiplicity in some subdomain Vi of a two-

particle phase volume.
A full two-particle volume for particles "c" and "d" in reaction (II)

Vcd we will represent as a sum of subdomains Vi

N .
V.,= % V, (1.11)
Then from (1.10) we find that

N
f d3kc d3kd f (s,kc,Ed) = I <nn>. 0 (s,V;) (1.12)

N
<nn>oc ()= I Py
ab~>cd i=1V ab->cd i=1 i ab+cd

cd

i
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T (s,m,E) = | dx |du LUataSsE) 2.1)
ab+c+d+Bj x - (n.u)

X

e . . > 7
Here n 1is a unit vector along the momentum P, In the co-ordinate system, where
> 3 . . + . 3
momentum kc is directed along the axis 2z, and the momentum kd lies in the
> . » 3 . . > .
plane x0z, n 1is of the form n = (sin® cosyp, sin® siney, cos@) and u 1is an

arbitrary unit vector, and X. 1is the semi-major axis of the Lehmann ellipse.

L

L
(@ - ) @y - mp) ¥
)(L = 1 + (2.2)
p2[s - @ - m)?]
a 1 2

In (2.2) ;a is a 3-momentum of "a'-particle in the c.m.s. From (2.1) it follows

that the amplitude T (S,;,E) is analytical over variables z = cos® and w = et
ab*c+d+Bj

in the domain determined by the condition

1+ 2] fo] + |1 - 2|91 + 2=+ |1 - z|]o]) < 4 xi (2.3)
w w

with exception of the point 2z, which belongs to the segments E;XL, -i] and

i, x].

From (2.3) it follows that at physical values of the variable w the

amplitude T (s,;,i) will be analytical over 2z in the domain (2.4)
ab->c+d+Bj

[1 +z] +|1-2z] <2 X (2.4)

excluding point 2z, belonging to the segments [}XL, -1] and [i, Xg].

From (2.3) it also follows that for physical values the variable 2z = cos®

the domain of analyticity over the variable w is not less than

r£ < |w| < r{ (2.5)



Analyticity of Inelastic Process Amplitudes and Inclusive Cross Sections over

Angular Variables

In this section we will present the results dealing with analytical
properties of inelastic process amplitudes and differential cross sections over

angular variables, which follow from the general principles of theory.

The importance of studying the analytical properties of the amplitude
over angular variables has been noted by N.N. Bogolubov 3). He was the first to
study the analytical properties of the imaginary part of the elastic amplitude in

momentum transfer (see also ref. 4).

Further steps in studying elastic and binary processes were made by

6) 7) 8)

and Sommer .

5)

Lehmann ~’, Bross, Epstein, Glaser , Martin

Analytical properties of the amplitudes for the processes of the type
a+b>c+d+e over angular variables were considered on the basis of Dyson
representation in paper 9), a more detailed study of this problem for inelastic

. . . . . 2,10-13)
and inclusive processes 1is given 1n papers .

2,10-13)

Following papers , we shall consider the process

a+b>c+d+B, ()
where, as before, Bj stands for a hadron group.

In the c.m.s. we will introduce the variables: s = (pa + pb)2 is the
system total energy squared; cos@ where © is the angle between momenta ;a
and tc; w=e"? where ¢ is the angle between the planes (;a,ﬁc) and (ﬁc,ﬁd);
£ is a set of variables, which define the relative configuration of particle

momenta in the final state.

With Dyson representation for the amplitude of process IV we can write

down the following representation



therefore, taking into account analyticity of the imaginary part of the amplitude

for elastic scattering

over the variable z = cos® 1in the Martin ellipse, we find (see 2’13))
we=d m 2_ R(s) 12 '
b { ar.|T (s,g,j)l < 22 exp {-% m(xM * Xy - 1)} (2.11)
m=-2 it VE?

where R(s) is degree of increase of the amplitude imaginary part; and XM is

the semi-major axis of the Martin ellipse and equal to 7,8)
Zmi
)£M=1+|'*|2
Py

L . . . . .
Using the estimation for dm n (Re® + i ImO) on the ellipse with the semi-major
H

axis X = ch Im@®
L . 2 L
Idm L (ReO + i Imo)| < (ch Imo + Ych“Imo® - 1)
’

and Bunyakovsky-Schwartz inequality, we will find out that series (2.9) converges

absolutely in the domain, where

X ¥ /xz -1

<1 (2.12)
2 )
(% + /%y - D
49 brc+d+B,
Whereof we find that differential cross section ———31 a5 the function of
d cos0®

the complex variable cos® is analytical in the ellipse with foci at the

points *I and semi-major

Xy 1

2

X (2.13)

Tt should also be noted that the domain where the differential cross section of the

form



where
* L2 ‘
= + - . .
r XL XL 1 (2.6)
%
As representation (2.1) is also valid for T (s,;,g), then it will be
ab->c+d+B.
an analytic function over the variables z and w in the domain (2.3).

It may be shown that analytical properties of the amplitude lead to

analyticity of differential cross section of the form

do
ab->c+d+B, 2.7)

d cos©O

2,9,10))

over the variable 2z = cos® in the Lehmann ellipse (see

2,10-13)

Indeed, as it was shown in papers , differential cross section

(2.7) as the function of the complex variable z = cos® 1is analytic in a wider

domain.
Indeed, in decomposing the amplitude over the Wigner functions
iy AR m, oy AR imyp
T (s,cos0,e 7,8) = (2 ——)% I I (22+1) TE(S’g’J) a 0(0) e (2.8)
ab+c+d+Bj Ipa| 2=0 m=-% ’

we can write down differential cross section (2.7) in the form

dabrcrdsB, 2m Iy X * m

= — I I (28+1)(28'+1)d_ (0)d_ (0) fdr.'fﬁ(s,a,j) T, (s,€,i) (2.9)
' m,o m,0 J 2 L

d cos® 1 2,8'm

The magnitudes T?(s,g,j) and dFj enter the unitarity conditions for

partial amplitudes in the following way

2 m=4 m 2
Im £,(s) = |f£(s)] +3 3 fd F.le(s,E,j)| + ... (2.10)
j m=—% ]
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1 1
== I T @eD@u+D) d:l 0 (© a*, NCORE
d cos® dy Ipal £,m 2 ,m ’ m,

49 bred

AP o
i@y : ( dr, T4 (s,6,3) T)(s,8,3) (2.16)

From unitarity condition (2.10) and Bunyakovsky-Schwartz inequality, as well as
from analyticity of the imaginary part of elastic amplitude over cos® in the

2,12,13)

Martin ellipse, it follows that series (2.16) converges in the domain

§(|w| *FiT)(“ —z| + |1+ z]) <2x (2.17)

doab+cd

ET;EEE? is analytic over z and o in domain (2.17) with

therefore the function

exception for the points of the segments [-X, -1] and [1, X] over the variable z.

In conclusion, we would like to note that the analyticity properties and
estimations for inelastic and inclusive cross sections obtained above, are strict
consequences of the main postulate of the field theory. The analyticity domains,
obtained on the basis of the main principles of theory, possess one common feature,

1, XM -1, X+ 1) and at

+
i.e., with energy growth they shrink (XL -~ 1, r£ -

s > o they degenerate into ''domains', consisting of physical points only.

One should pay attention to the following fact. The found domains of
analyticity over z and w (2.13) and (2.17) were obtained with the help of the
series and therefore domains (2.13) and (2.17) were fully determined by nearest
singularities ('"thresholds") in t-channel. Of course, these domains are not the
natural domains of holomorphicity for the functions EEEE:EQ—— and —SEE:EE——

olomotp y d cos® d cos® dy ’
and one may hope that a more detailed study will allow one to exhibit an existence
of analyticity domains independent of s in the neighbourhood of the physical

points in the planes z and w.



d doab+c+d+Bj

%abed _ »

dcos©O ; dcos0O

is analytical over the variable z = cos® , is also an ellipse with semi-major
(2.13). This statement is proved similarly, if one takes into account that on the

basis of unitarity condition (2.3) there takes place an inequality

m=2 ——
Tz IdP.ITm(s,i,j)lz < RGs) exp {-% n(X, + /xi - 1)} (2.11a)
e /2
] m

Here one should pay attention to a very important fact that the obtained
analyticity of inelastic cross sections leads to the fact that position of real
singularity over momentum transfer on the contrary with the case of analyticity in

. . 2
the Lehmann ellipse does not depend on s and starts from point t = mo .

Let us enlist here some estimations for differential cross sections.
These estimations are consequences of the analyticity over the variable 2z = cos®

proved above.

doab—>c+d+B. s 2
< 5 O (s) %n R(s) , (2.14)
d cos© =0 16 m ,ab+c+d+Bj
do s
—abred ¢ —5 0 () wmRE). (2.15)
d cos® |0=0 16 m ab>cd
7,14,15)

It should be mentioned that similar inequality was obtained in

for elastic processes.

We will proceed now to study analytical properties over angular variables

for differential cross section of inclusive process (II) of the form dcab+cd .
dcosOdy

Using decomposition (2.8), it is easy to obtain that
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Fig. 1

It is obvious that

dc’abr-*c:d

dcos® dep 2/§‘|pa| 2,=2,=c0s0
= =¥
w =w,=e (3.3)

It should be noted that the contribution of inclusive process (II) to the imaginary

.

part of elastic process is expressed through the function ¢(s,zl,w1; zz,wz) in

the following way

(8,2, ,0,35 2,,0,) dw
m 1 (s,5, 8 = 8_1‘”-[7'7 1z 12 — "—ld"ld"z (.4
ab>ab 1-2,-2,~2 +22,2,2 iwg

> >,
where z = (n_.n_ ).
a a

The variable wy is the function of the variables 252752550 and is found from

the equation
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The Upper Bound for Decrease of Differential Cross Section for Inclusive Processes

in Large Angle Region

In this section we shall put forward a hypothesis on the domains of
analyticity over angular variables and find the upper bound for decrease of dif-

ferential cross section for inclusive processes in the region of large angles.

It is more convenient to formulate our assumption about analyticity for

the functions

A )
@(s,zl,wl; zz,wz) =2 — E ©y E Wy .
3, m=e b mym-o
Cr +1)d21 ) (2 +1)d22 @zt 2
92 "'l I 1 ml,o z]. 9 =|m l 2 m2,0 2 . 21,2«2 23
1mm 27 1M
(3.1)
where
m, ,m, m m
1°72 . %2 . 1 .
C (s,3) = ar, T (s,8,3) T (s,£,3) (3.2)
20k, ie %

2 1

From the unitarity condition and Bunyakovski-Schwartz inequality it follows that

mp 5™ \
62 | < g, @m0 (3.22)
1272 1 2

. i, ig,
In (3.1) the variables are equal to z, = cosQ1, w, =e™, z,= cos@z, w, = e 2
where +(eq,C{,) and (Qg,qb) are spherical co-ordinates of unit vectors

, .
- Pa > Pa . . .
n, = l* ] and n_ = T:TT respectively, in the co-ordinate system constructed
P P '
a a

> > .
on the vectors kc and kd (see Fig. 1).
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-c,

-4 w + -

s,
5,(Qx)

1

Fig. 2

The union of the domains ai and Gi(eo) will be designated by Dj.

Similarly, let gl«fb) and gzﬁfo) be some s—independent neighbourhoods

. _ iyg =i e Cp .
of the points w, = e ¢ and w, =e 2 respectively; where %% < qﬁ < q%,
n+fz < %& < Zﬂ—%% (i=1,2), Cfs = const # 0,7,27T).

8.(4)

|

Fig. 3

The union of the domains hi and gi(f%) will be denoted by Gi.
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For the function ¢(s,zl,w1; zz,wz) general principles of field theory give the

following polydomain of analyticity over variables Z s Wys Zps Wy

1 1 .
b, {E (|wi| + W)([l-zi] + ll+zi|) < 2x} i=1,2 (3.5)
with the exception of the points z, € [-x,-1] and z, € [1,#]. This statement

is easily proved by finding the domain of convergence of series (3.1) on the basis

of inequality (2.1lla).

From (3.5) it follows that at physical values of W, (i=1,2) the
function ¢(s,z1,e1¢1; zz,elfb) is analytical over zy and zy in the product

of the domains of the type

3, ¢ {|1-zi| + |1+zi| < ZX} i=1,2 (3.6)
Similarly, at physical values of. z, = cos@1 and z, = cos@2 the
function @(s,cosel,wl; cos@z,wz) over the variables wy and wy is analytic
in the product of the domains of the form
he i 4 = (o] +——) <x i=1,2. (3.7)
1 2 1 Iwil .

The function @(s,zl,wlg zz,wz) which is analytic in polydomain of
the form Ai (i=1,2) with coefficientg of decomposition (3.2) and polynomially
bounded in S in AIQD A2 is designated by H. Moreover, the H-class is called a

physical one.

It should be noted that requirements of the basic postulates of theory
(relativistic invariance, unitarity, causality and polynomial boundedness) lead to

functions belonging to H-class.

Let 61(00) and 62(00) be some s-independent fixed neighbourhood of

- cosQy € 2z, € cos@, and - cosO, € z, < cosO, (6, = const # 0,m) respectively

1 o

(see Fig. 2 ).
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where n is an arbitrarily large, but fixed number, then for large S we have
4
gn - (2=) 2n62n(s—)
i'r) So o

lF(s,cosO,el‘f; cos0,e < const 7
sin © sin \P

TP < ¢ < 2n-47° (3.12)

» If we assume that the function @(s,zl,wl; zz,wz) introduced above,
which belongs to the physical class H, satisfies the conditions a) and b) of
Theorem I, then for the differential cross section of the inclusive process II we

have

9. s
doab—*cd ) const n (so)
RS .4 .6
d cos® dkf' sin O 31n‘./9
Oo < 6« TT‘@O
o <P < 14
1T+?° S < 21 (3.13)

Similarly, if we assume that the function @(s,zl,wl; zz,wz), belonging to
class H, satisfies the conditions of Theorem II, then for the differential cross

section of the inclusive process II we find

4 6
n (E—) n Zn(:—-)

doab—»cd . const o o
NS , 4 . 6
d cos© dy sin O sin ({J
Oo £ 0L TT-OO
Lf’o sYs = o
1T"'.‘Po s ¢ <21, (3.14)

Note that analyticity of the function <I>(s,zl,w1; zz,mz) in the
neighbourhood of the physical points ai(eo) and gi(')oo) (i=1,2) 1is just a
hypothesis. We do not know whether this assumption follows from the main postulates
of theory. On the other hand, this hypothesis leads to certain physical conse-

quences which can be checked experimentally.
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The following theorem can be proved by the method developed in 2).

Theorem I : If the function F(s,zl,wl; zz,wz) .in the domain A1® AZ allows an
expansion of the form (3.1) with the coefficients of the expansion of modulus less

than 1 and satisfies the conditions:

a) For the points |wi| =1 (i=1,2) it is analytic in z; and 2y
in the polydomain Dl@ D2 and polynomially bounded in it over S .
|F(s,z ,el‘ﬁ; Z,,e f2)y £ const ( = )Nl (3.8)
. 1 2 : So

zl,zze Dl@ D2

b) For the points -1 ¢ z; <1 (i=1,2) it is analytical in w, and
v, in the polydomain G1® G2 and polynomially bounded over § in

it

|F(s,cos®1,w

N
1; cos@z,wz) £ const (-2—) 2 (3.9)

o
sy €6, @6,
then for large S the estimation

const Qng (—-2;—)

|F(s,cos®,el‘?; cos@,enp) : £ 7 3 (3.10)
0, < © < ™0, sin 0 sin¢f
Po €@ € Tho
TP, € P& 21,

is valid.

Theorem II : If the function F(s,zl,wl; zz,wz) satisfies the conditions of
Theorem I and if instead of (3.9) for the points 1 < z, <1, w; € G].; the

following inequality is true

n
|E(s,cos@1,w1; cos@z,wz) < const n ( -ss'—o) (3.11)
Wy sy € G1@ G,
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On the other hand (see (1.12)),

£ @ k) a3k Pk, =<
(kc, d) kc d ncnd>V o (s,Vy) - (4.4)
ab-+cd 1 ab»cd

V1

From (4.2), (4.3) and (4.4) it follows that

s
<n. n,> 2 const —e——— * (4.5)
Cdv 2,n9(§—)
1 So

If, instead of (3.13), we use inequality (3.14), then we will obtain

s
<n n,> 3 comst . (4.6)
cd V1 2n4(§—0 £n6 Qn(g—é .
So So

From (4.5) and (4.6) we see that pionization can exist only in the case

when average multiplicity reaches the values close to the limited one. Note, that

s
max <n n,> -~ . 4.7)
¢ d Vl mcmd

From (4.3), (4.4) and (4.7) it also follows that, if pionization does

exist in nature, then

G (s,vl);ﬂﬂf-t— . (4.8)
ab+cd s
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Pionization Phenomenon

Nowadays wide discussions are being held on the so-called pionization

16)

phenomenon. Following , we will take the following definition of pionization.
If, in hadron collisions at extremely high energies, particles are pro-
duced in the c.m.s. with bounded momenta (independent of initial energy) and if

as s + ©» their distribution function differs from zero, i.e.

lim £ (s, kekgees) = £ (ookg,.ns) (4.1)
s>® gb+c,d,... ab~»c,d,...

then we call this phenomenon pionization.

In this section, we will consider two-particle distribution function and
the problem of consistency of the hypothesis on pionization with the estimations on
the inclusive cross section, obtained on the basis of analyticity and unitarity.

As V. we will denote the subdomain of the phase volume of '"c" and "d" particles

1
of the following form

> >
|kc| < Pc’ |kdl < Pd
00, € 0 € 0, 3 O <P T 3 T, << 2

Here, p_ and p, are some fixed numbers.

From (3.13) it is clear that

9 s
do n” (52)
J d3kc d3kd —3-£—;—d——$ const ——— - (4.2)
d kc d’k

(¢ (S ,Vl) =

ab+cd s

A d

1

If pionization exists, then at s > « due to (4.1)

f (ﬁc,fd) d3kc d3kd > const # 0 (4.3)

ab>cd

V1
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In accordance with the hypothesis of limiting fragmentation the distri-
bution functions, e.g., for one and two particles, do not depend on the system

energy and are functions of the form

>4 - >1
£ (pgsPe)s £ (p'c',p:; PdsPq) (5.1)
ab~c ab+cd

> -

where P, and py are the momenta of "c" and "d" particles in the laboratory
-> -> . .

co-ordinate system, pg, pg and pi, p; are longitudinal and transverse

components of these momenta. In the c.m.s. limiting distribution, (5.1) may be

written down in the form

>1 >
£ (xe, kD) £ (kK xg.kR) (5.2)
ab~>c ab>cd

where the variables X, and xy are given by

2k" Zk"
X = — x, = —% (5.3)

¢ s A

we

In (5.3) kg and kg are longitudinal components of the momenta Kc and Ed
respectively with respect to the axis of collision in the c.m.s. From (5.2) and
(5.3) it is obvious that at scale transformations of the form k" - Ak" and

s > A%S the distribution function does not change, i.e. scale invariance takes

place.
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Limiting Fragmentation. Scale Invariance and Automodelity

Experimental data, obtained in the cosmic rays and on the powerful
accelerators, allowed to make a very important conclusion that transverse momenta
of produced particles are bounded and apparently depend weakly on the initial
energy. On the other hand, the experimental data obtained at the Serpukhov
accelerator 17) have exhibited for the first time that the ratio of kaon and anti-
proton production probabilities to the production probability of nm mesons depends
only on the ratio of the produced particle momentum to its maximum value L

max

Experimentally observed scale invariance at high energies resulted in
arising of a number of model treatment. For the first time, such type of model

18)

was already earlier considered . Basing on the experimental data, Yang and

19)

collaborators have developed a limiting fragmentation model; to explain the

20)

same phenomena, Feynman has proposed a parton model. Tavkhelidze and colla-

21,22) have worked out an approach which is based on the generalized

borators
analysis of dimensionalities and which allows one to describe a number of facts,

dealing with dynamics of strong interactions.

To describe hadron-hadron collisions at high energies (due to meza-like
extended structure of hadrons) the following particle production mechanism was

19)

proposed .

Particles with bounded momenta independent of energy (target fragments)
and particles whose momentum increases with total energy growth (projectile
fragments) are produced during collisions in the laboratory system of co-ordinates

(where one of hadrons is at rest).

It is assumed that at s - « the distribution function of the target
fragments tends to some limiting distributions, not equal to zero and independent
of the system total energy. It should be noted that projectile fragments do not
enter any limiting distribution. Investigation of projectile fragments requires
consideration of the projectile co-ordinate (where incident hadron is at rest).
Similarly, at s - », an existence of limiting distributions of projectile frag-

ments is assumed in the projectile system.
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Im T (s,;a-;' ) =
ab>ab
4 j +
=$3“—)—2J 1 a3k, <s,2' Tk, +vv k,><k, ov. k,|T|s,0> -
2 . . i a 1 ] 1 h| a
i’ oi=l
: :
L8, tpy - B k) (6.1)
i=1
Here
-5
o, = —% (6.2)
(27)~ 2E
-> -> . . " N > ->
n_ and n; are unit vectors in the direction of the momenta p_ and p; ,
respectively.
A matrix element of T-operator is normalized in the following way:
4 : j
o . (s) hﬁﬂj—f 1, Jep ke | T]s, 22000 oy T k) -
A R j i1
(6.3)
Expanding the amplitude over angular variables (see (2.8)) and sub-
stituting it into unitarity relation (6.1), we obtain
2 m=L m 2
Im £ (s) = |[£,(s)|“+25 = |dr, |T,(s,E,3)]7 + ... (6.4)
L 2 ; h| L
J m=-%
For a given j-th channel of the reaction, the energy conservation law may be
presented in the following way
nJ nJ n3 2
2 c . d b i
S=(€ +E) =| z E'+ £ E}l+ ...+ I E (6.5)
a b . c . d . f
i=1 i=1 i=1

ni is the number of "c" particles in the j-th channel of the reaction; Ez is the

energy of the i-th particle of "c'"-kind. Multiplication by "s" of both sides of
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Particle Momentum Cut-Off in Inclusive Processes in the Region of Large Angles

Weak dependence on initial energy for the transverse components of
detected particle momenta is a characteristic of multi-particle processes. It is
evident that, if the transverse momentum of a produced particle is bounded at
some energy-independent value M, then fast particles (p v pmax(s)) in the c.m.s.

are produced in the angular range

2
0 < 02

<
~

ml:g

and momenta of the particles produced in the large-angle range are bounded by some
constant value.
. . . 18)-22)
In most model descriptions this fact is used as a postulate and

the corresponding phenomenon has no proper theoretical explanation.

In the given section, on the basis of analyticity and unitarity, we
study the behaviour of average values of momentum products for detected particles
in binary inclusive processes at high energies. It is done with the method

2),12),13) and described in sections 2 and 3 of this paper.

developed in
In particular, a conclusion is made here, that in the given range of
angles (0 # 0,m3 Y # 0,m,21) mean values for products of longitudinal as well
as transverse component moments of "c'" and '"d" particles, produced in binary in-
clusive processes, cannot increase more rapidly than lnY(E—O. It is also shown
that, if the mean values of multiplicity products n, and 0nd increase as a
power of energy, then the absolute contribution of large angles to the mean value
<Ec Ed> decreases with increasing energy. As the probability of producing fast
particles seems to be considerable, it follows from analyticity and unitarity that

production of fast particles takes place in the region of small angles.

In the c.m.s. the unitarity condition can be written in the form:
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< > (0 =
EE; ©4¢)

I [k 1 alk | 1% lalk,la cosy
f EEy £ (sslk [ulkgl0.p00) 5 . (6.11)
ab>cd (2m) " 4 EcEd

N(s)

Here, © and ¢ are angular variables of initial particle "a", ¢ is the angle

between momenta Ec and id . It should be noted that
<EcEd> = f <EcEd> (@,(f)d cos® dy . (6.12)

If use is made of (2.8), then for the function <EcEd> (O,kf) one can write the

following expansion

1

N(s)<EE> (0.f) =

N 2"
7 I 5 () @'eDd (@)d v (9)

I;a| 2,m 2" ,m'

B (5,5,3) Th(s,E00) - (6.13)

- i(m'- s s f
e 1(!11 m)\F z anJ Jdr' EcEd

., cd
i J

It is convenient to introduce the function

ig i 2 2
F (s,cos0,,e 1; cosB,,e 2) -2 z T (22,+1)(22,+1)d (0,)d 2 ©,)
b>cd 1 2 /-1“* | 2 0. .m 1 2 ml,o 1 mz,o 2
avre s Pl o™ T10™
im . ~imp. .. m %
ce VL TR2T2 0 350 g g r N(s,E,0) T, 2(s0Ex]) (6.14)
. cd jcd "2 2
i - 1 2
in order to study the character of the increase of <E E.> (6,) with energy.
It should be noted that
N(s)<EcEd> (G,cp) = /E\ F (s,cos@,en?; cos@,elk?) . (6.15)
2|p,| abred

It may be shown, with the help of unitarity and inequality (6.8), that
1y 1y .
the function F (s,cos@l,e 1; cos@z,e 2) for physical values of ‘-Pl and <f‘2

ab+cd
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the unitarity condition (6.4) for a partial wave amplitude, keeping into account

(6.5) in the integrand, gives after some elementary calculations

In £,(s) = |f£(s)|2

+=In n . EE T (s5E,]
S 5 c d J j ¢cd m=—2 )

+ l-z nJ(nJ -1 f dr, E(l) (2) |T (s,E,J)I AN . (6.6)
S ct ¢ C o o=my

From (6.6) it follows that
m=2

1 j ] m N2 .1
sim dfer EE, m§_2|T£(s,€,J)| <5 (6.7)

On the other hand, from analyticity of the imaginary part of an elastic amplitude

in cos® in the Martin ellipse, it follows

4m
1 j i m=2 m 2 ) /s
§§ nony farj EE, mi-le“(s’E’J)i < R(s) e . (6.8)

Let us consider the mean value of the energy product for 'c" and "d"

particles
3
<E Eg N( ) [ EE; £ b+£z,kc,kd)d k, d7k, (6.9)
where
3
N(s) = <n Bae tot( s) = f £ (s, k ,k )d k d kd (6.10)
ab+cd

If, in the c.m.s. a co-ordinate system is chosen so that the z-axis is directed
> >
along the momentum Ec and the X0Z plane goes through the momenta kc and kd ,

then it is possible to introduce the quantity
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Integration of inequalities (6.19) and (6.20) in the domain

v, : '{O<@°$0‘1T"@O; 0<‘P°\<.'-F<TT-cfo, n+<p°<~fs2n-%} - (6.21)
leads to
n’ (&)
- o
<EcEd>V2 J <EcEd>(®,\P)dgos®duf< const ———-——( ) (6.22)
[o) <n n.,”
v tot cdt
2
g’ (%—) 2nlen (—z—)
o o
<EcEd>V2 = f <EcEd>(®,\F)dcosOd\P\< const ) - (6.23)
o <n n_.>
tot cdt
\'
2
respectively.

From this it follows that, if the average value of the multiplicity product

<ncnd>t increases as a power of energy and the total cross section has the lower

bound Gf:it): > gn © (-s—) (where r 1is some fixed number), then the absolute contri-

bution of the V angular domain to the average value of the magnitude

2

<EcEd> tends to zero with increasing energy.

From (6.22) an inequality for average values of the products of longitu-

dinal and transverse momenta of "c'" and '"d" particles follows:

9,s
. n (so)
<Py pd>V2 < const m (6.24)
tot cdt

lng(:—)
<p" p'> £ const —_— (6.25)
e
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is analytic in variables z, = cos®1 and z, = cosG)2 in the Martin-type ellipse

with the exception of the cuts [—x, -l] and [___1, :{I . Again, for the physical

values of the variables 2z, = cos® and z2 = c:os@2 the function

. L L . 14, ipy |
F (8,21,W,3 Z,,0,) 1is analytic over variables uw, = e and w, = e in
1271 "2°72 1 2
ab>cd
the rings

—_
x—véz-l <lwi|<x+ xz-l . (6.16)

If we assume that function F  (s,z,,w,} Z,,w,) satisfies the conditions of
1°71° “2°72
abrcd
Theorem I, then it is possible to obtain the following inequality

slng(S )
. . 'g—
F (s,cos@,el‘P; cos@,el‘f) £ const 0
ab>cd

sin 0 'n6 .
0 <0< 10 sin\p

o o
fo <4< T,
TP < ¢ sZn—cfo (6.17)

This inequality may be improved if the function F (s,zl,wl; zz,wz) satisfies
ab>cd
a more strict requirement of Theorem II. In this case we shall have

4,s 6, /s
. (s,cos@,ei\P; Coso’ei«p) | < const 2n (S—Z)ln Rz(gg)
abrcd 00 <0< 1o sin © sin Y
LA G 7S
THE, S P < 21 (6.18)

On the basis of inequalities (6.17) and (6.18) from equality (6.15) we have
respectively '
n’ (&)
)
N(s) <EcEd> (e,»() < const — & (6.19)
sin © sin LF

JLn4 (s—-) £n69,n (—s-'-)
s s

N(s) <E_E > (0,4) € comst ——7——pc—— . (6.20)
sin © s1ngp
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and
dk dk
)
J £ (s,i ,Ed) 03 ’ d3 £ const 2n4(2~)2n62n(§—0 (6.30)
ab>ed © 202m)°  2(2m) So 5o
v ;
2
respectively.

It should also be noted that, if pionization really takes place,
then the distribution function of particles of bounded momenta does not depend on
the system energy and, consequently, the pionization hypothesis does not contra-

dict inequalities (6.29) and (6.30).
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In the same way from (6.23) it follows

4 s 6 s
n (—S—) n n (-;—)

L1 o o
<pc pd>V2 < const 0(s)<n — (6.26)
tot ecdt

£n4 (§—) 2n62,n (-:—-)
[T 1] [} o
< . .2
<P pd>V2 £ const RO (6.27)
tot cdt

It should be noted that the total interaction cross section and average value of

multiplicity product behave so that *)

ci:z<ncnd>t > const # O (6.28)

Then from inequalities (6.24) and (6.25) it follows that average values for
longitudinal and transverse components of momenta in V2 angular range cannot

increase with energy more rapidly than lng(s/so).

Thus, in the range of large angles, defined by inequality (6.21), a cut-
off of produced particle momentum takes place. Using the expression for the
magnitude <EcEd> (e,yb via the distribution function (see formula (6.12)) we can

write inequalities (6.22) and (6.23) in the forms

¢ const in’(5-) (6.29)
8o

£ (s,ic,id) '°3
ab>cd 2(21)

ik ak
k d
3

2(2m)
V2

*
) Note that, if pionization 1),16) does exist, then inequality (6.28) is

always true.
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where dzoé / dt dw2 is the differential cross section for process (VII), and

ab . . . . . .
Ut t(s) the total cross section for interaction on collision of two particles
Ha + b".

The average multiplicity for inclusive reaction (VI) is determined in a
similar way.

In works 10,25) it has been stated that for any fixed t, w2

asymptotic
equality takes place
dch dzcj
v _ " VI
5 = 5 (7.3)
dt dw dt dw
2 2
d OV ) d oy1
5 = 5 (7.4)
dt dw dt dw
From formula (7.3) and definition (7.2) it follows that at high energies
cab <N_(s,t w2)> = ogb' <N__(s,t w2)> (7.5)
tot Vv ' tot VIV’ ' ’

In particular, for the inclusive process with b = b' (under the assumption that
. . a
the Pomeranchuk theorem is fulfilled czzt'v ct:t ) we have

2 2
<Nv(s,t,w )> = <NVI(s,t,w )> .

(7.6)

As it follows from derivation of formula (7.3), given in paper 10,25)

, relations

(7.6) may be integrated in any fixed interval of the variables t and w2
(independent of energy s).

Let these intervals of variables t and w2 be At

and Aw”, respectively. We shall then have the following equalities

2 2
<Nv(s,At,Aw > = <NVI(s,At,AW )>

7.7

for average multiplicities in the indicated domains.
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Asymptotic Equality for Average Multiplicity in Crossing Inclusive Reactions

In the present section we should like to pay attention to the fact that
from general considerations, based on the properties of analyticity and crossing
symmetry, some conclusions on average multiplicity in crossing inclusive reactions

at high energies may be made 24).

Let us consider the processes of the type

a+b->b'+ I x, W)
.
j

F+b>Db +I% . (V1)
g 3

We shall introduce the following variables: s = (pa + pb)2 is the total energy
squared in the c.m.s. t = (pb - pb,)2 and u = (pa - pb,)2 are transferred
momenta squargd; w2 = (pa * Py - pb,) is the missing mass squared for the
reaction in channel (I). All the other independent variables, which describe some

definite (j)-channel of the process
a+b->b'+ xj (VII)

will be designated via Ej' The crossing condition for the amplitudes of processes

V and VI has the form

] 2 *3 2
Té (u,t,w ,Ej) = T%I (s,t,w ,Ej) , ‘ , (7.1)
where
2 2 2 2
s+t+u=m + motm, +w o,

Let us determine average multiplicity in inclusive process (V)

2]
. d7o
2 1 ] \
SN_(s,t,w)> = IN 7.2)
v " oab j dt dw? R
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If, along with reaction (VI), we consider its charge-conjugated one
a+b'>b+ I x, ' (VIII)

then from analogous reasoning it follows:

ab'

ab
%ot Myrrr

2
ot (s,t,w )> . (7.8)

2
<Nv(s,t,w )> =

b'

In particular, for b

<Nv(s.t,w2>> = (s,t,w2)> (7.9)

Nyr1r

and for fixed intervals At and sz

<NV(s,At,Aw2)> o (s,At,Aw2)> . (7.10)

Ny1r1
If similarly to (7.2), one determines average multiplicities for charged particles
only, then one can obtain absolutely similar asymptotic equalities for average
multiplicities for charged particles in reactioms (V), (VI), (VIII).
For example, in reactions
p+rp->p+t ..

1;+p->£>+...

for fixed intervals At, sz, average multiplicities for hyperomns should be

similar and equal to analogous average multiplicity of antihyperonms in the reaction
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