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Abstract
Using a recently developed time domain numerical ap-

proach we calculate the short-range geometric wakefields
of 3D collimators and compare with analytical models. We
find, in the diffractive regime, that the transverse mode kick
factor can be approximated from the change in field energy
between the beam pipe and the collimator if the collimator
is long, or using a “field clipping” estimate if it is short. For
collimators of past and present measurements at SLAC, nu-
merical, analytical, and measurement results are compared.

INTRODUCTION
Designing collimators is an important task for acceler-

ator and FEL projects. In this report we study the short-
range geometric wake of 3D (rectangular) collimators us-
ing a time domain numerical method [1]. This method,
together with an indirect 3D integration algorithm, allows
one to obtain accurate results for the difficult combination
of short bunches and long, gently tapered collimators [2].

In this report, we consider symmetric collimators of the
type sketched in Fig. 1. Depending on bunch length, the
wake can be thought of as being inductive, diffractive, or
of an intermediate type [3]. If the collimator is round and
ρ1 ≡ αb2σ

−1 ¿ 1, it is inductive, with kick factor [4]
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where σ is the rms bunch length (we consider only Gaus-
sian bunches), Z0 = 377 Ω, and c is the speed of light. The
inductive regime for round collimators was studied numer-
ically in [5], and the results were in agreement with Eq. 1.

If the collimator has a rectangular cross-section, it is in-
ductive when ρ2 ≡ αh2σ−1b−1

2 ¿ 1, with h the collimator
width; in this case [3]
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If ρ1 ¿ 1 but ρ2 & π2, then a rectangular collimator is in
the intermediate regime and

k⊥ = 0.215AZ0c

√
α

σb3
2

, (3)

with A a factor to be defined in the next section.
When ρ1 À 1 both round and rectangular collimators

are diffractive, a regime we study in the next section. Fi-
nally, in the last section we demonstrate that, in fact, Eq. 1
agrees well with numerical results for rectangular collima-
tors with arbitrary ρ2 (only requiring ρ1 ¿ 1).
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Figure 1: Top half of a symmetric collimator.

DIFFRACTIVE REGIME

When a beam encounters a collimator it takes time for
the primary fields of the beam to adjust themselves to a
new steady-state configuration. Hence, we expect wake-
field effects for short and long collimators to differ.

In the longitudinal case, the impedance of a collimator
at high frequencies (the diffractive regime) [6, 7]

Z‖ ≈ 2Ze , (4)

with Ze the impedance associated with the beam’s (static)
fields. We suggest that depending on the collimator length
d, Ze should be found in two different ways. For a long
collimator, Ze is equal to the change in the field energy
between the beam pipe and the collimator; it has the form

Ze =
1

Q2Z0

(∫

Ω1

(∇ϕ1)2ds−
∫

Ω2

(∇ϕ2)2ds

)
, (5)

where ϕi is the solution to the Poisson equation

∆ϕi(~x) = Z0Qδ(~x− ~x0) , ~x ∈ Ωi

ϕi(~x) = 0 , ~x ∈ ∂Ωi , i = 1, 2 ; (5′)

Q is bunch charge, Ω1, Ω2, are the beam pipe and collima-
tor cross-sections. For a short collimator, Ze is obtained
from the field energy clipped away by the collimator

Ze =
1

Q2Z0

∫

Ω1−Ω2

(∇ϕ1)2ds . (6)

The loss and kick factors of a Gaussian bunch are ap-
proximately given by

k‖ =
c√
πσ

Ze(0) , (7)

k⊥ =
c

∆2
[Ze(∆)− Ze(0)] , (8)

where ∆ is beam offset from the axis.



For a monopole mode the steady-state field pattern does
not depend on pipe radius and both Eqs. 5 and 6 give

Ze =
Z0

2π
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)
, (9)

and hence
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Z0c

2π3/2σ
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)
. (10)

The dipole steady-state field pattern, however, depends on
the pipe radius and Eqs. 5 and 6 give different results. For
a long collimator (d →∞) we expect
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)
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for a short collimator (d → 0)
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)
. (12)

In order to test Eqs. 11, 12, and to obtain a feeling about
“long” and “short” we have calculated the loss and kick
factors for example collimators as functions of collimator
length d. For the first example α = π/2, b1 = 19 mm, and
b2 = 1.9 mm; bunch lengths σ = 0.5, 0.3, 0.1 mm. We
find that the numerically obtained loss factors are not sen-
sitive to collimator length d, and Eq. 9 approximates them
well. The calculated kick factors are shown in Fig. 2 (left
frame). The straight gray lines give the asymptotic (long,
short) approximations, Eqs. 11, 12. The numerical results
agree well with the analytical estimates. Also, the direct
sums of the kicks for “in”- and “out”-transitions (calculated
separately) are shown. We see that they agree with the kick
for a sufficiently long collimator, as expected.

Figure 2: Kick factor vs. collimator length. A round
collimator (left), a square or rectangular collimator (σ =
0.3 mm, right).

For 3D collimators, the loss factor for short and long col-
limators is, in general, no longer nearly the same. In this
case the energy impedance Ze can be found numerically by
solving the 2D problem (5’) (see, e.g. [7]). We have per-
formed both 3D time-dependent and 2D electrostatic cal-
culations for square and rectangular collimators with aper-
ture half-height b2 = 1.9 mm, aperture width h = 3.8 mm
(square) or 38 mm (rectangular), beam pipe half-height and
half-width b1 = 19 mm. The results are presented in Fig. 2

(the right frame) and Table 1. The gray lines in the figure
show the approximate kicks for the square collimator. We
see from the table that the rectangular collimator gives a
kick very similar to the round one. Of the three collima-
tors, the smallest kick is for the square one. We see that
Eqs. 11, 12, can be useful for all three types of collimators.

Table 1: Loss and kick factors as estimated by 2D electro-
static calculation. The bunch length σ = 0.3 mm. “Short”
means using Eq. 6, “long” Eq. 5.

k‖ [V/pC] k⊥ [V/pC/mm]Type
short long short long

round 78 78 2.50 5.01
rect. 56 72 2.43 6.11
square 74 78 1.99 4.25

From the above results we see that the kicks for long and
short step collimators are related by

kshort
⊥ ≈ 1

2
klong
⊥ . (13)

Hence, in Eq. 3 we suggest one use A = 1 for a long col-
limator (d → ∞) and A = 1

2 for a short one (d → 0). For
a collimator in the inductive regime, however, the result
should be independent of d.

The good agreement we have found between direct time-
domain calculation [1] and the approximations (5, 6), sug-
gests that the latter method can be used to approximate
short-bunch wakes for a large class of 3D collimators.

RECTANGULAR COLLIMATORS
In our simulations for 3D collimators we used a time-

domain numerical scheme [1] combined with an indirect
integration algorithm [2]. We consider now two sets of col-
limators that were measured in experiment at SLAC. The
first set includes four collimators measured in 2001 [8].
The parameters are given in Table 2. All rectangular col-
limators have width h = 2b1 = 38 mm and no flat region
(d = 0).

Table 2: Geometry of SLAC collimators of 2001.
Coll. # 1 2 3 4
Type rect. square rect. rect.
b2 [mm] 1.9 1.9 1.9 3.8
α [mrad] 168 335 335 298

In order to check the accuracy of the 3D discretization
we have calculated wakefields for round collimators with
b1 = 19 mm, b2 = 1.9 mm, α = 335 mrad using the 2.5D
and 3D codes. The two results are nearly indistinguishable
(see Fig. 3 on the left). The wakes for square collimator
#2 and rectangular collimator #3 are also plotted, for two
bunch lengths, in Fig. 3.



Figure 3: Transverse wake of Gaussian bunch, with σ =
0.65 mm (left) and σ = 0.3 mm (right).

In Fig. 4 a comparison of simulation (open symbols) and
experiment (closed symbols) for the SLAC collimators is
made. We estimate the accuracy in calculated k⊥ to be
about 1%. We note good agreement for rectangular colli-
mators #1 and #4. On the other hand the short bunch results
for collimators #2 and #3 agree very well with the calcu-
lations of the previous section, but they disagree with the
experimental data (by 20%). Tables 3, 4, compare simu-
lated results, measurements, and the analytical estimates.
Entries in bold type are the appropriate estimates for the
simulated results. Note that Eq. 1 results agree surprisingly
well with simulation for rectangular collimators with arbi-
trary ρ2 (only requiring ρ1 ¿ 1).

Figure 4: Kick factor vs. σ for various collimators.

Finally, we have calculated loss and kick factors for the
set of collimators used in the recent, 2006 SLAC experi-
ment. The collimator description and measured data can
be found in [9]. (During the process of preparing this paper
the data had not yet been analyzed.) Perhaps the most inter-
esting result in Table 5 is a noticeable difference in k⊥ for
collimators #2 and #3. The collimators have identical taper
angles and apertures. However, for collimator #2 d = 0,
for collimator #3 d = 1 m. In agreement with the analytic
models discussed in this paper, a long collimator length re-
sults in a kick factor increase by a factor ∼ 2. In order
to check the results of Table 5 we have done 2.5D simu-
lations for round collimators with the same profiles. The
results show the same qualitative behavior as those for the
rectangular collimators of Table 5.

Table 3: Kick factor [V/pC/mm]; σ = 0.65 mm. Measure-
ment errors are given in parentheses.

Coll. # 1 2 3 4
ρ1/ρ2 0.5/50. 1.0 1./98. 1.7/43.
simul. 1.28 1.75 1.72 0.50
meas. 1.2(0.1) 1.4(0.1) 1.4(0.1) 0.54(0.05)
Eq. 1 1.24 2.5 2.5 1.0
Eq. 3 2.4 3.3 3.3 1.1
Eq. 12 2.5 2.5 2.5 0.62

Table 4: Kick factor [V/pC/mm]; σ = 1.2 mm. Measure-
ment errors are given in parentheses.

Coll. # 1 2 3 4
ρ1/ρ2 0.3/27. 0.5 0.5/53. 0.9/24.
simul. 0.90 1.35 1.30 0.41
meas. 0.78(0.13) 1.2(0.1) 1.08(0.1) 0.49(0.15)
Eq. 1 0.7 1.3 1.3 0.5
Eq. 3 1.7 2.4 2.4 0.8
Eq. 12 2.5 2.5 2.5 0.6

Table 5: Loss and kick factors for new set of collimators.
k‖ [V/pC] k⊥ [V/pC/mm]

Coll. # σ = 0.3 σ = 0.5 σ = 0.3 σ = 0.5
mm mm mm mm

1 50 28 1.9 1.7
2 60 33 3.6 3.1
3 63 33 6.1 5.1
4 40 24 0.7 0.8
5 81 47 7.1 6.8
6 51 24 2.9 2.3
7 60 34 3.1 2.7
8 56 28 3.0 2.4

Acknowledgements
We thank M. Dohlus, G. Stupakov and T. Weiland for

helpful discussions on wakes and impedances, and CST
GmbH for letting us use CST MICROWAVE STUDIO for
the meshing.

REFERENCES
[1] I. Zagorodnov, T. Weiland, Phys Rev STAB 8, 042001(2005).

[2] I. Zagorodnov, DESY 06-081, May 2006.

[3] G.V. Stupakov, SLAC-PUB-8857, June 2001.

[4] K. Yokoya, CERN-SL/90-88 (AP), July 1990.

[5] I. Zagorodnov et al., PAC’03, p. 3252 (2003).

[6] S. Heifets and S. Kheifets, Rev Mod Phys 63, 631 (1991).

[7] K.L.F. Bane, I. Zagorodnov, PAC’06, THPCH072.

[8] P. Tenenbaum et al., PAC’01, p. 418 (2001).

[9] N.K. Watson et al., PAC’06, MOPLS066.


