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1. — INTRODUCTION

In an earlier paper 1), massless finite quantum electrodynamics
(QED) 2)_4) was formulated as a field theoretical "bootstrap" in nearly all
gauges. The resulting equations determine, in principle, the coupling cons-
tant e of the renormalized massless theory j following Adler's recent

2)

conjecture & was identified with the physical charge e.

One may envisage this "pootstrap" approach as comprising essen—

tially two equations

a) a homogeneous non-linear integral equation for the vertex function
in which the electron propagator is sxpressed in terms of the vertex
function through the Ward identity ; we shall hereafter refer to this
as the vertex bootstrap equation or simply as the bootstrap equation j

it is given in BEgs. (II.3) and (II.5) of Fef. 1)

b) an equation expressing the vanishing of the renormalized photon self-
energy. This is in fact a rearrangement of Adler's equation F(eX)=0
in terms of the renormalized quantities which enter the vertex boot-
strap. It is given in BEq. (II.6) of Ref. 1). We shall refer to it

as the self-energy condition.

The purpose of thes present work is to obtain a limiting condition
for the vertex bootstrap, as a conssquence of which the self-energy condition
will be satisfied trivially. The fine structure constant X might thus be

obtainable directly from the vertex bootstrap, via an alternate, maybe simpler,

eigenvalue condit.on.

Our hope for the success of such a program hinges on the follow-
ing plausibility argument : the vertex bootstrap is a2 consequence of the
vanishing of a certain vertex renormalization constant Z. (We do not spe-
cify Z for the moment because we will show subsequently that it is not to
be identified with the conventional renormalization constant Z1 of QED.)

On the other hand, the simplest expression for the photon self-energy in
terms of the renormalized vertex function f;~ and the renormalized electron

propagator S 1is

M =2Z[FsSy .



where the integral is of course defined through the usual Feynman rules
corresponding to the graph of Fig. 1. The vanishing of Z in (1.1) would
then seem to imply the vanishing of 77}~v . At this stage the argument
is as yet incomplete because of divergences. However, in QED, the gauge
arbitrariness may be responsible for spurious divergences which cancel in
gauge invariant quantities such as vacuum polarigzation loops ; this is
indeed the case in massless QED where a convergent gauge invariant 77)4y
can be defined. Moreover, in this case, there is a gauge (the "canonicall

3),4),

or generalized Landau gauge in which the renormalized Fermion field
has canonical dimension) which leads to a finife Z for arbitrary o .
Consequently, in the canonical gauge, the bootstrap would really imply

TT;U = 0 and therefore F(X)=0. The problem is therefore to extend
the bootstrap to the canonical gauge. This raises delicate convergence
questions which are deeply related to gauge covariance ; indeed, according
to Ref. 1), the canonical gauge is a singular one in which the bootstrap
is not applicable a priori. The final result of the present paper is that
such an extension is in fact possible. This extension provides an eigen-
value equation for ¢ . which is consistent with an essential zero of the
function P(RK).

The paper is organized as follows. In Section 2 we discuss
the theory of an off-mass shell, massless Fermion interacting with a gauge
field. The motivation for this rather academic exercise is to provide us
with a test ground for studying the analyticity properties of the vertex
bootstrap, in terms of a model where the exact solution can be written

down in closed form.

Section 3, the heart of the paper, is devoted to a study of
the vertex bootstrap equation in the vicinity of the canonical gauge. We
show that in analogy to the model of Section 2, the limit of the bootstrap
egquation in the canonical gauge exists, if all integrals are evaluated as
limits of integrals in nearby gauges. Furthermore, we show that under
reasonable analyticity assumptions, this limiting procedure is valid for
all values of @& : the vertex bootstrap equation in the canonical gauge,
viewed as a limiting equation, is an identity in e . These properties are
proved to order zero and to order one in o by explicit evaluation of the
relevant integrals. If we now impose, as a further condition, that the
vertex bootstrap be valid in the canonical gauge independently of the limit-

ing process, we obtain an eigenvalue equation for ¢ ; what happens is
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that different pieces of the identity must separately vanish for a certain

value of & . This equation is consistent with the general gauge covariance
of the theory and expresses the vanishing of a certain renormalization cons-—
tant calculated in the canonical gauge. It is written as §1C(M)=O. The

function ‘2'1(\(06') can be expanded in powers of ¢ via Feynman graphs.

In Section 4, we consider the relationship between §1C(oc) =0
and F(eX)=0. We show that a zero of §1C(OC) implies a zero of F((X)
and is also consistent with an essential zero of F(oc) However, it is

not easy to understand the nature of the zero of ,210(0( )

In Section 5, the condition ’Z1c(oc)=o is interpreted in the
context of the physical theory of massive QED. This is mainly an attempt
to clarify the meaning of the various renormalization constants used in QED
and to establish the connection between 7 and other related constants

1c
used in the literature.

Finally, in Section 6, we summarize the main features of the
eigenvalue equation {Z1C(M)= 0 and their possible relevance for an

explicit evaluation of ¢ .

All calculations are relegated to the Appendices.

2. = THE CONFORMAL GAUGE_ROOTSTRAP

We shall consider here the interaction of a massless electron
with its gauge field, described in terms of a gauge propagatorl (-—i)qr_ qy /q4
ccupled tg the bare vertex X"' with & coupling constant §§ 5 note that
only (§§)2= g enters in the Feynman rules and so we shall take § to
vary between -® and +mo . Throughout this paper we restrict ourselves to
this class of gauges. The gauge interaction being renormalizable, we shall
first calculate the renormalizatior ccrstants 2(1} and ng The latter will
be defined through a subtraction procedure at finite momentum p, p2= -~k_2

in order to avoid infra-red divergences ; for the same reason we shall con-

sider only off-mass shell propagation.
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The unrenormalized electron propagator £', dressed with gauge

5)

photons to all orders in § , obeys a differerntial equation which can

easily be derived using the Ward identity. In configuration space, this

equation reads

J% S(x;§) = [Jm-10)] SCxi §) (2.1)

where formally
g
G =”_LI—¢
1) (o)t 1 gt 7 (2.2)

For § = 0, the electron is free and we have

-4

,S'/(z)-o) =

1 s
n-’.

2 (2.3)

The canonical norm chosen for the electron propagator implies S'(p,O): —iégf
in momentum space ; the convenfions and notations used throughout the paper
as well as some basic Fourier transform relations are given in Appendix A.
The integral (2.2) for Q(x) is infra-red divergent, while 3 (0) is both
infra-red and ultra-violet divergent ; the difference q Cx) - 2 (0) is, .
however, only ultra-violet divergent. If we evaluate [} (0) with a high
momentum cut-off at p2=:—_/\2 and regularize both Q(O) and 3 (x) with

-4+ € )

a "photon mass" or with an anomalous dimension (q_4—’q to control

the infra-red divergence, we obtain 6 an expression valid for IXI >> 1//\

16-1C) = - {G_lni &J(‘Z:;’/ﬁ) -4 (2.4)

where b 1is a constant whose value depends on the regularization procedure
used. The reason for the restriction le >$>j\_1 is that we have taken

directly A - o in Q(x), x£0. From (2.1), (2.3) and (2.4) we obtain

-§€ - /lé'n"
Sl(ﬂ-»/‘zjg) =L e d /“’—"‘-4(—&2\1) ¢ (2.5)
=] >> A=t 2T “




and in momentum space

-§¢
iStpA §) = e [ (£ £) (-_f_‘)‘{F‘% (2-6)
[P << A F(‘(F"l7 P*

where we have defined

2, = -3 - -81 (2.7)
T

The renormalized electron propagator S 1s defined by a sub-
2

traction.at p ="K? where K is arbitrary but |K | << A ; explicitly,
we have
.S-l 2 _ ZR( 2, )
-1 (f)’( )5)"/" Pk )aE (2.8)

where the renormalized electron self-energy ZE;R has the form

N * ) = m * AN §)- 464KT 2,' 2.9
Z (pk% §) /fm[f(f”\’f) e AGE ] e

and therefore

-1 5—‘(’f1=-f<2) =,f/ (2.10)

When this subtraction procedure is consistently applied to all Feynman graphs
contributing to f(pg,l\g; ),

together with the corresponding subtractions
in the vertex function [}

as required by the Ward identity, one has
realized the multiplicative renormalization and thus

St ) =28) ' £258) S (p A5 )

(2.11)

[;4(1))’(1;'(;) = zgq (ﬁ; )j) F/: (f;Az)é)

(2.12)



with

LY Nq N
Zl=Zz =1+‘TPGK,A25§7 - (2.13)

In (2.6) we now write (—p2/K2)(K2/A2) for -p2//\2 so that from (2.11)
and (2.12) we obtain

~ - £é | {+3
pe.gs - lrcen " o1
' I -4 +% K*

o~

From (2.14) we see that if -5/2 < Ay < -3/2, then %’(1} and zg
are zero-in the limit /\ - ® and thus we have a "bootstrap" situation
for the vertex function, analogous to the one discussed in Ref. 1). The cor-

responding equations are

AF L r evJ
r;u = f l""'S' r,‘ S ,-.z(gp;i) + irqejucj-gleer (2.15)
‘ skeloton am?Ls

lp) - -2 57D
provided that all integrals converge. The successive terms on the right-hand
side of (2.15) are defined by the Feynman graphs of Fig. 2 ; we shall inter-
pret them either in configuration space or in momentum space, according to
which is more convenient ; Dgi is the gauge photon propagator (—i)qc qz/q4.
Only the Ward identity for q=0 4is used in (2.16) as this will be sufficient
for the complete determination of r (p,p+q).

,A—

Before discussing the group theoretical and analyticity proper-
ties of (2.15) and (2.16) we shall make a direct evaluation of I}L for
arbitrary values of the gauge parameter § E)r LF ; see Eq. (2.7):[.

The unrenormalized three-point Green's function

Q,/» (%,,2%;; 23) = <0/T’f(’")‘;"-("=) T (zs)] o> (2.17)
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obeys the differential equation (2.1) 5). In the free theory, (3 = O, =

using the same normalization as for the propagator (2.5), G! is given by

’L
/(-fv«.’)- -4 -4
<;p ==“;%;)%3’”3 ]},7%23132

1
(where Xij= Bxi—xj)2-i€:[2\,. Therefore for arbitrary 3, we have

3
£tz

/ ‘54 -4 -4 2 .2
G (71, %5 23) = —z . ]/:3 23 Jfp A3z X3z (‘E%{_A_) (2.18)
T

The renormalized Green's function G" is obtained from (2.18)

through multiplication by (2‘;)"1, so that, by (2.14)

‘{F 'f%

)= L Cferd) 7 2 (-:zz Kz) :
Gr (=1, % %3) Aot ’_,((F’_E_) ?/13 /3];«}?1 32 4—14 (2.19)

which we write as

- -4 -4 2?[:"‘3
Qr(z,,xz)' 13) =-_1 a(fr) 7/:3 %3 Up%z 3, Z,2 (2.20)

4n*

note that a(-3)=1.

The renormalized vertex function r',;. can now be obtained
from (2.20) by amputation of the external Fermion propagators. This is con-
veniently carried out in configuration space. We write the propagator

(2.11) as

] 20 -
S(x) = _L_a.(&-).x’% (2.21)

Zn*
The inverse propagator is easily evaluated using the formulae in Appendix A.

It turns out to be

le-2 (2.22)

Se = (2—)-%) [t 7)ab5)0tt et 2™
T F

%),



and therefore

. _ PR
Fr (Z,,Zz)~73) = IS ‘(1“,) G’, (2',;,2'2/513)5 éﬁ'z,z)JZ, szl (2.2%)

The evaluation of this integral is summarized in Appendix B1. The result is

(z,,z,,z,)_(h) (ot aieg9a-26698] .

w ith
-4 —2-5
A= _#%; 1/3 I Hsz Z32 X2 (2.25)
-2(;
) 12 %12
-2&" (2.26)
= (213 232) [232/“ ]ﬂ//z Z)2
z32 " Z3,

In Appendix B2 we check that (2.24) satisfies the Ward identity (2.16).
This in turn implies that the generalized Ward-Takahashi identity for
non-zero momentum transfer is also verified, because of the functional form
of form factors A and B 7). In the limit ﬂF—»—% the B part of
(2.24) yields a finite contribution because a divergence in momentum space
compensates the prefactor (2£F+3) ; the A part does not contribute in
this 1limit. The resulting r;(p,p+q) is shown in Appendix B3 to be

exactly aﬁu y for all external momenta, as it should.

Let us now turn to an analysis of the vertex bootstrap equa-
tions (2.15) and (2.16). The validity of these equations in the range
-5/2 < zF < -3/2 is clear : as discussed in Ref. 1), if one inserts a
linear combination of the form factors A and B in the right-hand side
of BEq. (2.15), then, in the range of ZF given above, all integrals
converge in the ordinary sense. We also note that because of (2.16),
S(x) is defined in (2.15) up to an arbitrary constant, corresponding to
the arbitrariness of the renormalization program ; we, of course, chose
the constant such that the solution of the bootstrap is in fact S(x) as

gilven by (2.21).
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Let us check the group theoretical properties of the Lkootstrap
equations (2.15) and (2.16). Because the pkoton propagator Zﬂit is con-
formally covariant 1 , it follows from the Polyakov 8)--Migdal 9) theorem
that the homogeneous equation (2.15) admits the conformal group 0(4,2) as
its invariance group, and in fact we see that (2.21) and (2.24) are conform-
ally covariant objects 7). Herein lies the tremendous simplicity. of the
"gauge bootstrap" as compared with the realistic kootstrap written in terms
of the true photon propagator (—i)((gpv ,/qz)—rl(qr q,//q4)). In the
latter case, the 0(4,2) symmetry of the massless theory is concealed if

one works in the usual set of covariant gauges 1)’1OX

Next, let us discuss the extension of the gauge vertex boot-—
strap outside the range =-5/2 < Ly < -3/2. The conformal form factors A
and B will generate pole singularities in (2.15) at = —24+n, n any
integer, or zero 1). Therefore, by analytic cortinuation, (2.15) is valid
in nearly all gauges and its solution is always given by (2.24). Further-
more, sihce the solutions f}* ard S are well defined in momentum space
in all gauges [és is immediately apparent from the fact that the Ward iden-—
tity (2.16) is satisfied], they correctly yield the limit of the bootstrap
solutions in the exceptional géuges = ~%+n. Hence, the bootstrap
formulation is in fact valid in all gauges provided that in the case of an
exceptional gauge one begins by evaluating all integrals in (2.15) in a
nearby gauge and then takes the limit of their sum when ﬁF—>-%+n. From
here on, whenever we talk of a vertex bootstrap in an exceptional gauge,
we shall mean that the above limiting process has been used, unless the

contrary is specifically stated.

A particular situation arises in the case ﬁFz —% because this
corresponds to the free thzory (5?: 1) and embodies the transition between
the regions %?::O and 5?: @ [éee ng. (2.14[1. We now waat to show that
not only is the bootstrap valid at this particular point in the sense of the
preceding paragraph, but also that in this case each separate integral on
the right-hand side of Egq. (2.15) has a well-defined limit for ﬂF::—%.

Define
€ = [F"% (2.27)

Using the analysis carried out by Mack 11) in & similar situation, we can

see that in the neighbourhood of € = 0, each integral in (2.15) admits

readily the reason for this simple polé structure : in the limit € — O
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each vertex /;A in a given skeleton graph of Fig. 2 tends to a finite
quantity JP y and because of the irreducibility of the graphs considered,
no divergent subdiagrams occur in this limit ; the over-all divergence then
manifests itself through the 1/€ singularity 12). Because ;D is of
order € [éee Eqg. (2.72], we see that as S - 0 all integrals vanish
except for the triangle graph in Fig. 2 which contains only a single factor

of 3 . Therefore, Eq. (2.15) becomes

. . G,z
f’l’tﬁ"“’f’?gneﬁ f/;sr,,sr;_(JD )
€e—=» O

(2.28)

The last integral is evaluated in Appendix B4, where it is shown to be indeed

equal to avﬂ s thereby confirming the validity of the bootstrap for 4F= ~%.

We close this section with a brief summary of its content. We
have shown that the interaction of a massless electron with its gauge field
is entirely described, in an arbitrary gauge within the class considered, by
the vertex bootstrap equations (2.15) and (2.16) for the renormalized quan-
tities S and fk_ « These quantities were constructed explicitly and the

following properties of the boétstrap were exhibited :

a) the vertex bootstrap equation admits 0(4,2) as its invariance
group ;

b) the vertex bootstrap equation is singular in a discrete set of gauges
which are conveniently parametrized by the Fermion field "dimension"
EF H

integer or zero. The bootstrap is, however, valid in these gauges

these singular gauges occur for = -3+n where n is any

if all integrals are first evaluated in nearby gauges ; in particular
for 4F= -2  each integral in Fig. 2 converges and is in fact zero in
this 1imit except for the triangle graph which yields the correct free
field result /}L(p,p+q)= p 3 thus even the free field theory,

where 26 is finite and equal to 1, can be reached through the boot-

1
strap and was in fact obtained in a very simple way.

These features will serve as a useful guide in the investigation

of the properties of the vertex bootstrap in the presence of true photons.
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3. — THE VERTEX BOOTSTRAP FOR MASSLESS QED IN THE VICINITY OF THE

CANONICAL GAUGE

3.1+ = The renormalization ccnstants 2} and ?2

We now turn to the complete theory with photon propagator
; {
- - [
IDFj? = l (é?f“’ ’L j&%ﬁ}——) 2’1

and coupling constant e2 (or p( = e2/%4[). Let us write the vertex

bootstrap equation of Ref. 1) in momentum space

Tpp)= (4 SE4)R (pohopked) SGekeg) Kok pktpog) 5o

: . y
f'r[,,.‘r) = -i2 S7(p) (3.2)
er, ‘
Equation (3.1) is depicted in Fig. 3a ; the skeleton expansion of the irre-
ducible Bethe-Salpeter kernel K in terms of ,; s, S and IDG.e is given

13)

in Fig. 3b One should keep in mind that in Eq. (3.1), closed Fermion

loops have been omitted in the kernel K.

In Ref. 1), Egs. (3.1) and (3.2) were established on the basis
of an argument similar to the one used in Section 2 for the gauge bootstrap.
Namely, these equations were first shown to hold in a restricted class cf
gauges ; it was then argued on grounds of convergence and analytic conti-
nuation that they are in fact valid in nearly all gauges. We recall that
(%3.1) has a hidden 0(4,2) symmetry in the sense that whereas S is con-
formally covariant, rk and Dg, are only limits of certain conformally
covariant expressions depending on an external scelar field, when the latter
is taken at infinity [for details, see Ref. 1)]. Thus, if & and w are

given

“’("‘ 5'

S(f) = C{f (3.3)
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but FP contains form factors in addition to those given in (2.24) and (2.25).
The presence of the latter precludes an explicit proof of the general validity
of the bootstrap ecuations. However, it was argued in Ref. 1), on the basis
of the self-consistency of the theory and from direct inspection that the new
permissible form factors will not destroy the convergence properties of the
bootstrap. If this is indeed so, then (3.1) and (3.2) are valid, as in
Section 2, in nearly all gauges ; the exceptional gauges may still . be para-
metrized by £F=~%+n with n any integer or zero. Note that LF is now

a function of both 1 and &. AS previously, we may extend the bootstrap

to encompass these exceptional gauges, by demanding that all integrals be

evaluated in nearby gauges before going to the limit of an exceptional gauge.

Equations (3.1) and (3.2) still determine S up to an arbitrary

constant C ; we choose C such that

R . T - ( - -3-—

= -1 - F 2

S ) ?( -,1:-,) (3.4)

where K is an arbitrary momentum and /p= 2, ‘VL) This normalization
is consistent with the interpretation of S and f'r as renormalized

quantities through the subtraction procedure (2.8) and (2.9). (For a more
detailed discussion of this point, see footnote 23 in Section 5.) The

corresponding renormalization constants %1 and Ez then have the form

~ ~ 2 1 +3
F 7z
Z,=2,= 3(«,1)<_/_\_) (3.5)
P
This equation follows from the Gell-Mann-Low factorization argument 14) or

equivalently from the Callan-Symanzik 15) equations as used by Adler and

Bardeen 6), with K,2 now playing the rdle of the mass squared.

The gauge transformation properties of g(& ,1) and Ay = I.F(o(,VL)
follow immediately from the fact that the differential equation (2.1) remains
valid if is replaced by 1 and Q(x) by -eZJ\(z). This means that
the ratio S'( 5')/8'(5) as obtained from (2.6) and (2.7) is equal to the
ratio of S'(n')/S'(n) in the present case, with the identification

—e2n=§ ;  thus .
2?(5)4F) = Z.('l\‘lf) (—e_z‘z‘-:j‘)

i) Z,00h) (5.6)

N o
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This implies

() 4 (<) = 2 (" 1) (5:1)

and

(1) - & VE Ll £) rlt o £)
?{A,wl) Fed/+5) ride+4)

Let 110(0() be the gauge for which L€= -2 ; this we call the canonical

(3.8)

gauge (or the generalized Landau gauge Eq. (3%.5) may now be written

in the form

o e A [7-a60)
Z,-Z, - glapal) T (5.5

where the gauge dependence of the exponent £F4-% has been explicitly

exhibited.

%2.2. — The canonical identity

It is clear, both from (3.9) and from (3.1) and (3.2) that in
general .the vertex bootstrap does not determine & . From (3.7), (3.8)
and (3.9) we see that if we are in the defining range -5/2 < LF < =3/2
then E1 and g2—>0 as /A - ® for any value of . Thus, the boot-
strap equations (3.1) and (3.2) must be valid for arbitrary o£ in this
range of gauges and analytic continuation should not modify this feature.
What the bootstrap in fact does is to provide one relation between &,

1)

zF and 11 , as can be seen by direct inspection « Thus, if we write

(3.7) in the form

bod = £[q-.0] (310

we see that the vertex bootstrap in an arbitrary gauge can only determine

the function 1Lo(¢x), with o arbitrary.
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Now consider Egs. (3.1) and (3.2) in the vicinity of the canonical
gauge, namely for J\-vl = 1Z -flo(a() arbitrarily small but not zero ; let us
study the 1limit of the bootstrap equations as J‘ol - 0. As ”n - 0,

r . N . o )
,,(a(,"l) r;‘(ﬂ, 720), and because Z1(a(,‘)lo) is finite no divergences
should appear on the right-hand side of (3.1) if the integrals are evaluated

with 'Vl = ”lo in the photon_propagator. In principle, this is true for the
sum of all graphs but we assume it also holds to any finite order in & .
More precisely we assume that f',, (e, 'lo) can be expressed as a power
series in & , and that 'Vl O(a() can be determined to any finite order

in & by requiring convergence of the integrals at 'Vl = 'Vlo.

! On the other hand, in carrying out the limiting process IF+%—’O,
we must remember that £F= -% is an exceptional gauge ; this means that if Vl
is kept fixed at a value different from 'Vlo in D’,,v , Wwhile taking the
canonical limit in F’,,, and S, all integrals will diverge in the 1limit
LF= -%, however, small J"l =7 - 'lO may be. Therefore even though we may
calculate 'Vlo(o() from the above convergence requirement, we cannot vary
ﬁF and n independently but we must restrict their variation according to
(3.10). As in Section 2, the divergences of integrals (at fixed n ) should
appear as sSimple poles in €& = £F+% ; indeed our previous argument (Section 2)
to this effect, based on the irreducibility of the graphs considered is still
applicable in spite of the presence of additional form factors 12). We conclude
therefore that, to any order in o , 1in the 1limit JZ,F-’-%, the right-hand side

of (%3.1) is the sum of two terms :

1) a "regular" contribution which arises by actually setting 'Vl = 'Vlo(o‘)
in all photon propagators, ’Vlo(o() being determined by the convergence

requirement ;

2) a "pole" contribution stemming from the o(.ol =" - 'Ylo(a() corrections
to the photon propagators ; these "pole" terms are in fact finite ; they
are proportional to J“‘l /€ , which is finite in the limit € -0
because of (3.10) ; this feature is already familiar from Section 2,
where the "pole" contribution (2.28) in the gauge bootstrap was shown

to be finite in the "canonical" free limit 1.F= 3.

Iet us now apply the above analysis to see what information can
be obtained from the bootstrap in the canonical limit. If we set gq=0 in
(%3.1), then because of (%.2), the left-hand side is simply Jm ; the right-
hand side, which depends explicitly on & , will yield CP(O() ”A where
47(0() is a function which contains contributions both from "regular" terms,

(PR(a(), and from "pole" terms, ?P(v() ; thus
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{= ?R[d)-r?r(o() (3.11)

Clearly, this equation contradicts our previous assertion that (3.1) and

(3.2) do not determine of , unless it is an identity in & . We shall

argue that such is indeed the case. Before presenting the general argument,
it will be useful to evaluate first all the contributions to cPR(o() and
CPP(X) of order zero and one in & , and confirm the identity to order o(.

To this end it is convenient to define a quantity r'rf”(o(,",)
by

Fr[ofj?z)-/—'r[o)' fsl)-r /;(1)[0()"1) (3.12)

where /-’. (03 f’l ) is by definition the solution of the gauge bootstrap
with gauge parameter 5: -e23‘$l ; we then substitute (3.12) into (3.1).
Since
dm [, (0; %) = fu

1-+°
we see that ) )
b TV) = 100490
)
begins at first order in of . The reason for using f; (03 J7 ) in (3.12)
instead of simply p , is that both the complete I (a3 ) and
f',‘ (03 J’l ), and therefore also r}‘(”(’(;’l)’ give rise to integrals
with the same behaviour under a scale transformation, and this is crucial
for evaluating correctly the residues at the poles in 1/€ , as seen in
Appendices B and C. Essentially, in order to handle correctly the pole
singularities, we prepare our power Series expansion in o by first
dressing all propagators and vertices by gauge photons with coupling cons-
tant } = -ezcrol to all orders in } ;s afterwards we shall retain
only terms with a non-vanishing limit as g,—' o, €-0, J/e finite.

Since we are only interested in terms of order zero and one in
ol sy we take I",S”(ac H 1) to order o . In order to sort out the orders
in ¢{ Wwe separate each diagram into a reguler part R and its remaining

pole part P. This is because, by (%3.10), the € denominator starts at
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order ot and therefore the pole term of each diagram will be of one
order less in & than its regular part. In the limiting gauge 710,
(%3.1) yielas

Lime [’;(0)'3"1)-' Ff‘")(’()"'l)] = Yu + /}m(a(;az,) =

~l—vo
(3.13)

n (2) €)] C))]
=P°’L+R'f‘+77l'l.+’l7’(+P +}>, -

where the diagrams P, R, P1(1> (i=1,2,%,4) are represented in

Fig. 4. We have kept only terms with a non-vanishing limit as Jhl -0

POF’ is of order 0 in & , all other terms being of order 1.
The calculation is performed as follows.
1) R1Fr is evaluated at vanishing momentum transfer in Appendix C1. We

take 01 arbitrary but fixed ; in the limiting process we then
choose n_ such that the triangle graph is non-singular. In this
way we determine 1'0(0() (to order zero) as explained in the pre-

ceding analysis. This yields the well-known results 3),4)

R‘# (pr#) = %JP (3.14)

(o)
Yol2) = { (Lachw awge) (3.15)

In the same Appendix we also evaluate R1r (p,0), which will be

needed below ; we find

R'F {f,a) = -+ K fgﬁ (3.16)

8t n f=

2) The pole terms may ke evaluated by using the following recipe. Because
these terms arise from the JLL corrections in the photon propagator
and since all diagrams considered have no divergent subdiagrams in the
limit €& — 0, we may neglect Jkl in all subintegrations when taking

the canonical limit in a subdiagram. Thus, the pole term of a graph
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arises entirely from the last integration ; we may therefore in the

last integration replace the photon propagator by a gauge photon with

coupling 2? = —egyn and perform the integral. One obtains in

this manner

P(?’L = J,* (3.17)

) '
’7.,; = “%“? Ip (5.18)

Equation (3.17) is obvious because the method described above reduces
the evaluation of PO to the calculation of the triangle graph in

the gauge bootstrap. A direct check of (3.17) is given in Appendix C1,
Eq. (C.14). P$1) is evaluated in Appendix C2. Note that both (3.17)

and (3.18) are independent of the external momenta, a general feature

of pole terms.

(3)
(1) s
f}‘ (a(;1l), one may consider (3.13) as an inhomogeneous linear in-
tegral equation for f; L (d;'n) and solve it by iteration, the

inhomogeneity being R +-P(1) ;5 | from (3.17) we see that P has
M 1p - op
dropped out of (3.1321. Now in calculating the pole terms we may put

To calculate PEQ) and P (or P§4)) which depend explicitly on

the external momenta to zero (and use an infra-red cut—off) because

the integral is dominated by the ultra-violet region of integration

(see, for instance, Appendices B3 and 02). Thus R1F'+ PSL? has to

(2)

be taken at zero momentum transfer in P1 and at momentum transfer

equal to the integration variable g 1in rfgg) (P§4)). Therefore
from (%.14), (3.16) and (3.15) we obtain the relevant kernels, (%.19)
o

and (3.20) respectively, for P < and Pgiz (or P(4))

1,L 1’*

Fl'r (fv,r) + Tifr) = O (3.19)

)
R,,. (7,0) + f’,,“ = -.g_t.(&(’, - %Z;_) (3.20)
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2
ngg H
of the kernel (3.20) to PEB) and P§4) is also zero because the

The kernel (%.19) gives zero contribution to the contribution

transverse vertex (3.20) is coupled to the longitudinal gauge propa-

gator J;l (qﬂ qv,/qz). Thus, the iteration process stops here and

(2) (3 ()
P,"=P,"=- ’f‘=0 (3.21)

From (3.14), (5.17), (3.18) and (3.21) we see that to order « , (3.11)

is identically satisfied in & with the identification

) = 3« ,
Pr (<) - (3.22)
= 4- 3L (3.23)

Dp () o

Finally, from (3.13) and the convergence requirement it is possible to
obtain the value of O(o() to first order in K ; this is done in

Appendix CZ% and yields 16)

= - 3
‘lo(d) { ;‘;{t— (3.24)

3)

which agrees with the earlier evaluation of Johnson, Baker and Willey .

To order K , ‘the above calculation explicitly exhibits a pos-
sible mechanism through which (3.11) could be an identity ; namely, the can-
cellation of the regular terms by the pole terms. We shall argue that this
cancellation phenomenon ought to be true to any order in ¢ and that
therefore (3.11) is indeed an identity, which we shall call the canonical
identity. Note that to order zero in p{ , the canonical identity simply
reproduces the result of Section 2, namely that free field theory is cor-

rectly obtained as the "canonical" limit of the gauge bootstrap.

The reason why one expects (3.11) to be an identity is that the
validity of the bootstrap in the canonical limit depends on the validity of

the following equation for the vertex renormalization constant
~N

-linn 4ﬁon EZ‘ = O

3‘1—90 Az/K;—'k (3.25)
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where we have chosen J%’< 0 to ensure convergence of all bootstrap inte-
grals in the ordinary sense. The order of the limits in (3.25) is crucial ;
it is only because we first take (1\2/|<2)—’® that the bootstrap is
valid in a nearby gauge Jﬂ- # 0. From (3.9) we then see that (3.25) is
indeed satisfied for arbitrary values of o and therefore Eq. (3.11)

must be an identity.

In objection to the above argument, one may say that ’lo(d)
as determined from the convergence requirement need not be the same expres-—
sion aé O(D() determined from the bcotstrap in a different gauge. But
clearly if 12()(d ) can be deternmined from perturbation fthecry as an ana-
lytic function of & [és was already assumed in Ref. 32], then both
determinations of WZO(K) should yield the same function. Thus if the
rather weak analyticity assumptions postulated in writing down (3.11) are

correct, then (3.11) is indeed an identity in X .

%3.3. — The eigenvalue equation §1C(0( =0

Up to this point, when we studied a bootstrap equation in an
exceptional gauge (e.g., the canonical-gauge), we always meant the limit
of the bootstrap equation from nearby gauges. The above analysis suggests,
however, the possibility of imposing a stronger convergence condition in
the canornical gauge ; namely that the bootstrap be valid in the canonical
gauge independent of the limiting process. For this to ke true it suffices

to impose

Ppl) = © (3.26)

so that the bootstrap in the cenonical gauge is valid even if Jzz is set

equal to zero at the outset. By (3.11), Eq. (3.26) implies

[ = Pe&) (3.27)

The reason why we now get an eigenvalue equation for K 1is
clear if we look at the expression (3.9) for the renormalization constants.
Qur stronger convergence condition (3.26) means that in (3.25) we have the

right to permute the limits and therefore, from (3.5), we must have
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Zu (=) = 3(0(,10(.,()) =0 (3.28)

where the index ¢ refers to the canonical gauge. Equations (3.28) and

(3.27) are in fact the same equation ; indeed by definition

n

R
Z, «) =4 -/ (xx) (3.29)

where JF.J\EQ(“ s K ) is the sum of all radiative corrections to /;4 (K , K )
evaluated in renormalized perturbation theory. From the Ward identity,

/\E{(K ,K ) 1is a pure number and can therefore be evaluated at arbitrary
momentum. But by definition ?)R(a() is just /\R(p,p) ; this proves our
statement. For the sake of completeness we show, in Appendix D, how the

~

renormalized perturbation expansion for Z1C can be derived directly from
the bootstrap equations. The lowest order contributions to (3.29) are
depicted in Fig. 5. In carrying out these integrals, however, one ghould
work in a general gauge in order to avoid ambiguities. More precisely, one
has to use a gauge covariant cut-off in an unspecified gauge : this means
that to a given order in & one should use, for instance, the Pauli-
Villars regularization method and keep all graphs needed to ensure gauge
covariance up to that order. Then all terms in 1ogn(/\2/!<2), which

may lead to an ambiguous /\ independent constant, will vanish simulta-
neously from (3.5) for a well defined value of vl . This procedure thus
fixes the canonical gauge and at the same time determines uniguely the /\

independent term in that gauge.

Finally, we wish to emphasize that it is the canonical identity
which allows us to write down the eigenvalue equation (3.29). Indeed, if
(3.11) had been an equation for  and not an identity, it would most
probably be incompatible with (3.27) and hence also with (3.28). Therefore,
if we then decided to retain (3.28) but give up (3.11), we would have a
discontinuity at the canonical gauge and thus a violation of gauge covariance
for non-vanishing [7u . This inconsistency would show up in practice
because the evaluation of r)* directly in the canonical gauge is ambiguous
(see Section 5) and so is the eigenvalue equation. It is only because we
have the possibility of working in a nearby gauge that these ambiguities are

absent. This is clear in the bootstrap calculation of the eigenvalue equation
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in the form (3.26) or (3.27) ; it is also clear in the perturbation expansion
of (3.28) from the preceding discussion. To summarize, we may say that it is

the canonical identity which permits the equation §1c(a;)= 0O to be defined

and to have a gauge invariant content.

4. - THE SELF-ENERGY CONDITION

In addition to the vertex bootstrap equations (3.1) and (3.2),
the self-consistent formulation of massless QED contains a self-energy

condition expressing the vanishing of the renormalized photon self-energy

TT'EEV (a)

T (3) = (3o g 109:) [TL)-THE] = 0 0
2)

where K' is an arbitrary momentum. This is, of course, Adler's

eigenvalue condition

F(x)=0 (4.2)

because, as is well known 4)

(4.3)

7T(clz) = Q)+ F (&) /o& _}\—i

where G() 1is a finite constant. From now on it should be understood,
unless otherwise stated, that graphs containing closed Fermion loops have
been left out of TL(q?) [end of F(x]].

For arbitrary o the unsubtracted self-energy

M) = (?,w 9*-9p9) TG (4.4)

is finite in configuration space for non-coincident external points. As
this point is crucial, we recall why it is so. Take the Fourier transform

of (4.4) after rewriting (4.3) in the form
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(4.5)

T - [G60- 2F(OAT ]+ 2761

where € is infinitesimal ; then, for x#O

(4.6)

Ty &) = 25? F ) (2,4,, 0-,03,) ;‘

which is finite.

Now, instead of expressing TT’“, (x) 1in terms of the bootstrap
solutions for I”,‘ and S, as was done in Ref. 1), we shall use the rela-

tion

W_Fy('z) = 21 f’-'" Sgb/v

(4.7)

It is important to notice that it is not legitimate to insert into (4.7) the

bootstrap solutions for rft ‘and S while keeping the cut-off A in Z'l'
This is so not only because the integral may diverge but also because an
arbitrary cut—-off regularization of the integral after ,—” and S have
been replaced by their value at A = © (as is the case in the bootstrap)
will violate the gauge invariance of T[Py . This arises from the fact
that the gauge invariance of (4.7) is due to the cancellation of the cut-off
dependence in the short-distance behaviour of SFF S = G,A by the cut—-off
dependence of '51 ; indeed, for small Ax, G', = '51.8()().’;4 .s (x+Ax)
contains the factor q (Ax) - N (0) as is seen from (2.1). Since 1 (o) is
ultra-violet divergent it is therefore not legitimate in the present case to

evaluate I)(Ax) with A @® because according to (2.4) this would yield a
divergent answer for Q(Ax) - Q(O) in the limit A x— 0, instead of zero.

It is interesting to note that this difficulty in expressing
TT,“, (x) in terms of the bootstrap solutions r',,, and S, is not over-—
come by retaining the inhomogeneilty 51 K’,, in the Schwinger-Dyson eguation
(3.1) and eliminating it from (4.7), in favour of f’/, 's, before going to
the tootstrap limit. This would lead to

M = [Fpssry, - [usskssH,

(4.8)
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which is depicted in Fig. 6, using the expansion of K given in Fig. 3b.

If both integrals on the right-hand. side converged, then (5.1) would imply
TC’W = 0, assuming ,—',A and S were taken to be the bootstrap solutions ;
this vanishing of TZ"V would be the reflection in (4.8) of the formal sta-
tement ,2,1:0 used in establishing the btootstrap. But in any conformal boot-
strap both terms in (4.8) separately diverge and any reasonable regularization
procedure yields a finite result for the difference 17). This is of course
why the self-energy condition is not automatically satisfied in a bootstrap

8)

of expressing x"ﬂpv (X), instead of Tlrw(x), in terms of bootstrap

theory as was claimed before L , and also why the Mack-Symanzik 19) recipe

solutions was used in Ref. 1).

In the present case, however, the equation 7 =0, namely the

1c
strong convergence condition of the bootstrap in the canonical gauge, does

in fact imply T["w(x)=0. This is because :

1) Equation (4.7) is valid without introducing a cut-off in Fft and S

since '51 is cut-off independent in the canonical gauge ;

2) the evaluation of cut-off independent functions r,u- and S 1in the
canonical gauge can be performed unambiguously for any value of &K
because of the canonical identity as discussed at the end of Section
3.3

The conclusion of this rather lengthy discussion is that the
gauge invariant content of the equation rZm(o():o is indeed F(p()=0
as indicated by the naive argument outlined in the introduction and in
Ref. 18). This fact, however, hinges crucially upon the validity of the

canonical identity (3.11).

We next discuss the nature of the possible zero of er1c(0<)

and its relationship to the induced zero of F(o()

First, despite the fact that we have not proved that a zero of
F(ol) implies a zero of rsz(o(), we can easily show that a zero of 510(0(2

is consistent with an essential zero of F(D() Suppose indeed that we

replace K in Egq. (3.1) by KT, where KT contains all closed Fermion
loops, except vacuum polarization loops. We can then repeat our whole argu-
ment and obtain an eigenvalue equation ﬁffc(o() =0y 1in which closed Fermion
loop contributions have been retained. This would lead to FT(D()=O (with

closed loop contributions included) and hence by Adler's 2 analysis,
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unitarity (that is the Federbush-Johnson theorem 20)) would imply an

essential zero in F(o() and the vanishing of all closed loop contribu-
tions in K T. Therefore (0() would have a zero at the same value
of K as (ol ), namely at the value where F(&) would possess an

essential zero. In symbolic notation

2T )0 —> FlH) =0 =—> Fl)-=
fc() \ CSSMU’«I aho (4.9)

Zoc_("‘) =0

The nature of the zero of %10(0() is more difficult to under-
stand. The following cor.siderations illustrate the delicacy of the problem.

If we write (4.7) in the canonical gauge as

M. ) = i,Jr,“s‘s‘;;v

(4.10)

and take the derivative of both sides with respect to & , then we have from

(A F(k)/PK )=0, at the zero of F(e)

od?z‘JrSSz;v-rZo( [JrSSJ] (4.11)

oK

where the partial derivative is taken at fixed ‘Vl . The first integral is
convergent but the second one is not because the canonical gauge 'Ilo(o()

is determined by the cancellation of divergences between terms of different
orders in & . Thus, to nth order in & , the term corresponding to f;f’
will appear n times in o (@ /9 ) ,—vc , S0 that the cancellation of

divergences in f ¢ s° s¢ X" is not realized in the derivative ; this

~

is easily checked in a second order calculation. Therefore, when Z1c is

put equal to zero, the second term in (4.11) is of the undetermined form
Ox @ . From previous experience 17) on this type of ambiguity in conformal
integrals of the type (4.11), there appears to be no reason why this unde-
termined form, when correctly regularized (for instance through the Mack
and Symanzik recipe 19)), should yield zero. Therefore, barring a possible
accident, (9 /7@K )“z’1C

second term. Nevertheless, this does not necessarily imply (d/do( )510(0();40

should be non-vanishing in order to cancel the

if one varies 1 in order to remain in the canonical gauge as & varies,
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the divergence in the second integral in (4.11) should cancel in principle
through the readjustment of the gauge. On the other hand, this cancellation
depends on the limiting process used in evaluating the integrals in the
canonical gauge. Further work is needed to ascertain whether the zero of

the function §4C(0() is of finite or infinite order.
1

5. — INTERPRETATION OF 'z”m(cx)—_- 0 IN MASSIVE QED

One might be tempted to relate 2& and %é to the conventional

renormalization constants Z1 and Z2 obtained by a subtraction procedure
at p2=m2 in massive QED. This section is aimed et avoiding any such
confusion ; we shall show indeed that g2 is not directly related to Z2
but rather to a different scaling constant which has appeared repeatedly

in the literature. In the following discussiorn we always assume, unless
otherwise stated, that the self-consistent coupling constant of massless
QED is indeed the physical charge, that is we restrict our discussion to
Adler's type I solution 2 of the Gell-Mann - Low equation, as summarized

by the condition

B) = m L &(7 Z, =0 (5.1)

m

As showr by Adler, Eq. (5.1) implies, via the Callan-Symanzik
equation 15), the following asymptotic behaviour for the renormalized electron

propagator (for mo=(3)
. (G
foo Clt5 25) f (F) (5.2)

y(A/2

/ 1) (5.3)

S (f)

,r >>m?

N o

%v

\

Here, /} is a photon mass which has to ke introduced because the renormali-

zation program at p2=1n2 induces infra-red divergences.
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We cannot yet make the connection with massless QED because,
when m#O, there are Fermion loop contributions which have no counterpart
in massless QED. However, if one omits all closec loops, the forms of (5.2)
and (5.%) are obviously maintained 21) though not the values of the constants
f(X) and c¢(; ,L2/m2) which now refer to a truncated theory. We call the
new constants of this truncated theory fo(a) and C°(of; F.z/m2) ; the
correspording renormalization constants are Z? and ZZ. Note that Z?:Zg
because the approximation considered respects the gauge invariance of the

massive theory.

The crucial point in the following discussion is that in the

no-closed-loop approximatiorn, the asymptotic behaviour of the unrenormelized
electron propagator S'(p) is the same in massive QED as it is in the massless

case. It then follows from (5.2) and (5.3) that

g (f) N f (d)] (- ) y)/z
(no- loor arrrox,malueu)

———-

(5.4)

Comparing (5.4) with (3.4) and 3.5) we conclude that

({617 = g(*50) G-5)

Efo(a( ﬂ_1 is indeed a gauge dependent quantity whose gauge transformation
properties are given in Adler and Bardeen's work 6 . They are identical to
the gauge transformation properties of g(e ; ’l) given by (3.8) with the
identification x = £F+ 5. If we now call C (0() the value of E‘L‘ (0():[ -1

in the canonical gauge, we have

Z,,0)=C,(x)= [{(0] MMJ P (5.6)

Thus the equation §1C(K)=O means that in the no-loop approximation to
massive QED, the dressed unrenormalized propagator vanishes asymptotically.
This property is not true in the full theory because fo(o();éf(o(). We
also see that E1c(a()=0 does not at all imply Z?(O():O in the canonical
gauge and a fortiori not Z1(o()=0. Physically this is reasonable, because
Z1 should be related, in the massive theory, to a renormalization for

K< > m° (and for a restricted set of graphs) ; it therefore has to do
with asymptotic scaling properties, as does CL(O(), and not with low

momentum effects which are present in Z,‘ 22).
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The function GL(X) has been used earlier in a different context.

It appeared in the evaluation of the asymptotic behaviour of the unrenormalized

electron propagator in the canonical gauge by Baker, Johnson ard Willey 3>’4).
These authors, and others since then 10)’23), idertified x to o(o, the
solution of the Gell-Mann - Low eigenvalue equation, thus working in the context

23)

of what Adler calls type II behaviour 2). Recently, Schritzer has consi-
dered the possibility that the equation CL(oCO) =0, together with Zz("(o) =0
(in the canonical gauge), is consistent with the short distance behaviour of
finite QED. As we are not certain to know the correct asymptotic behaviour

of the électron propagator in the case of type II behaviour, it is difficult

to understand the relation of 7, and CL(o() in this case ; it should be
kept in mind, however, that in type I behaviour, these twc quantities appear

to be completely different objects, as follows from the above discussion.

Before closing this section, we remark that it has been stated
earlier that the evaluation of CL(X) gives rise to ambiguous integrals.
These ambiguities arose in fact when CL(X) was evaluated directly in the
canonicel gauge or, equivalently, when calculations using the conformal group
were performed in the unrenormalized theory with canonical dimension for the

10),23)

Fermion field According to the discussion at the end of Section 3.3

no ambiguities will arise in our approach.

6. — CONCLUDING REMARKS

The proposed eigenvalue equation for o , ()=0, has the

7
ic
following properties, proved under rather weak analyticyty assumptions :

1) it is consistent with the gauge covariance of QED ;

2) %10(06) admits a perturbation expansion in K where the coefficient

of o(n is unambiguously determined ;

3) its roots are also roots of Adler's eigenvalue equation F(eX)=0 ;
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These appealing features should not mask the fact that it is
not easy to understand why such an equation should really admit a root which
is as small a number as 1/1%7. If this really turns out to be the case
(without, of course, modifying the eigenvalue equation), then this result
should clearly arise from high order contributions in the power series
expansion in ¢ . Under such circumstances, further study of the nature
of the asymptotic electron propagator may show that the restriction to

sore subclass of terms is more meaningful for %Hc(°<) than for F(e&).
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APPENDIX A - FOURIER TRANSFORMS, CONVENTIONS AND NOTATION

The following conventions are used throughout the text.

Fio = f(f) = f"— [f'xf(z) d*x (1)

-d -

—ir'az—
Fip - 4o - gl [« 7 Apd o)

In particular

2 . A\ o«
F(oz-ue) = —l(”m) 4 !,_:_%j_é) (" "é) (A.3)

FV (r_’e) = LT 40( f'{o(*oz (-7(-“6)
) (-4)

The metric is g00=1 ; g11=g22=g33=—1 ; IO is Hermitian and 0’1, '62,
'53 are anti-Hermitian. We also use the shorthand notation Xi;]:Xi—Xj’
and ‘
(i)
z - (4.5)

Y
rJ-.r (r2+lé) /2- (4.6)

When writing Green's functions in momentum space it will always be under-

stood that the over-all momentum conserving factor (2 E)4J4(Z pi) has
been divided out. .

For Green's functions and renormalization constants, we have

applied the following notation conventions throughout the text.

~ Unrenormalized Green's functions are denoted by primed quantities
(Dlpv s 8'y Gy ' -

- Renormalized Green's functions are denoted by unprimed quantities

(Dry’SQ G’,!rr )'
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- Renormalized self-energies (for which the renormalization is subtractive)
are written with an explicit superscript R (ZER ,TT;ﬁ).

- Renormalization constants defined by a subtraction procedure at p2=m2

are denoted by capital letters ; a superscript o has been added

whenever we refer to a truncated theory (Z1, Z2, Z?, ZZ).
- Renormalization constants defined by a subtraction procedure st p2=-K?
(in massless theories) carry in addition a tilde symbol (%?, %g, §1, gz,

20)
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APPENDIX B - CALCULATIONS IN THE GAUGE BOOTSTRAP

B.1. — Evaluation of the integral (2.23)

The essential tool here is the "vertex identity" of Parisi,

24)

Peliti, D'Eramo , which in our case reads

-4-¢ -B-.a -4.¢

a & ¢ 2
[ 42« Xjg Xyg Ty = LT N NN E) Lis Mon Xaz (B.1)

under the restriction a+ b+ c=-8 with

N () = F(:_c_;g)/ r(-z)

One way to derive (B.1) is to obtain first the functional form of the right-
hand side using infinitesimal conformal transformations ; the constant
—iTt2N(a)N(b)N(c) is then evaluated by using the Fourier transforms of
a b c
X400 x13, x14.
Because of the spinology in (2.23), one needs the following
formulae, which can readily be obtained from (B.1), essentially by dif-

ferentiation
a 42 ¢
f 2 Fy Y3 Xz Bz Xw =
~4-c -G-a -y-€
= —inzl\/(a)'\/(é)’\](c) (4_2;) ’:47;4 L3 By Xy (B.2)

M K a2 £ ¢
f X, 2,,%, Z; 2y =

= —it* Na)N(§)N(e) L [ —6-c -d-a -4-4

(ll-m)z,s s gy g, —

B.3
-4.a -6-€ (3.3)

4§-€
X3y Xya ]

’( -
—(4+6) 2y, 2,3
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a-2 é-2 ¢

(4% 2l i Fis 7 2y Ha = AR NGNBING) L [
I3 -4-¢ -¢-a -6-€ ,
(44a)(4+8) X yy Foy Pon X23 Fzg Zyz  — (4+a)(H+c) -

M -6-¢ -6-a -4-€ '
113 x’zq 2:’34 123 X3y Xy, + (4+c')' (B.4)

’ -6-¢ -—g4-a -4-4€
g Hs Tas Zay e |

With these identities, the evaluation of (2.23) is straight-
forward, though long and tedious, and yields (2.24).

B.2. - Ward identity

Using the formulae in Appendix A, we find for the zero momentum
transfer Fourier transforms of the form factors A and B given in (2.25)
and (2.26), the following expression [the factor (21)434@1 —p2+q) has
been omittecﬂ ’

4 "ﬂl-'-!l a 3
Arpp) = Bulpp) = ()" 2 //:(/li: _23) [
Ip+ Ched) prfle™ 1 p

24p+3 (B.5)
From (B.5) and (2.24)

3

[Ff_
2 2 2 2
r",/f.f) = [{F-& (ﬁ/,:-;B)f,.f/f? ](—f/K) (B.6)
The renormalized S —1(p) is defined from (2.6) and (2.14) to be
S-l _ s - 2 (F+2.l
p-ifE) (5.1)

We see from (B.6) and (B.7) that the Ward identity (2.16) is indeed

satisfied in an arbitrary gauge.
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B.3. - Canonical limit UF=-%) of (2.24

In the limit 4F= -2 only the form factor 3B [;f. Eq. (2.2611

contributes. We first rewrite B 1in the Migdal form 9 [éee Ref. 1),

Appendix é]

24,
s s Yy Hor X YA T AL (3-5)

€
16

The Fourier transform of (B.8) for arbitrary momentum transfer can be

represented by the integral

2 =20-1
Bu(p,p2) = -1(27) 2 r{-¢-3%) [d%.
a f) L f'((r-r-%; 7

A4y (B.9)

X (/+z)7n (/»*2,’)6 (2p+1) 11p ~ (- 2)9

The term in gy in (B.9) vanishes in the limit zF—»-% ; we write the

remaining contribution B;_(p1,p2) as

0 -24;-¢ 6 1
B}‘ (1’,,?2) = -2 (21) IC((-‘{;{F:;?)) I," (f:,fz) (B.10)

where

. . . -4+ (24 +3)
Ir[f"/’) - —(Zn)"[ [y (ﬁ%’) Ik %}J ]7017;2

(B.11)

The integral (B.11) is a conventional Feynman diagrem with a
gauge photon having an anomalous dimension 2€ = 2£F+-3 ; 1t is depicted
in Fig. 7. In the limit € — O this integral is independent of Py and
P, as can be seen from the following argument. Take € < O @and add to

(B.11) the convergent integral
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4+2¢

1_;1_4 ("’)0'[1*)@,
(Zr) ]’ 1 A as&%j[ 4 é?}:ég 2

to obtain

-1 —4+2€
(Z?f*f ["(‘—%Z“

This convolution is straightforwardly evaluated by the Fourier transform

expressions in Appendix A and yields

+3

il Ién ) F(-4-32) f‘

so that when & - 0

Tplpnps) = = et <

(B.12)

which holds for € >0 by analytic continuation via the [1 function.
Using (B.12), (B.10) and (2.24) we find that indeed f),(p1,p2)—» J)‘
in the limit €& - 0.

A simpler way to derive (B.12) which we shall use rereatedly in
similar calculations is to notice that as € - 0 (B.11) is dominated by
large loop momentum, so that in order to evaluate the residue at the 1/€
pole, one may neglect p1 and p2 in (B.H) and use an infra-red cut-off

momentum £ for €& < 0. Thereupon (B.11) becomes

-4+2€

I f 9

and by Wick rotation, for €& — 0, one obtains

~44+2€

lo
‘ .2
#4477 — T

(B.13)
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so that (B.12) is recovered. For future usc we also quote the following

result which may be evaluated in the same way

d4e

M - €+2¢ 2
(Rt — g

B.4. - Evaluation of (2.28)

To prepare for the canonical limit, we use the fact that the
total dimension (in units of momentum) of the triangle graph of Fig. 2 is
2€ , to redefine the gauge propagator as qc qzq_4+2e . This recipe,
due to Mack 11), guarantees the correct evaluation of the numerical coef-
ficient of the 1/€ term when all propagators and vertex functions
within the graph are put equal to their canonical value. The integral
in (2.28) now becomes simply (B.11), multiplied by ; . From (B.12) and

(2.7) we thus have

b F = Lim - 5 _l_]= (B.15)
:t—vo'u e:"j/‘én"[ {6n? I,A € a,’,. ’
€ —-» O
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APPENDIX C - THE CANONICAL TDENTITY TO ORDER (%
Cel. = Evaluation of R1}b and POF
We first calculate P + R, (p,p). As in Appondlx B.4, we
¥ o -2+2€

redefine the photon propagator Dgg as 'i(gcz yce qz,/q )a
and put all propagators and vertex functions in the graphs equal to their

11), which should be

canonical value. According to Mack's theorem
applicable to the present case, this procedure guarantees the correct
evaluation of the 1/€ term ; it also provides us with a cut-off for the

determination of R, . (p,p). Thus

i
o Ry (pp) - b i (I 0G0 (rr”™
(o)1 (Joc-19-92/97)

or

E#+R4,‘(ff)= i ; -,;—Dr- I(p) (.2)

with

-2+2¢

1= [d9 ) ¥ (97 b1 (0.5)

o+ ‘H‘

Using the anticommutation rules of the Dirac matrices, we have

1(p) = I'[P)*Iz(f)*fsff’) (c.4)

I, [r) (-2+7m) /Ji £ 2-2+2€ (¢c.5)
-2+ 2€ (c.6)

I.(p)= -7 [ ’1(77’"1)= 71
(c.7)

-4 +2¢€

I.(p= 19 [49 (f"f”l 71
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These three integrals are convolutions and so can easily be
evaluated wita the aid of the Fourier transform relations of Appendix A.

We obtain, as € - 0

I, (f) = "'752[‘2’2) : '(FZe (c.8)

€ (e+i)(€+2)

Iz(ff)=—l’¢z"l ! /er (c.9)

€ (etd)

I;(f?)z 12/ "Z .E-H‘f(——-;-‘-) /(f’ (c.12)

From (C.4) and (C.2) we find, keeping oaly terms of order 1/€ and 1 1in

the limit € — 0O,

€-~»o

Bt Rinlpt) = om [0k« 312 0P°) o

From (C.H), we obtain :

1) "lo(o() to order zero, by the convergence requ.rement, namely the

vanishing of the residue at the 1/€ polé ; clearly,

"Zf°)= i (c.12)
) -

2) the regular part R1 of the diagram, by setting 'rL = 'Vlgo =
to eliminate the pole term and then performing the limit € - 0

this yields

g‘ﬂ(f’f))= %a”* (c.13)

%) the pole part PO of the diagram by retaining the most singular

part in € and using (3.10), namely
€= & (y-9,)= X (m-1
4r [1 K ) 4 (7 )

to order one in & ; upon taking the limit € — 0 with the cons-
traint € = (/4w )(”-1), one obtains, ia addition to (C.13), the

contribution

—-—

For = ¥p (c.14)
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The evaluation of P + R1rL(p,O) follows the same pattern.

One starts from

ot o (90 = A QIS [ 700 YT

e~ro (2m)*
-2 ~4+2e
2
(3u 1909219") (#44) 1
and calculates all integrals with the help of the Fourier transform formulae

(A.3) and (A.4). To order 1/€ and O one thus obtains for the integral
in (C.15)

ghe:?(’l“)‘e.' Ir *[—’s’éib(" +%fﬁ/fz]}7’ze (c.16)

This, of course, reproduces (C.12) and (C.14) ; it yields, in addition

(c.15)

= —o . S a
er.’(flo) -ézb',u,* n l‘rﬁf‘ (¢.17)

As noted by Johnson 25), it can be seen by direct inspection of the integral
(c.15) that its finite part R1F’(p,0), in the Landau gauge 010 = 1, must

satisfy the relation
“ -
{“ Rip(po) =0

Our result (C.17) indeed obeys this equation.

C.2. = Evaluation of P$1)

As previously, in order to perform correctly the successive

subintegrations in the canonical limit, we multiply the photon propagator

involved in the last integration by a factor q26 . Thus

€-» O

() 2 - - b
fiptpn = b [ PO 22 1) e
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T . 2 P q z
") [ e U T
(3¢~ *z‘zn?«f/i«)‘z’““

e'

(c.19)

and

o~ ( ,J; ~4+2€

Dse ‘l,) =Lty 7"7" 7 (c.20)
Note that an infinitesimal €' is needed in (C.19) in order to obtain a

meaningf{ll answer in this intermediate step of the calculation. This does
not destroy the validity of (C.20) because we shall put €' equal to zero
before taking the limit €& — 0.

Since in the region € ~ 0, the dominant contributions arise
from loop momenta ¢ .much larger than p, we may evaluate the 1/€
contribution of the integral by setting p=0, ﬁsing € >0 and an infra-
red cut-off £ as in Appendix B.3. Thus‘we need to know only
(B/9qk) rt(q,O) [as in Ref. 25) for a similar problem] . From (C.16)
we then get, in the limit €' — O,

2, MG - £ L0074 7 d 97
“22’7 7/“7 4] (c.21)

In (C.21) we may now use the value of ‘VL to order zero in &K , so that
MN-1=%_-1=0. Inserting (c.21) into (C.18) we obtain

U) -4 +2¢

R S

(- X~

Using (B.13) and (B.14), this is

= L (-32) K dy.

€0 4n € (0’23)



and from (3.10)

P' = - 3_2(_, ‘ (c.24)

C.%. - Evaluation of "lo(“L to first order in &X

In calculating P1(1) we did not need to know 4) O(D() to
order ¢ but only to order one E’Ln (0.21)]. This 1is because we used the
recipe of replacing, in the last integration, the photon propagator by the
gauge photon (C.20), instead of evaluating directly the pole term as in
Appendix C.1.

O0f course, one may also evaluate by calculating the

(1)
coefficient of 1/e€ in the corresponding graph. To this effect, it

suffices to use, instead of (C.20), the propagator

]A);_z = -1 (?n— ” 7v?z/¢lz) Cl-zq»ze

(c.25)

and to replace ¥ by 'Vlo(o() in (C.21). After repeating the calculation,

one obtains, in place of (C.23)

Q)
i = Ao (5)' (4= [1en00] - 10O} L G oz

Combining this with the singular term in (C.16) one gets the total singular
contribution of the set of graphs in Fig. 4 [recall that P1<2)=P1<;)=P§;t_)= (ﬂ ’
'L

which is

Yp L 2 {(-1) + & [4-Crem6o) - .é_'tm,(d)]}

(c.27)

The convergence requirement which determines 'Vlo(a() is that at 'VL =?20(0(),
(C.27) must vanish for fixed € ; this yields to order &

J) = {- 3%
11 6 FT (c.28)

Note that if we now take the limit €& — 0, wusing the constraint (3.10), we

indeed recover the contributions (C.14) and (C.24).
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APPENDIX D - RENORMALIZED PERTURBATION THEORY FROM THE BOOTSTRAP
EQUATIONS '

The Ward identity (3.2), in conjunction with the expression

(3.4) for the Fermion propagator, yields

GG AR L S

/}(,‘,r)/f’:—lc‘ = J'“ ('{ e=o) (p.2)

For notational simplicity consider first the canonical case € = 0. If we
subtract -from Eq. (3.1) the same equation evaluated at p2= -'(2 with g=0,
we get

I [r, f“i) = Jp {f'cl"{, S[ff‘)’;;(f-f‘,f#é-&?)S(fr‘l-f-?).

K.(fi, f+£)' f+ﬁ+7 , f“?«)
_ [ [d% SGek) T (pet, petd) S (prh) -

(D.3)
K(pprks peks f)],,ze-.cz }

To obtain the usual renormalized perturbation expansion for ,7u (pyp+a)
we simply solve (D.3) by iteration using the Ward identity (3.2) for S.
If we then substitute the result of this expansion to a given order in &

into the equation

Yo A(k) = [ [4% SCpek) Ty (prk, pok) S(pel).

(D.4)

K[f, f+£; f+-4., f) ]rge_"z

we recover, from (3.29), the perturbation expansion for §1c(a() ; the
subsidiary condition in (D.3) arising from the subtracted equation is

simply the eigenvalue equation (3.28).
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Equations (D.3) and (D.4) are valid outside the canonical limit
if we subtract from (3.1) only the form factor which is proportional to
UV at p°=-K°, which is then used in the right-hand side of (D.3)
and (D.4). It is then apparent that a cut-off has to be used in evaluating

(D.4) and as an intermediate step in (D.S) as long as € 1is not zero.
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FIGURE CAPTIONS

Figure 1 Equation (1.1)
=r . —>— =3
PO M )
Figure 2 Vertex bootstrap equation (2.15) for a gauge field
q
[ - =D¢z
g T
Figure 3

X I

Irreducible Bethe-Salpeter
kernel

ANANANNAA— =
- z 'D‘F

)
Figure 4 Equation (3.13). The e~ dependence of each graph has been

symbol R (or P)
graph means regular part (or pole part).

p@ = Mu(o5dn)
p&@ = 'I"’f)(o(;q)

indicated explicitly. The in front of a

Figure 5 Graphs contributing to the perturbation expansion of 310(0().

A1l external Fermion lines are at p2=-—K?

. =
= (#
P =0
2 2
[ = Sug'{vao'{ecl s«.@dma«m ot ‘P""K

Figure 6 Formal expression for T pv in terms of the Green's functions

entering the bootstrap equations.
Figure 7 Triangle diagram representing (B.11)

& - ==X -~ -9 =

P = anomalous gauge propagator qg qP q_4+26 .
X
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