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1. - INTRODUCTION

Forthcoming experiments at e+e_ storage rings are expected to
provide us with data on hadronic production rather different from those
observed until now : within the validity of the one-photon approximation, we
can hope to study hadronic systems of large mass (M < 6 GeV) but with a
total spin one - to be contrasted with an average spin of around twenty for

a similar system of this mass when produced in hadron-hadron interactions.

This novel and experimentally open situation has led to a consi-
derable amount of theoretical speculation 1 , covering almost the entire range
of models consistent with energy conservation : thus predictions for the
asymptotic mualtiplicity N of produced hadrons vary from N constant 2 to

N increasing linearly with the centre-of-mass energy M of the e+e

3).

system

The aim of the present paper is to develop and study in some
detail a model which forms one of the two extremes (it yields ﬁﬁvM) : the
thermodynamical model for high energy ete”™ annihilation into hadrons. On the
one hand, we want to investigate particularly the theoretical foundation of
such a description in the framework of the statistical bootstrap formalism,
in order to sece which of the resulting features are critical for the approach ;
on the other hand, we want to present quantitative predictions for physical

secondaries at the expected (finite) machine energies.

As a preliminary study to our main problem, we shall derive the
predictions one obtains by applying to e+e_ annihilation the traditional

4)

statistical model of Fermi This approach assumed an equidistribution

over all final states compatible with initial state kinematics - a hadronic
ideal gas. As is well known, however, hadron-hadron collision experiments
soon indicated a strong jet structure in particle production (transverse
momentum bound). Hence the statistical model in an unmodified form 1is
certainly not in accord with hadronic production data. As it is even to-day
not clear whether the unbounded longitudinal or the bounded transverse
momentum distributions of secondaries reflect the essence of hadron dynamics,
a comparison of simple phase space witn e+e— annihilation data will certainly
be of interest. Moreover, the Fermi model, as the simplest possible approach,
proves quite useful in discussing novel features introduced by the statistical

bootstrap condition.
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The application of the thermodynamical or statistical boot-
strap 6) model to e+e- annihilation is rather straightforward, if one
accepts the hadron-like character of (timelike) photons. The basic building
blocks of the thermodynamical model are fireballs : energetic hadronic

matter at rest, or in other words, hadronic systems of large mass M and

low spin j, with j/M->0 as M- ® . The fundamental property of fireballs
is that they decay, as the consequence of the statistical bootstrap condition,
into secondaries of asymptotically bounded average energy. In theymodynamic
language this is equivalent to the existence of a highest temperature TO.
From applications to the transverse momentum distribution in inclusive nadron-—
hadron interactions one finds TO::16O MeV. With j=1 and a mass of about

6 GeV, an energetic virtual photon would be a fireball par excellence and
could provide the most unambiguous test for the basis of the thermodynamical

7)

like photon is a valid extrapolation into deep timelike regions.

model and-related questions - always under the assumption that a hadron-

Considerations of a somewhat related nature were first proposed

3)

by Bjorken and Brodsky y Who generalize the transverse momentum restriction
e 2IPT in hadron-hadron interactions to an energy bound e 2P0 for all
secondaries produced in ete” annihilation. This, however, will in itself
not lead to a bound on Rpe avarage energy per secondary, as suggested in

Ref. 3) ; Since exp-aZFpio==exp-2M gives a common factor to all transi-
tions, independent of particle number, it cannot influence average quantities
such as the multiplicity N or the average secondary energy w. The bound
on w derived in 3) is in fact due to an ad hoc assumption about the dis-
tribution over particle numbers - an assumption which can be understood, as

we shall see later on, only in the framework of a statistical bootstrap

scheme.

Let us finally note for all such thermodynamical considerations
a point, minor in principle, but not unimportant for comparison with data :
in models with a finite asymptotic average energy W per secondary, the zero
mass limit never coincides witn the high energy limit - in contrast to models
with unbounded w. Although the qualitative features in the thermodynamical

model remain as m—-0, actual predictions are significantly altered.

We Dbegin in Section 2 with the presentation of the statistical
model for e+e_—*hadrons, followed by that of the thermodynamical model as
obtained from statistical bootstrap arguments. Our main objective in Section 2
will be a discussion of the theoretical aspects of the models and of their

asymptotic (M—*q>) results ; quantitative predictions for finite energies,

obtained by numerical calculations, will be presented in Section 3.



2. — STATISTICAL AND THERMODYNAMICAL MODELS FOR e+e_ ANNIHILATION

The cross-section for the production of N hadrons (which we
shall from now on take to be pions unless otherwise stated) in e+e— anni-
!

hilation at centre-of-mass energy +~s can be writtern as

b+ 7
NI

0‘; (s) = .

where T"N(s) denotes the integrated decay width of the virtual photon

| o dhe cwe
e = 5 LI 8V E-0) ptquguimr)

with Q= q1+-q2, Q2= s characterizing the initial state. The production
dynamics are now contained in the N particle momentum space weight e .

With the total decay width

[
= rﬁ =
r;—) Lla.clroug (S) NZ=1 ‘N (S> - ]-"I'O"'(g) (3)
we have
L4t
O~ (S) = (S)
- s h (4)

as the total cross-section for hadron production.

2.17. = The statistical model

In the absence of information about the decay dynamics, the

simplest assumption is to take Q constant

N
Q(q”q’-jp”...)yth) = C (5)
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i.e., to consider an equidistribution in momentum space. The normalization
function ¢ can depend only on s= Q2 ; a determination of this dependence
(the ¥ hadron coupling) is certainly not possible in statistical or thermo-
dynamical approaches, which determine only relative weights of different

final states and do not give absolute predictions. We thus write

3 (; (s)
I—';(S) = F; O"H(QD - N
- > G, ¢s) ()
L= 2 v
with
N N3 L L, N
G o¢s) = £ STT L. S (2 r—Q)D
N N' 121 ?vvh'o vt (7)

denoting the N particle phase space. For large s (extreme relativistic

limit), the phase space (7) becomes

G = T CTT L
N Z (N-DH(N-2)! NI (8)

Summing (6) over all N gives us the total phase space, which asymptotically
takes the form 9)

V/
Gesy = (mas/syy?  3lmes/al’
Fes? )

The average number of produced hadrons (multiplicity) can for large s

easily be obtained from (3), (5) and (9)

J Qog _@_(9_)
9

N ¢s)

1. (10)
= [wxsn]”

It thus increases as a power, but less than linearly, in the photon mass j;

consequently the average energy per secondary

— Y
Wes) = E ~ [2/m2 ] 3"
N

(11)
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grows asymptotically without bound. The normalized inclusive single particle

distribution for secondary energy qb

. 96([a-g1*)
F(3,,5) = & °x = /G(s)

(12)

becomes for large photon mass ds::JQZ
Y
v 29, -1 _—2[rxf21° 2o
Fga,s) = & (mesn)=01- e SV
r (13)

/
and hence does not lead to a non-zero scaling limit ; for fixed XEEZQO/NS

Ve
F(x,s) = X(T&S/z_)% (]-X)"' e-X["Td(S/z.] -,
14

vanishes exponentially.

We close our survey of the asymptotic behaviour of the statistical

model with two comments.

1) - The qualitative features of most of these results are rather insensitive

to the specific form of momentum space. Had we chosen

N N N
G:(S) S | Ty OV (Zpe - @) (15)

N
instead of (6), then, e.g., the multiplicity would grow like 9) ﬁFﬁJsa/B
instead of s1/3, leaving the general picture essentially unchanged. We
might note here also the case
P c)(-'; A (s | @), =
Gees) = =P sl = 8 (T - @)
NI i=1 o Jlio ' (16)
which, although without any jet structure, leads to
NG ~ Lns
(16a)

F(%O)S) ~ (l__x>COKS+. , X = Zq—o/{?
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9)

considerations. It is thus clear that more detailed quantities than multi-

i.e., to features otherwise found in uncorrelated jet 11)

or parton model
plicities or single particle spectra have to be measured to distinguish these

models from a purely statistical description.

2) - We have not taken into account momentum space restrictions due to the
given spin one of the photon, as it can be shown 12) that the resulting

effects become unimportant at high energies.

2.2. = The thermodynamical (statistical bootstrap) model

Instead of the single centre decay (Fig. 1) discussed above,
consider now a cascade decay with two body intermediate steps (Fig. 2),
each consisting of one pion and one excited hadronic system (fireball). The

decay width is then given by

r;(S) ~ Sdzs-‘t:"o dl'Fl Sm(pl-;?,—-@) l<1>, y.,,@>[2 *

b o7, T KR [T OT -
e (17)

Lrns CELL" éw(ylu-l"’VlN"?N-z)|<V'N"PN‘T>N"2>,1

2N, 0 Z'Y\N,O

Now if all couplings are comstant, |< PipilPi—1 >|2= Ay, i=2,3,...,N,

then r'N(s) with proper normalization can be written

P P —CN($)
(s) = €s) S
N ot Z —l:‘; )

esL N (18)

TN(S)= >\—| S.':”_ d_3_y3.; CSW(ZYI;“Q)

The essential difference between (6) and (18) is the absence of the Boltzmann
factor 1/N! 1in the latter ; as we shall sece now, it is this difference
which yields in one case secondaries with unbounded, in the other with

bounded average energy.

Consider first the case of mass zero secondaries, for which all

phase space expressions are solvable in closed form. We obtain from (18)



+ Cws/pONT?
2 (N=-D)! (N-2))

Tuls) = N
(19)

and hence for the sum over all N

TS = (){it/?_s)lh. Il(ZNXES/)_)

(20)

where 11(X> is the Bessel function of order one and pure imaginary argument.

For large s Eq. (20) gives

A2 -3y zN)nrs/z

(\Ts/2) €

T(s) —
4 (21)

which leads to an average particle number

—

2 )
N(s) = 1+ X g ;gus '0 AT S/2 ( '+O(QMS)) (22)

!
increasing linearly with the photon mass +s. In contrast to (11) we thus

obtain with

R A (=
N A (23a)

an asymptotically bounded average energy per secondary ; the actual value of
the bound depends on the coupling constant A . The inclusive single particle
distribution [cf., (12)] at high energy and for q, << 4s 1is easily obtained

from (21) ;'as expected from the above, we have with

F(q-ws) DY JUXR'S/z (1—=Xx) qu—m%c’

X = Zgro/??

(23p)

an exponential cut-off in secondary energy which is independent of the

photon mass.



Let us now rederive these results using thermodynamic arguments.

We define the grand canonical partition function

= 4 -B.Q" — 2
Zpoy = (4@ e Y T gy ”

. 2 _ m .
with [5 = (5/‘(), > 0, GO >0 ; from (3) and (19) we then have

X PR |
| — X P (25)

Zp>N\)

3 - m 2
D) = Y%‘oe frr” - '(:1: -

For the particularly simple case considered here (m=0, linear chain decay)
we could now invert the Laplace transform (24) to obtain T (Q2) for large
Q2 ; as this is, however, practically very difficult in more complicated
cases, we shall instead pursue here a more general approach. The exponential
increase in \/s of T (s) 1leads to a singularity of Z({Z , N\) at that

valus (}, = (30 for which

RRD = \/,\

(27)

and from (24) and (27) we see that the allowed range of (3 is

bo = Nam) < [ &« e (28)

In thermodynamic language, (3 is an inverse temperature, (5 = 1/kT,
with k denoting the Boltzmann constant. Equation (27) thus predicts the

existence of a highest temperature

o = '/ML?? (29)

for which the partition function becomes singular. Using (24), we can now

define an average total energy



—

_ 9
E = - -,g('z QogZ((’b-/\)

(30)

in terms of the inverse temperature ﬁa. Requiring E to be equal to the
actual energy ANs yields an energy-temperature relation 13 ("Stefan-

Boltzmann law')

— Q Log P(B)
P=¢Nmm7% -

N= 1+ X35 g Z (B

(32)

For the average energy per secondary we then have

fgj _ Q)f%za q?QS) - 2

— =

N R B (33)

&)

while (31) and (32) give

Ly

2 —
TAS/2

Inserting this value of e; in (32) and (33) reproduces our previous results

(22) and (23) : as s~ ® , the results of the grand canonical formulation

converge to the exact calculation.

We have thus seen that the bound on the average energy per second-
ary is expressed in thermodynamic language as a bound on the temperature,
T < TO. If we choose kTO= 160 MeV, as found in inclusive hadron-hadron

interactions, then the only free parameter A is fixed and we obtain

W, = 32
w = 320 MeV (35)
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as the asymptotic energy of a (mass zero) secondary. As already indicated
above, this bound will be different for massive secondaries, to which we

shall return further down.

Now we waat to investigate the relation betwesn sur cascade
decay scheme (18) and statistical bootstrap arguments by essentially rewriting
(18) as a bootstrap conditicn. In the cascade, we require an excited hadronic
state (the photon) to decey into an object of similar neture (fireball) plus
one pion. Denote the density of states of the initial fireball of mass
PN

VQ‘ by 7:(Q2) ; we then want the decay product fireball of mass M1 to be
described by 7:(M§). We thus obtain the bootstrap equation 14)

T @) = §(Q-m®) + ,\Sdﬁ;d"i’ TP S+ P-@)
(36)
with

So (X*=m¥) = B(x) d(xEm?)

T (X)) = B0x*) Blxs~m) T(x*) (37)

From (36) we obtain by Laplace transformation ( 2 > 0, > 0) for the
o

partition function

n

Zgay = [dvg e B8 T e < s gt ]

(38)

the relation

N PR
I—/\L{’((g) (39)

Z s\

with Q) ((;) as defined in (26). As the partition function (39) obtained
from (36) is identical to the one, (25), obtained from (18), we conclude
that the cascade decay (18) is in fact the solution of the bootstrap condi-
tion (36).
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Relation (3&) is, however, not the most general bootstrap condi-

5)56),15),16)

tion ; this is obtained by allowing unrestricted decay of the

photon into any number of fireballs and/or pions (cf. Fig. 3)

—_ 2 > ]Se-, 1 7
L(@?) = 30(@ —-m") +£ 3 ‘E“ l’{qutt(E:)}S"J(Z'kt‘&)(L"o)

where Bz denotes the one to {4 fireball coupling. The Laplace transformation

of this "full" bootstrap condition gives

n

Z(pe) = [dae Ty

= e+ EE [*%_1-32 ] o

The resulting Z(@,B) as functional of €P can be shown 16),17) to have
a square root branch point at
BR@R) = 2842 - 1= 2,
(42)

Instead of the pole (3%9), it is now this singularity which determines the

maximum temperature kTO==(%;1. From (26) and (42) we obtain

kT, = (50" = /0 2./ 278 (43)

for the connection between TO and the interaction parameter B, instead

of the relation (28)/(29) for the linear cascade. With the choice

B/ = 2o

(44)
we thus have the same maximum temperature in toth cases.
The solution to Eq. (40) can moreover be written 15)
x |4
_ A o
T@) = 2_q,8° | 2F §%Zy-q)
0=\ =1 o (45)
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where the g, are determined by expressing the solution to Eq. (41) in the

form

Z(p,8) = eﬁ 9e (3]

(462)
As a consequence the gﬂ obey the recursion relation
(3
-1
= — -2 2k ]
g+ [Q y g0+~
3 ¢+ 8 k=1 3 % < (46D)
o
which for large ¢ has the solution 16)
.»Q'i'l ..3/
2
%Q v e £ (46c)

From (44) and (46c) we thus see that the full bootstrap (46a) and the linear
cascade (%9) lead to the same exponential increase in level density
v M/eT,

e

T™M) = M (47)

_3
the additional ¢ 2 in (46) yields only a different value of V . This
asymptotic "equivalence" between the two cases is not as surprising as it
may first seem, since the linear cascade was in fact shown 6) to be the

dominant decay mode in the full bootstrap.

In Section 3 we shall return to non-asymptotic calculations using

the g, from (46b) ; we note here already that we want to consider predict-
ions both from the full bootstrap and from the linear chain. As long as we
have no specific dynamicel model, it is not clear whether a given bootstrap
scheme (if at all applicable) describes only the asymptotic limit or the
approach thereto as well. By investigating two thermodynamical schemes
converging at high energies, we have some measure of the range of predictions

from such approaches possible at finite energies.
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Up to now we have in all calculations treated only secondaries
of zero mass ; before taking up the case of massive secondaries, let us

3)

briefly comment on the approach of Bjorken and Brodsky , who consider
explicitly only the m=0 case. As already noted in the Introduction,

all inclusive quantities remain unchanged if one replaces (18) by

N-I N B Lan w, N
G\;B(s) = >‘BB SJL% -2—50 e 1"«:} 5'*’("[_yu—62> (48)

which is the form proposed by Ref. 3). The critical assumption is, as we
have seen in comparing (16) and (18), the absence of the Boltzmann factor
1/N! in (18) and (48) ; it is this absence, and not the momentum space
damping, which provides the bound on the average secondary energy ; the

form (48) with a 1/N! leads to secondaries with unbounded average energies.
Note, however, the difference between (18) and (48) for certain exclusive
measurements : the single particle distribution for an N body final state

should according to (48) already exhibit exponential energy damping

FN(q,wM)/F‘;(O,M) N' e_a,%o (- %)U\)-q

(49)

whereas with (18) we have

_ _ %&? 2N-4
Fu(3eM) /F (OM) ~ Cl-32) (o)

since the exponential damping of qO here arises only after summation over

all N.
Let us now extend our considerations to include massive second-

aries. In the formulation as given here this is achieved simply by replacing

CP (@,) in (26) by the corresponding function for non-vanishing mass

3 -
C‘()M((s)i g%—xoe'(sf“vk = 2-'54 WK, mp) (51)
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where Kq(x) denotes the Hankel function of order one and imaginary argument.
The determining equation (27)/(42) between maximum temperature and interaction

parameter then becomes

ZTVV\)\ K‘(M(So) = 1

(52)
o
for the linear chain and
21w L L<l ( W4F%,) = Zo
(730 (53)
for the full bootstrap. In either case we have, by fixing kTO= F;;1= 160 MeV,

determined the only open parameter in the model.

As all other arguments remain valid, we now obtain from (33) and

(57)

_ Ko Cwpo)
Wo, = —(Z- + m e
° K, (M(go) (54)

which in the case of pions yields

W = Bl4 MeV (55)

as the asymptotic energy per secondary ; the corresponding multiplicity

grows as

NCS) = 24 s’
(562)

with increasing photon mass.

The extension of our thermodynamical description to /A& different

types of secondaries is easily obtained by generalizing Eq. (18) to

Nl

.

T (s) =
LN‘-"N,‘ ) N -

N N/,\j‘_[“_ ‘:)it"‘ w, I _
ey NN %8 (2 po-@)

=

(56b)
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N = N; (56¢)

v

M

(
il

where Ni denotes the number of particles of type i and )\i the cor-
responding coupling constant. The combinatorial factor in (56Db) counts the
number of different possible orderings of the decay chain with fixed
N1,...,N » assuming all particles to obey Boltzmann statistics. Summing
(56b) over all Ni’ i= 1,...,/4, and Laplace transforming the result gives

us as generalization of (25) the form

l
Z(@))\H..‘))\/‘) = ‘_ZT:>\€ CPJ/” (564)

so that the maximur temperature kTo=(2;1 and hence one of the IAL para-

meters >‘i is determined by

NMb

N P (Rwm) = 1

(56e)

L=

Since

blé== >\¢ '%%:; . Jgga EZ: ( (S/ Al y ) >»P )

. (56f)
L = |)1) ...)/‘\

we can fix the remaining /¢—1 constants by using the asymptotic multiplicity

ratios

EiL = fQL //Fi| 5 C = 2,13, - )/k

(56g)

as given input. Going from the linear ckain to the full bootstrap is achieved
by multiplying 1:N1...N in Eq. (56b) by gNzg, as evident from Egs. (44)
and (45).

Further details concerning physical particles, conservation laws
for discrete quantum numbers, etc., will be taken up in Section 3 ; we close

this section with some comments on the asymptotic results obtained so far.
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2.3. = Critical aspects of asymptotic behaviour

In the Table we summarize the essential results of Section 2,
concerning the asymptotic predictions of statistical and thermodynamical

descriptions of ete” annihilation into hadrons.

As is evident, the thermodynamical approach cen easily be
subjected to critical empirical tests. The maximum temperature TO is
related directly to the hadronic level density, which one would expect
to be universal, i.e., independent of production mechanism. Hence average
pion energy in e+e_ annihilation should with increasing photon mass
approach from below an asymptotic value of about 400-450 MeV * . Thus if
one should observe at storage ring energies around 6 GeV average pion
energies of around one GeV, then this would constitute a serious difficulty
for the thermodynamical approach. A failure of this approach, on the other
hand, would seem to rule out the only scheme - besides the dual resonance
model, which moreover appears closely related 7) - proposed up to now to
explain, rather than only accommodate, the transverse momentum bound in

hadronic interactions. Whatever the results of experiments will be, from

this point of view they will prévide significant information.

The statistical description, in contrast, is much less specific.
If we allow the possibility of factorized power law weights in momentum
space, €.g8.,
N
(r) X, 2
Gy = — 17
N -

<l ] 0 -8

(57)

where r=0 yields the covariant form (6), r=1 the Fermi version (15),

then for multiplicities, average secondary energies or single particle spectra
it can accommodate any behaviour except that predicted by the thermodynamical
model. As we have already indicated, the measurement of these quantities will
fherefore not be sufficient to distinguish between parton model 11) and sta-
tistical considerations. For this it will be necessary to first establish
experimentally the jet structure predicted by the former, i.e., to measure

two or more particle correlations. It should be noted that, although not
listed in the Table, a statistical approach can also lead to bounded asymptotic
multiplicities : if in (57) r < -2, N will become constant at high energies.

*
) This value could ke exceeded significantly only if one should observe - in
contrast to large angle hadron-hadron data - very strong production of heavy
secondaries ; cf. Section 3.
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3. — FINITE ENERGY PREDICTIONS

In this section we shall present the essential predictions of
the thermodynamical approach to e+e— annihilation for the energy range to
be investigated in storage ring experiments at SLAC and DESY, i.e.,

Js = E = 2-6 GeV. TFor comparison we shall also show some results of the

conventional statistical model at these energies.

As above, we choose always for the maximum temperature the value
kTO= 160 MeV, observed in large angle hadron production at the ISR 18).
Charge conservation, more generally isospin, is introduced into the model by
weighting the various final state charge configurations according to their
statistical isospin weight factors 19), normglized over all possible charge
configurations of a given N particle final state. To do this, it is
necessary to specify the relative coupling strength gv/gs = r of hadrons

to the isovector and isoscalar component of the photon, which are assumed

not to interfere. It turns out, however, that for E > 2 GeV, the inclusive
results considered here depend very little (1ess than 1% variation in ﬁCh)

in r— and_are in fact very close to the asymptotic predictions ﬁ:£i=ffno,
NKi=:NK°='NKO’ etc. The main impact of r comes through G parity conser-
vation, which allows the isovector photon component to couple only to an even,
the isoscalar component only to an odd number of pions in the final state.

At high energies, however, pure pion final states and hence G parity
conservation become less and less important. All results presented in the

following were calculated with r=1.

The necessary phase space integrations were performed by Monte Jarlo
methods using the standard Fowl 20). Allowing only pionic final states yields
through Ec. (52), i.e., for the linear chain model, the value )‘E = 9.45 GeV_2.

The resulting average multiplicity of charged pions N;P, is shown in Fig. 4.

It is seen to be a straight line, which can be parametrized by

—ch E;
S o= 64 —
by (58)

with E in GeV, in zccord with the asymptotic average pion energy of 414 MeV
found in (55). The very early start (E > 1 GeV) of asymptotic behaviour is
modified, as we shall see, by the presence of other final state particles

besides pions.
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As next simplest case, we allow pions and kaons in the final

state, enforcing strangeness conservation for the latter. This is assured

by writing
- Z (R
2N (59)
R jx S gLy - Q)
which yielas
Z(fAe ) = [1- e PCRymy) = N Ppome ] .

One of the parameters )\n and A is determined as in (56e) by the

X
relation defining the asymptotic temperature

1= X; QP(FmW‘u) + /\le?1<(§°>‘““> (61)

the other bty requiring the pion to kaon multiplicity to have the value

observed at large angle ISR experiments 18)

N.—J : NK* = 100: 74

The resulting wvalues

>
|
"

-2
9,03 GeV -

11,82 GeV'®

>
X
n

(64)

were then used to calculate the multiplicity distributions and spectra shown
in Figs. 4 to 9. We notice in Fig. 4 that the average number of charged
pions now increases slower with E +than in the previous case where only
pions are allowed as secondaries - an effect due to the opening of phase

space for kaon production. At 6 GeV, the presence of kaons has some 20%
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effect on the average number of charged pions. The average energies per
pion or kaon, calculated by integrating the energy spectra (in Figs. 5 and 6
we show representative results at 4 and 6 GeV), slowly converge to their

asymptotic values of 414 and 754 MeV, respectively, as seer in Fig. 7.

The model can now be further refined by including baryon pair
and associated production as well. We have tried to assess the influence
of such processes by including nucleon-antinucleon production at the rate

observed in ISR data 18)

— p—

Nos o N

\

00 : 2.5
(65)

The pair production restriction is taken into account as for kaons, and the

determining equation for the maximum temperature becomes now

2 2 2
1= g DB wr) + XN DR + Ny Dy (foyumy)

yielding together with (62) and (65)

D= 886 GV N = L3V N = 85 Gev T

(67)

We see in Fig. 4 that the inclusion of nucleon-antinucleon pair production

reduces the average charged pion multiplicity by about 5% at 6 GeV.

All results so far were for the linear chain version of the model.
To have some feeling for variations, possible at finite energies in different
decay schemes, we have also calculated the charged pion multiplicity for the
full bootstrap (40), allowing pions and kaons in the final state. The result-
ing values of ﬁi% at 6 GeV are somewhat (5%) lower than those from the

linear chain, as seen in Fig. 10.

Let us now compare the behaviour of our thermodynamical consi-
derations with that of the conventional statistical model (6/7). Adjusting
the open parameter & of the latter to reproduce the charged particle

multiplicities observed in e+e— annihilation at 2 GeV 21) gives X = 12 GeV

2
the resulting charged pion multiplicity is shown in Fig. 11. As expected from
(10), it increases much slower with E than the corresponding statistical

bootstrap predictions.
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In closing we show in Fig. 12, for pions and kaons in the final
state, the predictions of ﬁ%? frow linear chain, Tull bootstrap and from

21),22)

the statistical model together with all presently available data . It

is clearly seen that more accurate and higher energy data are needed kefore

any conclusions can be drawn.
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Multiplicity Average Single particle
i secondary spectrum
energy W F(qo, M)
1
Statistical model, 2/3 1/3 -const.( ®/M)3q
. M M e 0
covariant
i i
Statistical model, w7z n p—const.(&/M)quo
Fermi -
L const.
Statistical model, o 1 M (1-x)
Eq. (16) /n M XEEZqO/M
Thermodynamical " const e—const.qO
model
TABLE : The asymptotic behaviour of statistical and thermodynamical
models for e+e- annihilation into hadrons ;3 M denotes

the photon mass, 4, the centre-of-mass energy of the

observed secondary.
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FIGURE CAPTIONS

Figure 1
Figure 2
Figure 3
Figure 4
Figure_ 5
Figure 6
Figure 7
Figure 8
Figure_ 9
Figure 10
Figure 11
Figure 12

Statistical decay.
Linear cascade decay.

Full bootstrap decay.

Charged pion multiplicity as function of e+e energy, for
pions

(=e=e=a-).

allowed final states consisting of pions only

and kaons ( ), and pions, kaons and nucleons
Energy distributions for secondary pions and kaons at 4 GeV.
Energy distributions for secondary pions and kaons at 6 GeV.

e+e_ energy for full

).

Average pion energy as function of

bootstrap and linear cascade (
Multiplicity distribution for negative pions, allowing pions
and kaons in the final state, at an e+e_ energy of 4 GeV.

Multiplicity distribution for negative pions, allowing pions

and kaons in the final state, at an ete” energy of 6 GeV.
Charged pion multiplicity, allowing pions and kaons on the final
state, for full bootstrap (-—-——- ) and linear cascade.

Charged pion multiplicity, allowing pions and kaons in the final

state, for linear chain C———«—) and conventional statistical

model ( ————— )-

Charged pion multiplicity, allowing pions and kaons in the final
(——), full bootstrap
and conventional statistical model (-.-.-),
present experimental data for charged multiplicity [Befs. 20)
and 21)].

state, for linear cascade

compared with
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STATISTICAT, AND THERMODYNAMICAL DESCRIPTIONS OF
HADRON PRODUCTION IN e+e— ANNIHILATION

J. Engels, H. Satz and K. Schilling

ERRATUM

Unfortunately Figs. 5 and 6 contain a wrong
abscissa scale. Actually we have plotted the
natural and not the decadic logarithm of
a, a%/d’q.
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