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Abstract

In this paper we present beam coupling impedance measurements obtained by the well
known coaxial wire method, for the SPS MKE kicker. This data together with the measured
beam spectrum is used to estimate the heat deposition and this is then compared with the
directly measured heat deposition in a spare MKE kicker tank placed in the SPS ring. The
frequency dependent real and imaginary parts of the distributed impedance are obtained
from the measured S-parameters by standard and improved “log-formulae”. The calcula-
tion of the different beam current spectral components as well as the measured raw and
processed data for the MKE kicker impedance are shown.
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1 MKE Impedance Measurements

Using the standard single wire measurement technique a number of transmission measurements were
carried out on the SPS MKE kicker. For practical reasons we used flat flanges at the MKE kicker beam
pipe port (no conical transitions) and the diameter of the thin wire was 0.4 mm. In order to improve the
matching of this wire (seen from inside the tank with respect to the 50Ω coaxial cable) resistors were
installed near either flange of the tank. The ohmic valueR of these low inductance carbon resistors is
simply determined by the relation: R =Zc - 50 Ω. The approximate characteristic impedanceZc of a
thin wire in the ferrite loaded structure (Fig. 1) is determined assuming the model of a wire between two
parallel conducting plates by using the relation

Zc1 = 60 ln[1.27
D

d
] (1)

For the vertical aperture D =32 mm (horizontal aperture is 140 mm) and the wire diameter d = 0.4 mm
the value of characteristic impedanceZc1 is about 270Ω.

The choice of the geometry indicated above is somewhat arbitrary and one may argue that it would
be more suitable to refer to the same wire in a beam pipe with a 100 mm diameter. In that case the
characteristic impedanceZc2 calculated using a classical formula for the coaxial line is

Zc2 = 60 ln[
D

d
] (2)

and we findZc2 = 330Ω. The difference between the two values is less than20% and not considered to
be significant for the present measurements. A simplified cross-section of this kicker is given in Fig. 1.

The raw data obtained using the HP-8753D network analyzer are shown in Figs. 2-5. In each case
a connecting cable calibration (response calibration) has been repeated and each measurement contains
801 points. The geometrical length of the kicker between the coaxial connectors was accurately mea-
sured. This length (l = 2.2253 m) has been taken into account via the electrical delay correction function
in the network analyzer and was subtracted in the phase display.

Correction procedures were subsequently applied on both amplitude and phase data and are shown
in Figs. 6-8. For the amplitude (modulus) ofS21 (S21 = S12) we had to subtract the losses attributed
to the matching resistor, which were simply obtained by taking the attenuation values at the lowest
frequency point (around 100 kHz). This correction amounts approximately to 15 dB. It appears as the
vertical distance between the dashed an the solid lines shown in the Figs. 6-8.

For the phase plots we had to remove the network analyzer display related phase ambiguities of
360◦, and the procedure is most evident from Fig. 7. Note that all the resonances lead to fast phase
variations vs. frequency. These fast variations may coincide and may be mistaken for360◦ phase jumps
attributed to the network analyzer. This procedure was not applied for frequencies beyond 1 GHz since
the interpretation of that data would be too questionable.

Finally, the corrected S-parameters were plugged first into the well known “standard” logarithmic
formula [1] for distributed impedance (S21 andZ are complex andZc is real).

Z = −2Zc ln
S21

S21 ref
(3)

or

Re[Z] = −2Zc ln | S21

S21 ref
|

Im[Z] = −2Zc phase(S21/S21 ref) (4)

The results of these calculations are shown on the Figs. 9-11 together with results obtained from the
more accurate formula discussed below. A reference measurement in a smooth, homogeneous beam
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pipe was not done here for practical reasons. Instead, we assumed for the reference a lossless line of
lengthl.

We have noticed several high-Q resonances which are probably modified cavity resonances between
the tank and the kicker module. This kicker module does not have (yet) short direct connections to the
end of the tank and the cold conductor in the ferrite module. Thus cavity resonances are easily excited
by the beam passing through the gaps on each side of the ferrite module.

2 Evaluation of a Distributed Impedance from Measured S-parameters

For the matched line (when the characteristic impedance is equal to the reference impedance) the only
nonzero scattering parameter is [2]

S12 = e−ikl,

where the propagation constantk becomes:
- for the device under test (DUT)

kD = ω

√
(1 − i

R0 + ζ

ωL0
)L0C0,

- for the reference (REF) line

kR = ω

√
(1 − i

R0

ωL0
)L0C0.

The characteristic impedance of the reference line is

Zc =

√
ωL0 − iR0

ω0C0
.

From the expressions above, the longitudinal impedance of the DUT can be written as [2]

Z = ζl = iZc
(k2

D − k2
R)l

kR
= Zc ln

SR
12

SD
12

(1 +
lnSD

12

lnSR
12

). (5)

In our case, for a reference line without losses,R0 = 0 and

SR
12 = eiφR ,

whereφR = −ω
c
l.

If we define the DUT scattering parameter as

SD
12 = |SD

12|eiφD ,

then from Eq. (5) we have for the real part of impedance:

Re[Z] = −2Zc ln |SD
12|

φD

φR
= −2Zc ln |SD

12| (1 +
∆φ

φR
), (6)

where∆φ = φD − φR.
From Figs. 9-11 we see that for frequencies above 100 MHz we obtain

∆φ

φR
� 1.
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k Freq. Re(Z) (Ω)
(MHz) standard log formula improved log formula

0 0 0 0
1 200 640 950
2 400 1750 3500
3 600 1350 2490
4 800 1870 3710
5 1000 2740 5610

Table 1: Real part of the longitudinal coupling impedance by the standard log formula and the improved
log formula.

Then the the more accurate formula (6) givesRe[Z] approximately a factor 2 higher in comparison with
the “standard” log formula (3), which in fact is valid only for the case when the difference between DUT
and REF impedances is not large [1]. Below 100 MHz the difference in results obtained from these 2
formulae is less significant.

For the imaginary part of the DUT impedance we obtain from Eq. (5)

Im[Z] = −2Zc∆φ(1 +
∆φ

2φR
) + Zc

ln2 |SD
12|

φR
. (7)

The last term here is relevant only at very low frequencies. The difference in results obtained with this
formula and the log formula (4) is smaller than for the real part of the impedance. For frequencies below
100 MHz the more accurate formula (7) gives an imaginary part of the coupling impedance about15%
higher and above 100 MHz the average increase is around50%.

The real part of the coupling impedance by the standard log formula and the improved log formula
is shown in Table 1.

It should be noticed that applying the improved log formula (5) which returns a significantly higher
real part as compared to the standard log formula when the measued S-parameters show more than about
10 dB attenuation, can also lead to surprises. For example consider the negative real part in Figs. 9 and
10 around 7 MHz. This is of course an unphysical result which may occur for certain “forbidden”
ranges of amplitude and phase of the measured S-parameter. These ranges are dependent on the relative
electrical length of the device under test and become in particular visible when using the improved log
formula for short (as compared to the free space wavelength) DUTs. This effect is not caused by an
incorrect S-parameter measurement, but simply by the fact that the physical reality does not correspond
to what is assumed in the model (e.g. physical reality = lossy line + resonator; mode = lossy line
only.) Related aspects are also treated in [3] and ranges of validity of the different formulae have been
investigated graphically in [4]. Negative real parts may occur as well when applying the lumped element
model where this not appropriate, even if the amplitude ofS21 is smaller than unity. The correlation of
the real part of the impedance with results obtained from different numerical and analytical calculations
given in [5] as well as heating data (towards the end of this note) leads to the following assumption:
The real part (improved log formula) shown in Fig. 11 is reasonably close (within a factor of about
2) to what we may consider the true real part of the longitudinal impedanace. As for the imaginary
part, using a similar reasoning this may be acceptable to about 400-500 MHz. The imaginary part of
the MKE kicker impedance, evaluated from the measured S-parameters shown in Fig. 8 exhibits rather
large values for frequencies higher than about 400 MHz. If these values were considered to be true, they
would violate the condition that real and imaginary part of the impedance for this kind of structures are
mutually dependent and to a certain extent can be deduced from each other. The frequency limit, given
here is deduced from numerical simulations described in [5].
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3 General Expressions for the Beam Spectrum

In the time domain, a beam current ofM identical bunches separated in time bytbb can be written in the
form

J(t) =
M−1∑
n=0

j(t− ntbb) =
∞∑

k=−∞
Jke

−i2πkt
T0 , (8)

wherej(t) is a single bunch current andT0 is the revolution period.
In the frequency domain Fourier harmonics of the beam current are defined by the expression

Jk =
1

T0

∫ T0/2

−T0/2

M−1∑
n=0

j(t− ntbb)e
i2πkt

T0 dt, (9)

Then we can write

Jk = jk

M−1∑
n=0

e
i2πkntbb

T0 , (10)

where

jk =
1

T0

∫ T0/2

−T0/2
j(t)e

i2πkt
T0 dt. (11)

For a uniform distribution of bunches over the ring the beam spectrum contains only multiples of
the bunch spacing frequency1/tbb. After summation in (10), the spectrum of the beam with a gap
(M < T0/tbb) can be presented as

Jk = jk
sinMξk

sin ξk
ei(M−1)ξk , (12)

whereξk = πktbb/T0.
Below, for estimations, the bunch current is assumed to have the form

j(t) =

{
jp cos2 πt

τ
, −τ/2 < t < τ/2

0, elsewhere,
(13)

whereτ is the bunch length in seconds. A peak currentjp = 2Nbe/τ is defined by the normalization
condition

eNb =
∫ T0/2

−T0/2
j(t)dt,

whereNb is the number of particles per bunch.
For the chosen bunch shape we have

jk =
jp

2πk

sin παk

(1 − α2
k)

(14)

with αk = kτ/T0.
Finally for the bunch shape (13) we have from (12)

Jk = JA
sin παk

παk(1 − α2
k)

sinMξk

M sin ξk

ei(M−1)ξk , (15)

whereJA = MNbe/T0 is the average beam current.
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k Freq. |Jkh/JA| |Jkh/JA| |Jkh/JA| |Jkh/JA| (cable
(MHz) t = 1.5 sec t = 4 sec loss corrected)

1 200 0.90 0.93 0.915 0.912
2 400 0.59 0.67 0.63 0.67
3 600 0.38 0.44 0.41 0.46
4 800 0.22 0.26 0.24 0.28
5 1000 0.1 0.093 0.1 0.13

Table 2: Bunch spectra of the SPS atJA = 132 mA.

4 Fixed Target Proton Beam in the SPS

In the case of the fixed target proton beam in the SPS, 10/11 of the ring are filled with 5 ns spaced
bunches. For a uniform distribution of bunches over the ring, the beam spectrum contains lines only at
multiples of the bunch spacing frequency1/tbb = 200 MHz. At injection, assuming a bunch length of
4 ns, the envelope of the spectrum|Jk|/JA corresponding to the bunch distribution (13) has the form
presented in Fig. 12 (right).

The existence of the gap gives additional lines at revolution frequency harmonics. Their envelope,
described by expressionJk/(Mjk) in formula (12), is shown in Fig. 12 (left) around the main 200 MHz
line. (For this type of beam, parameterξk = πk/4620 andMξk = πk10/11).

During the acceleration cycle, the beam spectrum is varying due to bunch length and particle distri-
bution changes. The last happens for a high intensity beam as a result of longitudinal instabilities.

Assuming that particle distribution and longitudinal emittance stay constant during the cycle, the
envelope of the beam spectrum at the end of the cycle is presented in Fig. 12 (right). In this case the
bunch length changes with time according to the curve shown in Fig. 13 (left). The variation during the
cycle of the RMS beam spectrum components

Jrms
k =

√
2Jk

is shown in Fig. 13 (right) for multiples of RF harmonicsk = h, 2h, 3h... and for a total beam intensity
in the ring of1013 (JA = 69.4 mA). However this is valid only for a beam with total intensity at or
below1013, [6]. For higher intensity beams, the bunch length does not decrease after transition crossing
as is shown in Fig. 13, due to continuous emittance blow-up, see the bunch length measurement in [6].
For the highest total intensities reached in the SPS till now (4.7 × 1013) during normal operation cycle,
the longitudinal emittance increases by a factor 10 and the effective bunch length corresponding to the
particle distribution (13) is about 3 ns. For this value of bunch length the beam spectrum envelope
|Jk|/JA is shown in Fig. 14 (left). In Fig. 14 (right) the beam spectrum envelope is calculated for the
bunch length of 1.7 ns which corresponds to the total intensity of2 × 1013.

Table 2 gives the average bunch spectrum components, taken from measurements of the beam spec-
trum at different moments in the cycle with a linear power averaging applied. Note that these measured
spectral intensities are only used in relative terms in order to determine the best fit bunch length, but not
for an absolute spectral power reading.

5 Comparison of Power Dissipation Estimates and Heating Caused by the SPS
Beam

The power dissipated in the kicker can be calculated with the following equation:

P = η|JA|2
∞∑

k=−∞
Re(Z(kω0))|Jk/JA|2, (16)
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whereη is the duty factor. Now we assume the impedanceZ is broadband, and add the contributions of
the sidebands

h−1∑
k=0

∣∣∣∣∣ sin(Mξk)

M sin(ξk)

∣∣∣∣∣
2

=
h

M
.

Thus the power is

P � 2η|JA|2 h

M

5∑
k=1

Re(Z(khω0))|Jkh/JA|2. (17)

We apply this formula to the SPS MKE kicker. There was a measurement atJA = 132 mA, and the
measured power is 60 W [7]. The power is

P =

{
17 W, standard log formula
30 W, improved log formula

(18)

where we usedη = 0.243.

6 Conclusion

The heat load estimated from the measured real part of the MKE impedance is smaller than that directly
measured by a factor two. To interpret the raw data obtained by the wire method, both standard and
improved log-formulae were used. The latter gives results closer to both the direct heat loss measure-
ment and the impedance calculation using a numerical code [5] and as demonstrated should be used for
distributed impedances which are large in comparison with the impedance of the reference line. For a re-
alistic heat loss estimation it was also important to use the measured spectral components and not those
calculated since at an intensity of2× 1013 the fixed target beam is unstable, leading to significant emit-
tance blow-up. The heat load and impedance, (from Fig. 10, the low frequency inductive part is Im[Z]/n
= 0.43Ω per kicker), are not negligible and possible ways to reduce them should be investigated.
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Figure 1: Simplified schematic cross-section of the MKE kicker (vertical aperture: 32 mm, horizontal
aperture: 140 mm, wire diameter: 0.4 mm).
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Figure 2: Raw data: amplitude and phase in the frequency range up to 100 MHz from a network analyzer
with mechanical correctionl = 2.2253 m taken into account, and cable calibration done.
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Figure 3: Raw data: amplitude and phase in the frequency range up to 300 MHz from a network analyzer
with mechanical correctionl = 2.2253 m taken into account, and cable calibration done.
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Figure 4: Raw data: amplitude and phase in the frequency range up to 1000 MHz from a network
analyzer with mechanical correctionl = 2.2253 m taken into account, and cable calibration done.
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Figure 5: Raw data: amplitude and phase in the frequency range up to 3000 MHz from a network
analyzer with mechanical correctionl = 2.2253 m taken into account, and cable calibration done.
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Figure 6: Corrected S-parameters: the losses from the matching resistors are taken into account, and the
phase ambiguity related360◦ jumps are removed.
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Figure 7: Corrected S-parameters: the losses from the matching resistors are taken into account, and the
phase ambiguity related360◦ phase jumps are removed.
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Figure 8: Corrected S-parameters: the losses from the matching resistors are taken into account, and the
phase ambiguity related360◦ jumps are removed.
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Figure 9: Impedances calculated from the corrected values of amplitude and phase of S21. Solid and
dotted lines show the result by standard log formula and improved log formula, respectively. Note the
negative real part (unphysical result) around 7 MHz from the improved log formula.
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Figure 10: Impedances calculated from the corrected values of amplitude and phase of S21. Solid and
dotted lines show the result by standard log formula and improved log formula, respectively.
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Figure 11: Impedances calculated from the corrected values of amplitude and phase of S21. Solid and
dotted lines show the result by standard log formula and improved log formula, respectively.
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Figure 12: Left: fine structure of the beam spectrum around 200 MHz line. Right: beam spectrum
envelope for a 4 ns bunch length (at injection).
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Figure 13: Left: bunch length for low intensity beam during SPS fixed target proton cycle in normal
operation. Right: beam spectrum components during SPS fixed target cycle in normal operation for
beam intensity 1013.
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Figure 14: Spectrum for the beam with bunch length of 3 ns (left) and 1.7 ns (right).
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