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INTRODUCT ION

After the lectures of Professors Preparata, Treiman, de Alfaro and Coleman,
I am pretty sure that people here have a deep understanding of inelastic lepton scatter—
ing from a theoretical point of view, using the fashionable concepts of light cone

behaviour of current commutators or of broken scale invariance.

The aim of these lectures is twofold. First, I hope to give, with the guark
parton model, an elementary understanding of the previous sophisticated languages.
Secondly, I shall try to be quantitative and to use the available experimental data

as much as possible.

The kinematics of these reactions is a ten-year old story so that we only

give a brief review of the main features in Section II in order to fix the notations.

1)

the characteristic features of the high energy hadronic interactions. It has been

The parton model has been imagined by Feynman to explain in'a simple way
applied by Bjorken 2) and many others to deep inelastic lepton scattering. The language
is introduced in Section III and for a more complete discussion of the basis, we refer

to previous Erice lectures like those by Drell 3).

We ghen focus our attention on the quark parton model first studied by Bjorken
4

and Paschos in a particular form and generalized by Llewellyn Smith 5 by the inclusion
of gluons. A comparison of this model with experiment has been made in a previous paper 6
where an additional technical assumption concerning the longitudinal momentum distribution

for partons in quarks was made for simplicity.

The scaling functions are expressed in Section IV in terms of the quark and
antiquark distribution functions in the nucleon. We then obtain three general relations
between the scaling functions which are characteristic of the model. Proton and neutron
as targets are then related imposing charge symmetry so that we can derive four inde-
pendent relations between the scaling functions for proton and neutron beside the usual
charge symmetry relations.. It is interesting to remark that these four relations can
be derived in the integrated form from current algebra in the gluon model 5) showing
the strong connexion between these two approaches as emphasized in Professor Treiman's

lectures for abstracting the structure of current commutators on the light cone.

Section' V is devoted to a quick study of the sum rules obtained integrating
the scaling functions. Unfortunately, the experimental information is too poor to

allow conclusions.

The consideration of the first moment of the scaling functions made in
Section VI is more instructive. Using the positivity property of the distribution
functions, we get from the actual experimental data on neutrino and electroproduction
interesting results and predictions. In particular, it is shown that the quark parton

model can accommodate experiment if and only if gluons are present in the nucleon.
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Finally, in Section VII, we discuss the implications of internal symmetries

and the way to derive more constraints on the scaling functions. The consequences of

‘isotopic spin symmetry for nucleons are explicitly given.

KINEMATICS

Let me first review in a very schematic way some important kinematical results
needed for our study of deep inelastic scattering.

1) Structure functions 7)

In the one-photon exchange approximation for inelastic electron or muon
scattefing on an unpolarized target, the differential cross-section observing only the
final lepton is described by two structure functions which are conveniently expressed
in terms of the two total cross—sections for the scattering of the polarized electro-
magnetic current on the same target G T and G;L where T means transverse and

L longitudinal.

In the local Fermi theory of weak interaction or in a theory with intermediate
boson, again only one unit of angular momentum is exchanged between the leptons and the
hadrons. Therefore, the inelastic scattering of neutrinos or antineutrinos on an unpo-
larized target will be described by three structure functions when only the final lepton
is detected and its mass neglected. These structure functions can be interpreted in
terms of the three total cross-sections for the scattering of a weak current of helicity

A on the same target G;A where A takes the values +1, 0, -1.

For electromagnetic interactions, the invariance with respect to space reflec—
tion implies the equality E;+ = G;_ so that we have only one transverse cross—section
QGT = G+ + §_. For weak interactions of the V - A type, the difference €+ - G_

measures the vector (V) axial vector (A) interference.
2) YVariables

With the notations as indicated on Fig. 1 where the waved line symbolizes the
electromagnetic or the weak current, the momentum transfer at the lepton vertex is
g =k - k'. We then define two independent scalar variables q2 and W2 where W is

the effective mass of the undetected hadronic system

W —(p~rq )
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Another useful variable is the energy carried by the current in the laboratory system,

P, covariantly defined by

P M = - i:' C‘

and related to q2 and W2 by

WZ M- g*+ 2My

where M is the target mass.

The three structure functions G;> are Lorentz scalar functions of the two

scalar variables q2 and W2.

We shall also use the Mandelstam variable of the direct channel

S=-C(Repy

%) Elastic scattering

In the particular case of elastic scattering W = M so that the W2 depen-
dence of the structure functions is simply given by the Dirac delta distribution
g(Wz - M2). In terms of the q2, » variables, this becomes Y (q2 -~ 2M¥).

When the current scatters elastically off & spin zero particle, it can have
only a longitudinal polarization as a consequence of simple helicity arguments so that
in this case © iz = 0. If now the target has spin 1/2, it can be easily checked
that for pointlike elastic scattering in the high energy limit, the elastic longitudinal

. . el
cross—~section vanishes G; 0 = 0.



4) Scaling

8)

It has been proposed by Bjorken that the structure functions for large q2

and W2 scale in the sense

= o0
A 2 F '
Wie, oo = ”Mg("wz)= (§) ()
N 0 A A »
E S
§=_q_-(?cx¢d
- 2My
. iments f 1 . 9) . . 10) .
xperiments for electroproduction and neutrino production support this
conjecture.

5) High energy differential cross-—sections

The high energy limit in the scaling region is defined by the condition :
q2, W2, s tend to infinity so that their ratios two by two remain fixed. We then
introduce a second scaling variable f = E'/E where E(E') is the ingoing (outgoing)
lepton energy in the laboratory frame. The relation between E, f ’ § and the labo-

ratory scattering angle © is simply

- 4
4, 2EAN'S

¢ - -

The high energy limit in the scaling region of the differential cross—section is computed
in the one-photon exchange approximation for electroproduction and in the local Fermi

interaction for neutrino and antineutrino induced reactions

426" | dnx® 4 2, e ¢
die” , & 5% [fz MOR F_”(%) + 2§ -F;v(b] (3)
dedt 2 T ) _

d8 L & [T O+F (§e2e T (@
dgds > 2z [§ L SIT TGS J 4

As usual © is the fine structure constant and G +the weak Fermi coupling constant.
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6) High energy total cross sections

The total cross—sections are obtained integrating the differential ones in

the region Osg <1, 0<¢ <.

For electroproduction, the total elastic cross—-section is infinite by itself
as a well-known consequence of the vanishing of the photon mass. A finite total ine-

lastic cross—section can be computed but nothing really simple emerges " .

Por neutrino and antineutrino reactions, we make the strong assumption that
the result is not too different from the one obtained by using the scaling forms (3)
and (4) in the complete integration domain. We then deduce a linear rising with s

of the total cross—sections

»,5 2 >
S ey G2 AT
ot 2n

Y »
where the constants A and A are first moment distributions given by

S i >3
_Av'v: j § A, (64§

with as a result of the integration over §>

AT (02 LT 0T O F() -

A (5 AFIE TGO G o

III. [IHE PARTON MODEL

1) Because of the lack of time, we cannot discuss in detail the justification
of the Feynman parton model and we refer to the original papers of Bjorken 2 s Bjorken

12)

and Paschos 4), Llewellyn—-Smith 5), Gross and Llewellyn Smith and of many other

authors not quoted here.

The hadrons are assumed to be composite systems of partons and in the f;].;-m
frame of the hadrons, where the Lorentz invariant structure functions are computed,

there are two fundamental principles from which the scaling emerges directly,
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a. the structure functions in the scaling region are incoherent sums of the

various parton contributions’;

b. +the interaction of the partons with the electromagnetic and the weak

currents is pointlike in the scaling region.

2) In the hadron f;]-b © frame the transverse momentum of the partons is
ignored and the parton & carries a fraction X of the hadron momentum ; so
that we get the approximate relation for the parton energy momentum vector By, XX P
with

O, <4 %‘a;,.i (7)

The partons are almost free and elastic scattering on a pointlike parton is relevant.
As seen in the previous Section, the parton ¢&{ contribution carries a Dirac delta
distribution with the argument q2 + 2p“ .q = q2 - 2qu;) which relates x& to the

scaling variable g .

3) The probability to find in the hadron a configuration with N partons is

called PN‘ The conservation of probabilities implies

= {L (8)

N

2 P
N

Mean values will be used later referring to this distribution of states and for a

quantity O which can depend on N we introduce the notation

<O0S =2 O(N)
N N

4) Let us define the N dimensional correlation function fN(x1, xz,...xN)
describing the distribution of longitudinal momentum for the N parton configuration.

The normalization condition is written taking into account the constraint (7)

IS j dog dre ..dz. ??«--E'--»%)g(? %) - A (9)

The density of probability for the parton ©&X to have the longitudinal momentum iﬁ
in the N parton configuration is simply obtained integrating fN over all variables

but Xy



£ ffofsnde-de A )3(5-‘cr -1)S(g-x) (10)
and from (9) we deduce the obvious normalization condition

f‘l'{:(‘)“t"j‘ (11)

Another interesting property concerns the first moment of the momentum distribution.

given by
2 N
“:f/qc‘(b,,(")‘l“ (12)

Using the definition (10) of £ (x) and the normalization condition (9) it is straight-
forward to prove the equality

2, =1 (13)

5) With these concepts and definitions, the computation of the structure
functions in the scaling limit is straightforward. In a model with only spin O and
spin 1/2 partons the longitudinal scaling functions receive only spin O parton contri-

butions and the transverse scaling functions only spin 1/2 parton contributions.

For electromagnetic interactions we get

— - -, 2
2P (%)= %.' Y ?s. ).4':&)@, (14)

2F (). 27D {-‘ 5@, (15)

=

where Qi is the value of the squared electric charge for the parton o .
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For weak interactions, the Cabibbo theory with an angle Gc is used in a

chiral symmetric form in order to save the Adler sum rule for neutrino production.

The results are

-

v ol
» _\0‘) N < .2 -2
T, (H-27P 2 £ (Ha=8)|ee I +S

o _ ) L =
t',(g)‘ %’P ),, (§) L('oa _¢+Stn9cv:,l

where g - +1 for partons, é‘, = -1 for antipartons. The weak charges are

o
defined by the mean values of I spin and V spin operator products

2 - .‘. 2 - -+
T,- <=l T7 I 1> Ve el VVT [0y
- - 2 * -
2| TT e V, =<l VUV [y
o =
The position of these operators on the SU(3) root diagram is shown on Fig. 2.

6) Adler sum rule 13)

\o;) Ly % 2 ;] 2
INGICEL IR AT N B
2

e‘eev“—] (1)
T2 32, @ Ty LerqTiesna\]

(19)

The Adler sum rule appears to be a direct consequence of the I spin and

V spin commutation relations
[, r°].=21° vsvi]l.ev®
In the scaling function language, it is simply written as
3 » Y -3 o ¥
S LF 0 0a 2T ] -IF, (e P e 2R € -
=4 [00376‘ Is"" S ecval

where the normalization conditions (8) and (11) have been explicitly used.

(20)
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THE QUARK PARTON MODEL

1) In all that follows we shall be interested in the specific model 4)

where the interacting partons are quarks (j = 1,2,3) and antiquarks (j = -1, -2, =3)
labelled as shown on Fig. 3 where the two fundamental representations of SU(3) have
been drawn. Neutral particles called gluons might be present for dynamical purpose

and they have the only role to carry a fraction of the hadron momentum being neutral

in all the other respects 5 .

2) Calling Nj the number of quarks or antiquarks of type J present in the
N parton configuration, it is convenient to work with the following set of distribution

functions defined by

- Ly
-Dd (%)= %?«r N; ‘F& (%) (21)

The main property of these Dj's is to be positive and we shall use extensively this
feature in our analyses. The vanishing of a Dj(g ) implies the non existence of

quark or antiquark of type j 1in the hadron.

From the normalization copdition (11) and the definition of mean values
we have a simple interpretation of the g integral of the distribution functions in

terms of the mean number of type J quark or antiquark in the hadron

4
J:‘%(i)d§=<‘ﬂ> (22)

The convergence of the integral (11) implies for all the functions f§(§ ) the property
in the neighbourhood of E =0

VR EAOREL

If there is only a finite number of partons the same property holds for the distribution
Dj(§ ) from its definition (21) and the integral (22) is convergent. The same argument
cannot be used if the sum (21) contains an infinite number of terms and the integral

(22) can be divergent.

3) The baryonic charge B, the electric charge Q and the hypercharge Y
are additive quantum numbers. We know their values for quarks and antiquarks and the
conservation of B, Q@ and Y dimplies constraints on the mean numbers of quarks and

antiquarks
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(AT NSBYR DY

so that, a priori, only the mean number of antiquarks is free.

4) In the quark parton model, the longitudinal scaling functions are predicted
to vanish as explained previously. In order to compute the transverse, scaling functions
(14), (16) and (17) we must know the electromagnetic and weak charges for quarks and

antiquarks. The results are given in the Table.

o/
1 2 3 -1 -2 -3

Q2 4/9 1/9 1/9 4/9 1/9 1/9
IS 0 1 0 1 0] 0
12 1 0 0 0 1 0

2
Vo 0 0 1 1 0 0
2 1 0 0 0 0 0

-4

It is convenient for the weak scaling functions to separate the contributions coming

from the AY =0 and |AY| =1 transitions

F:';(s). G3 6 G':NCE) +Smé H :" (9

The scaling functions for an unspecified target are then given by the following

expressions

2RO 56RO RORERODL] o
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G, (9= 2D (5 HY (6 -27D, (&
G_v - 27, (5 HY ) =2D (§
G (5-2D, (5 HY (6 - 2D (5
G (9.2 ) G H> G, - 2D (§

(25)

From electroproduction, neutrino and antineutrino processes, one can measure nine
structure functions. The number of different types of quarks and antiquarks being six
we have to our disposal only six distribution functions Dj(f ) so that the quark

parton model predicts three relations that one can, for instance, write as

H2 (8). Go(H R (6.6 G

(26)
IE () 2[G @G0+ £ [6 (e G (0 H (e H ()]

These relations are strict tests of the most general quark parton model.

5) When the target is a nucleon, we use charge s et to relate the proton

and neutron distributions as follows

n n $ n $
Dz.(éhb;(%) D, 6D  D,0.D,®

All the scaling functions on a neutron target are known from the scaling functions on

a proton target. As an illustration, let us give some example of such relations

a. for & Y = 0 weak reactions

G, ®). G ) GGl @
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b. for |A Y| = 1 weak reactions

H™ (5). 1P Cs) R (8. H (8) o

c. Dbetween electromagnetic and weak scaling functions

T':b(S)»e 11"‘(9:3% [Gf(%h Gf'ZgyGf’(s G (s )]+ 4 [Hf'( o+ Hf’(g)]
e en » - 3 (29)
T O-F G- L6 6-6 -G 5060

A1l other possible equalities 5) are linear combinations of (26), (27), (28) and (29).

V. SUM RUIES

1) The integration over g of the scaling functions involves the integration
over f of the distributions Dj(g ). From Eq. (22) we get linear combinations of the

mean values of the number of quarks and antiquarks in the hadron.

As a trivial consequence of the B, Q and Y charge conservation we obtain

two sum rules using the constraints (23)

j‘[""_;(é)- 'f‘: ©]d§ - 2(3+Q)

(30)

j [F‘_’ (§)- F: (§,14§ - 2(BY-Q)G3 0+ 2 (B-)Sm & (51)

The difference between (30) and (31) is the Adler sum rule originally derived from the
current algebra of time components and shown to be valid in all parton models with
chiral symmetry in Eq. (20). The sum of (30) and (31) is the Gross-Llewellyn Smith

sum rule which was derived from a quark model current algebra of space components 12).

2) TLet us specialize to a nucleon target. As pointed out in the previous
section charge symmetry relates the neutron and proton distributions so that it is

sufficient to discuss the proton ones.
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In all quark parton models we have the obvious lower bounds
g N_b 0(’
<N > >2 <N 24 <d>>,o for §a3,-10.3
which in terms of scaling functions can be written as
] Sh 1 Sn
» — Y
[FH5ra8 54 ST ®dss 2
o

[Froagnzate,  [F(ndi3 4688

(32)

(33)

t _eb : —ch,
foz b ®ds 1 [‘2 b, (648 > % (54)

Obviously, these inequalities make useful sense if and only if the integrals converge.

Assuming such a convergence we are able to derive non trivial bounds for the mean
value of the total number of quarks and antiquarks Nq in the nucleon. The result

using electroproduction scaling functions is simply

Q 4
eb e - o= —.n
1 J[zli(g)fzﬁ“mwg <e>¢ 2 j[z G oedT w-145 ()

(4

3) The experimental situation at the time of the Kiev Conference (1970)

was the following 9)
1 (14
f QCFT (§)4§ = 0,5¢ +euns
5
i —G
[ 27 (108 0,45 seoms
12

The lower bounds (34) were not yet satisfied and if the integrals converge they will

converge slowly so that we need more data before to reach a sensible conclusion.

Now from experiment, it is not clear if the quantity g F;p(g ) and g.F;n(f )
are constant or zero when g tends to zero. Again, more experimental information at

lower values of s can resolve this important problem.
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POSITIVITY CONSTRAINTS

1) In this section we study the first moment of the quark and antiquark

distribution functions defined by

4

d,= | 3D (0d§ (36)

The integrals (36) are expected to be convergent so that we are in a more comfortable

position to make useful statements.

The first moment relation (13) is written in the quark parton model language

as

S8+ 20 X, 4

9 J aeubns

It is then convenient to introduce a parameter EE measuring in some sense the amount

of gluons in the hadron

gns&"‘: & ' d 1-& (37)

q
Q
"

d

From the positivity of all the first moments of distributions, we deduce the allowed

range of variation of

0¢e<d (38)

In particular & =0 corresponds to a hadron made only of quarks and antiquarks and

€ # 0 implies the existence of gluons in this model.

2) Tet us define the electroproduction integral
4 <
| Far(
I=f '?'*.'r §)cl§ (39)
(4

which from Eqs. (24) and (37) can be written as

—~e
1l . 'é (4-5)+ é(d"*d") (40)
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For neutrino and antineutrino reactions, the interesting quantities are the constants
A i and A» which govern the linear rising of the total cross—sections in the local

Fermi interaction. From Egs. (5), (6) and (25) we get

ﬁ_”zéd_‘-a-z[&gecci...s\%%ds] (41)

ﬁ.’ =2 d“ + Q[C»zec dq-;- s.?.ecd_s] (42)

W

The separation between strangeness conserving and strangeness changing transitions is
achieved by putting

¥, v,5 2,9
AT.C, B 430 C (43)

3) We first study the electroproduction on nucleon. Using charge symmetry
we deduce the following inequality from positivity

g@.-&)< Ie:‘f“é g (4-€) (44)

The equality at the upper limit holds when no strange quarks and antiquarks are present
in the nucleon.

Equations (44) and (38) imply the existence of an absolute bound

e en '~y
0< L +1I 53 (45)

and limits on é when the sum 1°P + Ien is known from experiment

9 eb en
o < & < i - ? (I + I ) (46)
The experimental situation is the following 9)

i —eb
L § 2 *'T ($)d§. 0,14 +euors
Ty

f { 2 F (§)4é= 0,10 vernis
J T
2
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The evaluation of the rest of the integrals Io' leads to the following estimates

with errors of the order of 20%

ep

TCb

en

and for the sum IeP + I of interest here

—ab TQR
l t= e O)QSiOaO“ (47)

This result satisfies the upper bound (45), it implies an upper limit for E which

in the one standard deviation limit is

&€ < 0,57 (18)

and it leads to the value & = 0,50 £ 0,07 when there are no strange quarks or anti-

quarks in the nucleon.

4) The same type of analysis can be carried out for neutrino and antineutrino

reactions. We only sketch some results consequences of positivity :

BB < 2(2-8) C”ic"“<4(4-5) (49)
BB <2d-8y ChRCTwu-s
B BB s § (4-e) (50

%Li- €) < Qw-rc-»?\- ;tt' C;“ £ 4 (4-€) (52)
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When strange quarks and antiquarks are absent in the nucleon, we get two interesting

equalities

—b"?‘*%ﬂ-"Bs’t\:&;z Q (-8

3 (53)
S c”?,c"",_&s@—e) (50)

Absolute bounds are simply derived by putting & =0 in the upper limits of the

inequalities (49) - (52). Limits on & are obtained from the knowledge of the
constants B and C as for instance

BhE"

2

We can use our information (48) on & deduced from electroproduction data to obtain

£ <4~ (55)

a lower limit on the total strangeness changing transitions using the first part of the
inequality (52)

chey et et > 0,28 (56)

5) An experiment performed at CERN in a propane bubble chamber 10) gives
some indication for a linear rising with energy of the total cross-sections. The

results are

a. A( 2 propane per nucleon) = 0,52 + 0,13 ;
b, A¥%/A¥P - 1,8 10,3 ;

. c. no strangeness changing events observed.

Teking into account the particular structure of the propane in protons and neutrons,
we obtain the experimental figure

20 ‘B"""= 4,45%0,29 (57)
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This result satisfies the absolute upper bound of 2 and it implies from (55) an upper

limit on & which, in the one standard deviation limit, is

& <0,5% (58)

e.g., the same as that deduced from electroproduction (48).

6) We now combine the neutrino and electroproduction integrals in order to

obtain the maximum of information from experiment.

As an immediate consequence of the first general relation (29) between

structﬁre functions we get the simple inequality

»n ed _en
BB < 18 (I+T) (59)
b)
From the electroproduction data (47) ISP 4+ I°® < 0,32 so that the inequality (59)

implies

BB ¢ 4,45

The experimental result (57) shows that neufrino and electroproduction data are consist-

ent with the quark parton model constraint £59).

If we study in more details the relation (59) using Egs. (40), (41), (42) ana

the requirement of positivity for the dj's we easily prove the more elaborate inequal-

ity

e n e N b b
BN > _4.5.(d3+c|_3)

On the other hand the electroproduction sum is computed from (40) to be

B

b n = b b
e_‘_l"e - %(4_-8)-"3(613-0-3_5)
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and we can deduce a double inequality leading to an improved lower limit for &

1- (I‘tx“)*%(’b’"lb“)é e ga- 2 (3% I."‘) (60)

2
2 S

With the experimeutal data inserted in the one standard deviation limit, we obtain a

limited range for
0,32 <L & L 0O,5% (61)

so that gluons must be present in the nucleon to make the quark parton model consistent

with experiment.

7) Some interesting consequences can be derived from this result. Starting

from the equalities

BEB PR B IREATT)-S (-9
C“E" c»t C 56 0‘ 8) iOC Icn.

and using for li the double inequality (60) we deduce

( BH<BER IR g 24 I
_‘: A% <™ c +c"‘_<48(1°3f" 4 $3: 0
5

Using again the experimental data for neutrino and electroproduction, we make the

following predictions in the one standard deviation limit

1,42 <B+b ,5’3 B§“<4‘54 (62)
0,28 < Ch e e < 4,27

(63)



- 20 -

Limits can also be obtained for the ratio of antineutrino to neutrino transitions
conserving strangeness, using again the positivity of the dj's and the lower experi-

mental limit for the neutrino data

2P >N
B+ (64)

P B

In Fig. 4 we give a graphical description of the situation concerning the strangeness
concerving transition. For the strangeness changing part, we must keep in mind the

general relation

—

THI E’f- CB"Y»B"%B;#B’%% C*Shche™)
c y

already given in a differential form in Eq. (29).

8) Up to now, we only considered the proton-neutron sums of structure
functions in order to use at their maximum the positivity requirements. The proton-
neutron differences can also be studied and there is some experimental information on
them. Unfortunately, my allowed time is too short for such a discussion and we only
recall the three general relation characteristic of the quark parton model (27), (28)

and (29) which, in this language, are written as

C-e (R g@f”’. B")
c%b_ c§n- % van- Bup) _ % CBﬁP- Bi:‘n. )

- 1% A(BTER ALY

VII, SYMMETRIES

1) We consider a forward scattering amplitude with different U(3) indices

for the currents and for the hadrons.

RN ¢ym
8‘ + N, -3;6;&-&-0(2
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In the quark-antiquark representation, the system 4m is associated to one of the nine

U(3) generators.

As previously, we use the Cabibbo theory for weak interactions and scaling

functions generalizing (24) and (25) are simply given by

g. ) 3? LR oLt — el m
[ ®=5 07530 <1 F Fomyy e

where = 0 for electromagnetic transitions and 8y = +1 in a chiral symmetry of

€y
weak interactions.

2) The P's are the infinitesimal generators of the U(3) Lie algebra and
in the two three dimensional fundamental representations of quarks and antiquarks,

they have the explicit matrix forms 14)

M (3.Ly<aml for Dliio) = 3

T 3wyt o Deoar » 5

Substituting now in Eq. (65), we exhibit the quark and antiquarks contributions to the

scaling functions

fymg %, ;% oo/, A
F: ¢y = g&e‘@ ;ga)'thm' (§)+<"’="’4(“3") DT ) (6o

~e‘ -94

For instance, the weak currents previously studied correspond to the following set of

indices

I spin £1 = 22 =1 m, =m, = 2
neutrino induced reactions
V spin L1=£2=1 m1=m2=3
I spin 21 = £2 = 2 m, =m, = 1
antineutrino induced reactions
V spin 21 = 22 =3 m, =m, = 1
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For the currents of the Cartan sub-algebra of SU(B), we must impose the zero trace

condition associated with the baryonic current

‘5%5‘5‘?& ‘ _ olpds . Yok
'F; (5) =§ ?{@*QA)DM (5)+ Ci-gﬁ)'.D_é_é (§3g (67)

and, for instance, we recover a formula like (24) for the electromagnetic current

Qo ; Q@ BB

_Fx (§)= o6

- N2 + \oad | 68
s G tlenieoen el

)

3)  The quantities ij2 1(§ ) are matrices in the space of the irreducible
representation D( ')1,22) for the hadrons with indices N,] and O o+ Using the

well-known decomposition in SU(3)

D (40) ® D(.1)= D(e,0)® D(ﬂti)

We apply the Wigner-Eckart theorem in a straightforward way and we define six reduced

distributions, three associated with quarks

- %A 238
szmiéiy-i,iqu* “1Q o >D (e <°¢l§2“1m‘\~.>’&>s<§))
69

and three associated with antiquarks

- 2R -— 28 —
Doy <4l Q0D >+ 1 BB E

(70)

oy
—‘D-s 4 ® S‘é’-s&ﬁ

8A
rs
metry‘s 2 i: involves the product of generators

The skew symmetric isometry is the generator itself Frs’ The symmetric iso~

Q. SF T -1 =

n Mg mg TN
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where the Casimir operator x = & F ~F = is given for the irreducible D(21,:\29

representation by

A= %(R?—n— ):-r A,“z 51- 2 C».*)z )

In the trivial case where the hadron belongs to a singlet representation of SU(B) we

have only two reduced matrix elements

Dy (85, D)
D, 65, DC)

as expected all the SU(S) directions being equivalent. If now the hadron belongs to
an irreducible representation D(] 1,12) with 31 az = 0 the symmetric isometry

vanishes and we only have four independent reduced distributions.

4) The nucleon belongs to an octuplet and we now study this case in more
detail. We use for o 1 and o > the same notations as for the currents with two

indices

(> =5 |0, by > =>1a, B

The adjoint representation of the Lie algebra is given by 14)

l‘ )
P - |en Sn| —=|nsSHgnr|
g = :E: l :><< | < ‘)

r

so that it is straightforward to compute the matrix elements of the skew symmetric

and symmetric isometries between two octuplet states.

15)

The consequences of SU(3) symmetry have been studied by Nachtmann in
the form of positivity conditions. Because of the reduction of products of represen-—

tations in SU(3)
D)®D(0)=D &8 D(0:2)®Dcawn)
D(t) ® D(e:8) = D(1:2)® DR.0@ D¢o.1)

he obtains three relations for the quark distributions and three relations for the

antiquark distributions.
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5) Let us consider here the more simple case of isotopic spin symmetry
applied to the nucleon doublet. With b1 = b2 = 3, a, = 1, 2, a, = 1y 2 we get
from (69) and (70)

i S % lm-20& -3 S
= <: - - D-3D)[+
Q) “,‘; A s)] 'M.a‘ ﬂG‘C‘DA*' 5‘93) (71)

™, M, ngl ﬂyﬂ%

; 93:43
)

where the g dependence has been dropped for simplicity.

),

=Sy [(5-25,)%5(53-3@}20‘2{% (3,+3D)

Imposing only isotopic spin invariance, we have a decoupling between strange
and non-strange quarks or antiquarks. The strange quark and antiquark parts are written

from (71) and (72) as

03:.4,3
D, - ®aq, (D-Da+Ds)

Q,3.93 e — =
:i)-5w45 =.(;:‘lz¢‘; <:;> - I)“ + Ias.)

and we obtain the two first positivity conditions

DE)-Da(8)+ D ()30 (73)

—]3@)— —5"(&)"‘3_53@) 20 (74)

For the non-strange part the 4 x 4 matrix (71) for quarks and the 4 x 4 matrix (72)
for antiquarks are reducible following the well~-known property of the su(2) repre-

sentations

D(A)e D(4)= D>®D@)
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We then get in both cases two positivity conditions and a straightforward calculation

gives

D(Ey+2D, &) +435<§ o (75)

'DG )=~ Ds (ﬁ) % © (76)

D(8>-D,%>- 555(2»0 (17)

(78)

D (€)+ Bh 6>+ D, (§yy o

6) The proton distributions D?(g )  introduced in Section IV are linear
combinations of D, D,, D, 5, iA and BS’ The Clebsch-Gordan algebra is simple and

the result is

D). DS+ D, (14D, (6
D @. D) Dp(8)e D>
Do) D(8r-2Ds G5y
D6 D (5y-2 D, (6>
3:(5) = D(£)-D,&>+ D, (€,
D.:(f)= D)~ Dal§5+Ds (5>

The positivity constraints (73) - (78) due to isotopic spin symmetry are translated

in the language of proton distribution as

b b |
D, ® o0 :D_AG >>o0 (79)
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b »
D Gxo OROPLES (50)

2D (5> ’-Di (€) (61
<2 :) (E) D Cg) (82)

The inequalities (81) and (82) are the only non trivial constraints, the others being
the natural positivity. In the language of neutrino and antineutrino scaling functions

(24) we obtain

P

2 G

I+ gl

»p
C§ J >/ G: Cg) (83)
or, equivalently, using charge symmetry

2 G (83 C’ (%) (80)

CONCLUDING REMARKS

1) We have studied some aspects of the quark parton model for electropro—
duction, neutrino and antineutrino induced reactions. The scaling functions are
described in terms of six distribution functions associated with the six types of quarks
and antiquarks. The target being a nucleon, we use charge symmetry to relate the dis—
tribution functions for proton and neutron and we finally get four relations between

structure functions characteristic of the quark parton model.

After integration of the scaling functions over E , We get sum rules measur—
ing the mean number of each type of quarks in the hadron. The experimental situation

for electroproduction is not complete enough to allow a clear conclusion.

The study of the first moment of the scaling functions gives a nice way
to compare the model with experiment. We can check the consistency of the electron and
neutrino data with the constraints of the model and we prove the existence of a sizeable
amount of gluons in the nucleon using theoretical considerations based on the positivity

of the distribution functions.

Finally, constraints due to symmetries are explicitly given in the particular

case of isotopic spin invariance.
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2) A simple way to remember the experimental situation is to consider a very
simple model of the nucleon consisting of three quarks plus an arbitrary number of
gluons. We have only two distribution functions D?(g ) and Dg(g ) which can be
determined from electroproduction data. The value of & is found to be & = 0,50 %
+ 0,07.

The neutrino and antineutrino scaling functions are then completely known
from the electroproduction ones. The weak current is left-handed, antiquarks being
absent and the result < Nq > = 3 implies the low } behaviour of the scaling

functions

fo £ D, 0n0

The coefficients B and C for the total neutrino and antineutrino cross-sections
are predicted from the electroproduction integrals Iep and Ien. Using the experi-

mental data we obtain

(4I"-I%). 0,38%0,42

;) = (),,Q;ﬁ!:t 0,

»b on PO JE] In :BEn

c-C-0 =B =

For the propane experiment, we deduce the following features

a. A(® propane per nucleon) = 0,45 + 0,10 ;
b A¥P/AYP _ 163 £0,10 ;

c. no strangeness changing events predicted for neutrino induced events in

the scaling region.

The agreement between theory and experiment is very impressive, even in this

very crude picture of the nucleon.
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%) The same quark parton model can be used to study the polarization effects
in high energy inelastic lepton scattering. We get scaling when the nucleon polari-
zation is made parallel or antiparallel to the longitudinal of the incident lepton.

We consider only inelastic electron scattering polarization. The polarization
scaling function is the mean value of the operator © zQ2 in the gquark parton model
sense as before the transverse scaling function was the mean value of the operator Q2

16) is derived as a

as obtained in Eq. (14). The Bjorken sum rule for polarization
consequence of the model as previously the Adler sum rule and the Gross~Llewellyn Smith

sum rule.

The most interesting result 17) is that the polarization effects are predicted
to be one order of magnitude larger with a proton target than with a neutron target

and this feature is characteristic of the quark parton model.
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FIGURE CAPTIONS

Inclusive reaction Q + p— l’ + anything.
charged weak currents and the SU(3) root diagram.
The two SU(3) fundamental representations and the gquark and antiquark weights.

The coefficients B in the W, » plane.

The big triangle is the region allowed by positivity of the distribution functions.

a

b The oblique lines correspond to the inequality (59) with the electroproduction
data (47) taken with errors.

c The vertical lines are the neutrino-propane data (57).

d The dashed triangle is the resulting region compatible with experimenfs and

positivity.
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