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1. - INTRODUCTION

We have been led by two circumstances to look again at the
theory of quasi-elastic neutrino reactions in nuclei. One is the appa-
rent experimental absence 1) of the expected Pauli exclusion effect.

The other is the belief 2)73)
4)

that this process must be an important

5),6)

background in the attempt to see the nuclear shadow effect

for inelastic reactions.

The "quasi-elastic" reactions are those supposed to be

initiated by an elastic collision with a single nucleon
V+ n o — Ao+ b

Even to speak of such a class of events is already to picture the
nucleus as a collection of almost free nucleons. The simplest version
of this picture is the Fermi gas model, in which nucleon motion and

the Pauli exclusion effect are allowed for 7)’8)

A good idea of the
results of such calculations, for the differential cross-—-section with
respect to angle integrated over secondary lepton energy, can be
obtained by neglecting nucleon motion. Nucleon velocities are not
very small (v/c < 0.3) but there is some carcellation between
nucleons moving in different directions, even when the exclusion
effect distorts the region of integration. The result is then that
the differential cross-section per neutron is that for a free neutron
multiplied by an exclusion factor *)

\— N7T'D
with D= Z for 2x <u-w
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For the symmetric case, N = Z, this formula was given by Gatto .

The general formula was given by Berman 10).



where

B R

(N,2,4)
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(neutron, proton, nucleon) number

and a is the momentum transfer to a stationary free nucleon in

secondary lepton production at the given angle.

Goulard and Primakoff 11) have gone some distance towards
a more detailed account of finite nuclei in the "closure" approximation.
However, in evaluating their formulae they assumed Wigner supermultiplet
symmetry, and instead of using model wave functions made simple ansatzs
for nuclear density distributions and correlation functions. Thus spin-
orbit coupling and shell structure effects were excluded from the begin-
ning. We therefore decided to investigate such effects by calculating
with explicit shell model wave functions for some simple closed subshell,

or almost closed subshell, configurations.

In Sections 2 and 3, the basic ideas, essentially those of
Goulard and Primakoff, are set out. This leads us to consider three
correlation functions (actually their Fourier transforms) which in this
context have not usually been distinguished hitherto. Our shell model
calculations of these quantities are described in Section 4. In Section
5 the bearing of data for the inverse reaction, nuclear muon capture, is
considered. Some comparison with previous work is made in Section 6.
Finally Section 7 gives some discussion and application to the two problems

mentioned at the beginning.

It can be remarked here that similar considerations have a
*
long history in connection with electron-nucleus interactions .

Calculations of the present kind might well have been made in that

13)

context, but as far as we know were in fact made only for the par-

ticularly simple case of 016. Experimental data of great relevance
could also have been obtained in that context. But we know of very
little 14)—19), and of none at the energies and angles of interest in

contemporary neutrino experiments.



2. — PSEUDOPOTENTIAL

Consider the reaction

VIR)Y + A(P) » mlr) + A (p) (2)

where A and A' are nuclear states ; four-momenta are indicated in

brackets. The transition amplitude is given by the matrix element
4 / i . /
<A L Jo@© | A

where J, 1is the strangeness conserving hadronic weak current, and

L Mo is a combination of lepton wave functions :
. . -2 o\ -
LTL = -Kﬂ, (Q'ho 2 kg ) /&u = (Lis/kZ.)}l ‘T«(l*’Ys) v/

where G,b is the strangeness conserving weak coupling :

. -5
Gp X lve v

in units with

where MN is nucleon mass.

The nuclear states will be described by the many-nucleon
Schrddinger non-relativistic wave functions of conventional nuclear
theory, and an appropriate form of JM must be given. A correct
version would presumably include terms referring to more than one
nucleon. If, however, only single nucleon terms are retained the

general form can be written

LJ@ = 2 S(x) 7T (3)

n
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where T'; increases by one unit the charge on the n'th nucleon, and

Tn is some combination

(4)

of Pauli spin operators and differential operators, where K; and K;

denote the same differential operator
—?
G/ 4) /2 X,

envisaged, however, as standing to the right or left, respectively, of
the ) function in (2). This inclusion of differential operators of
arbitrary order allows the simulation of finite range and non-local
effects.

For nuclear model calculations it is convenient to build

momentum conservation intc the matrix element ; in the usual way

@y 6§+ F-r) KA I s(x) YT, | AP

-
Xw

RGP AS S AV

—

where the differential operators f; and Kn in Tn stand respect-
ively to the left and right of the exponential. By partial integration

one finds

(5)

This can be used to eliminate K'. We will regard initial nucleon

motion as small, f ~ 0, and then the operator character of Tn

arises entirely from Z
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The operator T can be expressed in terms of conventional
form factors by considering the quasi-elastic reaction on a single

neutron

V(R + n(r) ~ M{RrR)+ p(K)
For this case

<K |7/"L°)I >: Y’(? 'r/“ QL Mv q/v Al {’A'X‘*\@ ‘¥P CVMYS)YL

where in a standard representation the Dirac spinors p and n are

related to Pauli spinors P and N by

\ korm, N | [kl P

n : b: — - =
mo UK N I;::'o g- W p (7)
J)co+HN T
VI +

In this way one finds

(8)

with

where terms which vanish with lepton mass have been ignored, terms
which vanish with initial momentum K have not been written explicitly,

and
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olr,u, = h»*hfu

(Z,10) = & = Al(+w)U 642
L= ¥ - 13171379
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The form factors f and g are functions only of the invariant q2.



3. = CLOSURE APPROXIMATION

The differential cross-section for secondary lepton pro-
duction in a direction specified by the unit vector k' and in an

element of solid angle d SL is given by

P g (F-F) 24 = (4e) 22

ok ki {Ae)] O G| AN AE)| 0G)| ALY (109

where © 1is the step function, :2.21 denotes summation over final

states and averaging over initial nuclear spins, and

Sy 4 Ke ot
Og)= 2. ¢ T T (1)
hu’ = R, + P,- P, (12)

Y _ . ~ Iz ?;, (13)
3 K-k

If we could neglect Po'-Pé in (12) and (13), then a
and ké in (10) would not depend on the final excited state A',
and the summation over excited states could be performed immediately

by closure, yielding a matrix element of
+ =
o™@) 0F)

Instead of neglecting Po-Pé entirely we will calculate
it regarding the nucleus as a collection of almost free slowly moving

nucleons. For small E this does not make much difference ; however,
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it is a more plausible (although not necessarily correct) procedure
for large E. For such a system of free particles the summation over

final states would include an integral over momentum
-~ = 3> o -
(o 2 5ok~ 3)

Some care must be taken because E depends on f' through (13) and

(12). Taking Cartesian co-ordinates with k' as z axis

-y N -\
- > = = - ! !

[t (724 = (1m i

C(m W AY = - Rk R = R e
(14)

ke, kS /S (MERS)

when we neglect initial nucleon momentum E. Because of the appearance
of these factors the result is more neatly expressed in terms of :1

rather than T [éee Eq. (82]. In this way we arrive at
A= o do L L RN\ T
e ¢ (F-P)ia = ww () 22
4 X g X, ‘
AT mgre v 3 eV s A [AGY s
h w

in which the first summation ;ZL is only over final lepton spin.

For a state of momentum P +the non-relativistic many-body

wave function has the form

eqp.a d} ?‘—Z,-"’)
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where R 1is the centre-of-mass co-ordinate and b does not depend

on R or P. It is the integration over ﬁ which gives the momentum
conserving O function on the left-hand side of (15). It is conve-
nient in nuclear model calculations to use instead wave functions in

which the centre-of-mass is assigned a fictitious bounded motion
= b (A )

where @ is some ? independent normalized wave function. The model
“wave functions that we will use arevof this form, exactly 20)’21).
Since the operator in (15) involves only relative co-ordinates,

X, "Xy the only effect of using these model wave functions,”rather
than the momentum eigenstates, is the disappearance of the b function.

So finally

gg:w‘fl\\m )j VAR gy
with

Olo(/l’&o\ = (\ + 2 Rk, o ‘iQBH (16)

as calculated for free stationary nucleons.

The operator J in (16) has the form [Eq. (9)]

J= L PO+ 0 v g (17)

taking the 2z axis along E, where the coefficients ™ and (3
(neglecting initial nucleon momenta) depend only on a4, and EM
With nuclear spins averaged over it follows from rotation and reflection
symmetry about the axis E that there are no cross contributions
between the four terms in (17). So we require only the squares of these

coefficients 3 from (9)



Ipal= 0 1= ¢ (1+ La2)'qt 0F L,
B I U 4B v (e T

The lepton wave function factors can be obtained for example from the

covariant trace

bedy = 8k + Rk =Sk + €upe kiR )(67/2) (o

whence
) ’1_ 2 Lo
820 = 265 levrd) = g2 (e 4 47)}
Z’L-L = 2&;{(ho+lzé\z/(l+tq,*) + q}} (20)
R‘ZZ*EK}% = H'G‘;(|lo+hol)7/1
Then 2
. R % N
L R R 1| 9,
< L_ T Ret+RSY L)
+ 496 97 (Ro + 1)
Returning to (16), note that the n=m terms are trivial,
because

The n#Zm terms can be expressed in terms of three functions of 32

-

- .-)'( M’*w)
P == (A2 e R (L e ) e
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The result is
€

1o= G e () (R +(af e -0,

For the antineutrino reaction
— - /
V+ A — M+ A

the ngA term in (21) changes sign and in (23) N is replaced by Z.
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4. - SHELL MODEL CATLCULATIONS

We have calculated the correlation functions D, for a
number of cases, in the nuclear shell model with oscillator wave -

functions.

In the simplest cases the nuclear ground state is repre-
sented by a single determinantal wave function. Then the two-body
operator in (22) can give rise to the usual direct and exchange con-
tributions. Here the direct contributions are zero, because of the

: +
charge—exchange operators T~. From the exchange terms

o el

- 9
\1;&

-~

P z;('w‘(\'t'w"XU)O’x,mlw(ﬂe (1,66,02 )W) (24)
Y

()

where the single particle matrix elements involve the spin-orbit states
@ of protons and \+ of neutrons, and the summation is over all pairs

of such occupied states.

In more complicated cases the wave function is a superposi-
tion of several determinants. Then as well as several contributions of
the above type there can be cross terms between different members of the
superposition. The only case of this kind that we will consider is that
of Fe56. The simplest shell model description involves two neutrons
outside the closed neutron subshells, and two protons missing from the
top proton subshell. We will assume the simplest coupling scheme, in
which the two neutrons are separately coupled to zero angular momentum,
and so have always opposite magnetic quantum numbers, and likewise for
the two proton holes. Then a transition from one member of the super-
position to another would require changing the states of two neutrons,
or of two protons, or of two neutrons and two protons. But the operator
in (22) can change the state of only one neutron and one proton. So here
there are no cross terms. We have only to average over a number of sums
of the type (24), which amounts to giving appropriate fractional weights

in a single such sum to those terms arising from incomplete Subshells.
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With oscillator wave functions it is a mechanical matter
to evaluate the matrix elements and perform the summations, and this
has been done by computer. One version of the programme uses directly
the single particle states labelled by quantum numbers (n, £, j, m),
where n specifies oscillator energy (n==1,2,...), £ specifies
orbital angular momentum (£=n-1, n-3, -1 or 0), Jj specifies total
angular momentum (j=£+%, M‘Ef £>QI L—%L and m 1is the
projection of total angular momentum on the 2z axis. The matrix ele-
ments are then dependent on Clebsch-Gordan coefficients, and the pro-
gramme useS an available subroutine (written by H. Yoshiki) for evaluating
these coefficients. A second version of the programme uses states clas-
sified by three Cartesian oscillator energies (nX, B, nZ) and uses
projection operators to project onto (n, £, j) subshells. There are
obvious sum rules (used to check and then to speed up the programme)
which indicate that these projections can be omitted when summing over

a complete shell.

The oscillator ground state wave function having the form

\-V G e i ‘Y"L/b'L
| (25)

(which defines the conventional size parameter b) the quantities

DS,T,L are each of the form

2 .- 2 = L arat nh
e\-;_b 19| IlC@ + CW) \‘L‘il_li)‘f C@)(‘ﬂ%) L } (26)

The numerical values of the C's are listed in Table I for a number

of cases. They are quoted to four figures, but of course are available
in the machine to much higher accuracy. They are in fact rational
numbers, but we have not taken the extra trouble required to obtain
them in this form. The configurations adopted are just the simplest
possible. For the N=2 nuclei both neutrons and protons are assigned

the following closed subshells :
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He
12 "

16 n "
2(2p, /,)
28

Si " n " 6(3(15/2)

40 n n n n

Ca 4(34,,,) 2(2s, ;)

56
8 " n n " " n
2 8(4:67/2)

56

The configuration used for Fe comes from that of the

2856 (for which also results are quoted)

hypothetical doubly magic
by adding two neutrons (coupled to zero angular momentum) in the next

pz subshell and removing two protons (coupled to zero angular moment-—
2

um) from the f% subshell.

16 40

For He4, 0 and Ca'~y, the T and L coefficients

do not differ from the 8. This is the case 22) when all the (n, £)
subshells of either neutrons or protons are closed. The summation

over either 'u/ or @ in (4) is then complete with respect to spin,
and one of the g-'s can be commuted through and multiplied directly
with the other, giving unity. In general the three sets of coefficients

are different. It will be noted that in all cases
e = Z

This is because we have used the same spin-orbitals for protons and
neutrons ; it is clear from (4) that D, then reduces for g =0 to
the number of common states. The values of CT(O) and CL(O) are
also readily calculated. They must be equal by rotational symmetry
(i.e., Dy =D at q= 0). For q=0, Y and B in (4) can be
restricted to have the same (n, L) values. When both subshells,
j=4=% %5 are fully occupied for either protons or neutrons (or both
empty for either) the g-'s in (4) can be eliminated, as already
remarked. When the J = 4L -% subshell is empty and the Jj = 4 + 4

is full, the difference from the complete (n, L) subshell is readily

incorporated by using projection operators. Thus the contribution
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2 (284 )
of the full (n, £) subshell is reduced by a factor which is the
expectation value in the orbital state of

-

-_
oL
2

- =2
AL (1, 0) T (1 o)

\
iTmce ¢+ |\ 2+ |\

where the trace is with respect to spin, f is the orbital angular
momentum operator, the 1 1is for S and the Ty for T or L.

This reduces to

20040 + @+ ~3 {2+ 0)d + @)
')
Q_SL-‘«- \\1 (Alﬂ- \)Z
on using
K T _ z —_ 4 — 2
L)( = L\/ = LL = 3 - = -Ig,e'(/Q-\_\)
So

o R(R+1)
C,@)-C ) = % oy 2 (22+) o)

where 4 is the value for the incomplete (n, £) subshell. With
£ =1,2,3 for Carbon, Silicon and 2856, this reproduces the results

56

quoted in the Table. Going from 28 to Fe56 we have to reduce the
difference (27) by a factor (6/8) because two of the relevant eight

protons are removed.
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Another regularity in the Table is the systematic vanishing
when N = %2 of the coefficient C(1) in the scalar case. This coef-
ficient is simply related to the "unretarded dipole" term given especial

3)

attention by Foldy and Walecka 2 It can be computed separately as

follows. The definition

19 X
- / ‘\
= -p, = <Al Zre

24)

is equivalent , in the isosymmetric case, to

z-0, = 1Al n M et | A
We can then write for the term in DS of second order in g
1A IRTRX I TR A
_ 2 i - = - 7\ (28)
= =12 Al (AT )T AD

where Xn and Xp are centre-of-mass co-ordinates of protcns and
neutrons. Now for these simple wave functions the relative centre-of-
mass motion has an oscillator ground state wave function proportional

to
wcb (= 71 (-X0)7)
so that (28) is equal to
Z (- L)

Since ¢(0) = 7z, +this is completely accounted for by the expansion

of the exponential in (26), so that indeed C(1) = O.
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The results are displayed graphically in the figures, where

the functions

| — N'D

TS gTy Lo

- i.e., the reduction factors for neutrons in nuclei as compared with
free neutrons --are plotted against momentum transfer squared q2 .in
.(GeV)z. The scale parameters b are chosen to reproduce empirical

root mean square charge radii through the relation
<J;f> = n 20 . oo 0 ;~2é,%1
charge ['(‘Lf+ zbyZ (3Z,+5~ZZ+ 723+ -~ ‘)'~3 A ] 1o U

This allows for finite proton (but not neutron) mean square charge

1’ 22’ ZB’
etc., are the numbers of protons in the 1st, 2nd, 3rd, etc., oscillator

radius (0.64) and for centre-of-mass motion (BA—1) HIVA

shells [i.e., summing over quantum numbers (£, j, m) for given oscil-

lator energi]- The empirical values used are displayed in Table II.

In Fig. 1 is shown for the closed shell nuclei He4, 016,

Ca4o, (for which S, T and L factors are equal) the corresponding

exclusion factors, and for comparison the Fermi gas factor (1). In
Figs. 2, 3 and 4, the three different factors are shown for each of

12, Si28 56

the spin non-saturated nuclei C and Fe” , and again for

comparison the corresponding Fermi gas factors (1).
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5. - MUON CAPTURE

For muon capture

L+t A — U+ A

the roles of proton and neutron are interchanged as compared with the
neutrino induced reaction (1). Then in (23) N 1is replaced by Z.
The theory of total capture rates in nuclei, in closure approximation,

has been developed especially by Primakoff 26) and by Luyten, Rood and

Tolhoek 22). It is convenient for us to refer to a short summary given

24)

elsewhere Translating formula (1) of that paper into the present

notation, the total capture rate is
L2 i 2 2 s z
As Lol e 2 s (R
(29)

dateeod « slemmnye <(o-a]

where |/ is some suitable average neutrino energy, the D's are to
be evaluated for momentum transfer IEI =V, Iﬂ[iv is the muon

probability density averaged over the nucleus, and

Gy = 101 G Ca=—13¢ Cq Gp= =0 SE Gy

a= 6T/ 26 - G )) = i
b= 260/ (64 26 v (- 6T) = 69
€ =G/ (T4 260 4 -Gy ) = a2

and
S

Gy Ma

(where MN is nucleon mass) is the A S = 0 weak coupling constant.

| . 0o X 10
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The approximations involved in (29) are :

(a) neglect of other than single body terms in the effective inter-

action ;

(b) the closure approximation ; unfortunately the result is very
sensitive to the choice of average neutrino energy VP, varying
with a power between the third and fourth ; we will quote results

for

V = 320 HeV

as originally proposed by Primakoff ;

22)527) o tne

(¢c) mneglect of initial nucleon velocity ; estimates
relevant correction terms suggest that (1) should be increased
by some 10% ; this is not included in the theoretical wvalues of
Table III ;

(d) replacement of the muon wave function by a value constant over

28)

the nucleus ; this seems to be quite a good approximation ;

it is convenient to introduce a quantity Zeff such that
ke _ 3 3 Y4
TZ bl = WMy o Z gy

where ka is muon mass and & the fine structure constant.

29).

We will use values of Ze computed by Ford and Wills

ff

It is convenient to quote reduced capture rates /\I,

defined by

N

1

{ Cr+2Ch + (G- C—.SH M:(M,Aoc\g/(lﬁ\”g Zte{ A

I

(278 a<') Zg A,
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Soine experimental values are quoted in Table III. They are computed

from A's listed by Eckhause et al. 30). The error given in the

Table arises only from the quoted experimental error for /\ and

does not reflect, for example, any uncertainty in the calculation of
p 28)
eff :

According to the theory

A, = ﬁ_}j‘{a’([—z"Ds) + b(l—z"Dr>~r ,C(I—Z"DL_)} (30)

The values resulting from our shell model calculations are listed in

Table III.

Comparing the first and second columns in Table IIT
4

reasonable agreement is found for the really closed shell nuclei He',

O16 and Ca4o, but poor agreement for the intermediate cases C12

Si28 and Fe56. In the third column therefore we give the results

9

of discarding our functions DT and DL and using everywhere the

shell model Dg. This is clearly an improvement. There is here a
clear suggestion that the very simplest shell model wave functions
exaggerate greatly the effect of the spin orbit splitting in destroying

the Wigner supermultiplet symmetry.

Even for the three closed shell nuclei it is likely that
the degree of agreement with experiment is more than the theory
deserves. It is known 22) that without the closure approximation
the oscillator shell model gives much too large capture rates. The

31)-34)

situation has been improved by invoking collective motion
notions which lead to important modifications of both excitation
energies and matrix elements. These notions are not immediately
applicable for the higher momentum transfers of interest in neutrino
reactions. Even for the smaller momentum transfers different authors

35)

disagree about just how the ingredients should be combined in

obtaining the over-all agreement with experiment.



6. — COMPARISON WITH OTHER WORK

B. Goulard and H. Primakoff

Our work is very close to that of Goulard and Primakoff.
There are two main differences. The first is that they assume from
the outset on the basis of Wigner supermultiplet symmetry in which

spin dependent forces are ignored that to a sufficient approximation

D. - D = D

< T L (31)
We have tested this in our model, but have not been able to improve

on it. The second difference is that instead of calculating with model
wave functions they directly assume simple forms for nuclear density
distributions and correlation functions. In the case of Fe56 we

show in Fig. 5, as well as our shell model DS curve and the Fermi

gas curve, the exclusion factor calculated from the prescriptions of
Primakoff and Goulard. The differences between the three curves are
not very significant.v The Primakoff-Goulard curve has more structure
than the others ; this is presumably because their construction of the

36)’37) as well

relevant correlation function produces a long-range
as a short-range part, and because they have given (for simplicity)

sharp boundaries to both parts.

When the relation (31) is assumed, the quasi-elastic
scattering by a nucleus is in the case of forward scattering propor-
tionel to N - DS(O). In all our examples this had the value N-Z,
so that

- A :
{& (noedeua) /5 (wodin)| = N- 2 (52)

dSL AL
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Goulard and Primakoff give a general argument for this result. It
suffices to assume that the weak charge is identical with the isobaric
spin. Then in closure approximation we are concerned with the matrix

element
<l |08 0@ |ga@ e = AT T A

where T+ and T  are isobaric raising and lowering operators. With
the usual assumption that the nuclear ground state is the least charged

member of isomultiplet,
T IlA> = o
Then

<AlT T A=A T A =-a T |AD = N2

whence

N— D, ) = N-Z
(33)

So the result (32), while dependent on the closure approximation, does
not depend on the neglect of correlations in the wave function and

many-body terms in the pseudopotential.
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These authors had the idea of inferring an exclusion effect
in forward quasi-elastic neutrino reactions from the observed effect in
muon capture not just qualitatively but in a precise and rather model

independent way - always in the context of the closure approximation.

There are two essential difficulties in relating the two processes :

(a) they involve different combinations of the functions DS oL
-9

(b) they involve different momentum transfers.

Thus some theory must be invoked in the ccmparison, and for this the
authors turn to Primakoff's original treatment of muon capture 26).
Here the relation (31) is assumed, which disposes of difficulty (a).

Then it can be argued that in a certain approximation 26)’24)

Z =D, = z (= =3)

-

(34)

where 8 is a constant and |/ the momentum transfer of muon capture.

Together with (33), this gives

NS D@ = ST T (Z- D,w) -

Using empirical values of Z-—DS(\D) from muon capture one can then predict
values of N-—DS(O) and so of forward neutrino reactions. In so far as
(34) fits the muon capture data (and it does so quite surprisingly

well 36)’24)’37)) one comes back essentially to (32), and this is what
Frazier, Kim and Ram find. Actually their argument is a little more
complicated than this, but we believe that it is essentially in this

way that they overcome the difficulties (a) and (b). It seems to us

that (32) can then be regarded as more securely based than before only

if (35) is regarded as more securely based than (33), which gives (32)
directly without appeal to capture data. We do not take this view,

having seen (33) to follow from rather general arguments.
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Extensive calculations have been done by Bogan 28) with
shell model wave functions based on an infinitely deep square well
potential. He assumed the relation (31) at the outset and calculated
only DS.

We would certainly expect the square well potential to be
more relevant than the parabolic for heavy nuclei. Bogan finds (his
Fig. 1) that for Pb the square well exclusion curve is rather close
to the asymmetric Fermi gas curve. We have used the latter in some

estimates for Pb referred to in the next Section.

Bogan gives numerical results only for the momentum transfer
(he takes 80 MeV/c) of muon cepture. In this ccnnection a comparison
of oscillator and square well potentials was already made by Luyten,
Rood and Tolhoek 22) for 016 and Ca4o ; they found no great dif-
ference. This remains so for the other light nuclei that we have
considered, as set out in Table IV. The last column gives the square
well results of Bogan (from his Table 2) and the penultimate column
gives our oscillator values. The latter, for this purpose, were re-
calculated with Bogan's size prescription : he neglected centre-of-mass
motion and proton size, and took for the mean square radius of the

proton distribution

(3/5\”1 ( 1123 Ail3 + 2352 A 3~—l.o7o A_\>

[
b
Vv

I

This is rather rough for He4. In column % of the Table we show the

values consequent on the b's of our Table II, as used in Section 5.
Also, for general interest, we quote the Fermi gas values (kf==268 MeV)

with and without the Primakoff lineer approximation.

Bogan gave particular attention to the value, for N = 7

nuclei, of the expansion parameter & 1in

- KDL = 013+ olFI) (36
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23)

It was observed by Foldy and Walecka that a can be related to

the bremsstrahlung weighted photonuclear reaction cross-section, and

39)

that an empirical formula of Levinger then implies

o 13 5 NG
a = uwe AT (fermi)

(37)

Bogan found that his wave functions gave a value close to this, at

016

least for . With the parabolic well, as remarked in Section 4,

& = b*/ 2

We compare in Table IV the values obtained with the b's of Table II,
and from the Foldy-Walecka formula (37). The agreement is not good.

To whatever extent formula (37) represents the data even for these
light nuclei we would have here another failure of the simple parabolic
well shell model. In view of the agreement between columns 3, 4 and 5
of Table IV (Setting aside He4) we would be surprised if the square
well version were very different in this respect. We believe that
Bogan made a slip in this connection, using different wvalues of kf

in arriving at his values (12) and (13), which are then not directly

comparable.

C.A. Piketty i ; J. Lgvseth 42) ; T.W. Donnellz_féz

These authors have presented calculations, for finite
nuclei, in which the closure approximation is not made. Piketty
(see also Piketty and Orkin-Lecourtois 41)), allowing the recoil
nucleon to move in a complex potential well, was interested in the
direct ejection of fast protons - which is only a subset of the
processes with which we are concerned. Donnelly made the recoil

nucleon move in a real potential well, i.e., ignored absorption ;
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it would be interesting to have the relevant integrals of his results

for comparison with the closure approximation. Igvseth followed his

7)

appropriate to finite nuclei ; but then, as he remarks, it is ambi-

former Fermi gas calculation but with a momentum distribution more

guous what to do about the exclusion effect, which was our main

concern here.
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7. - DISCUSSION AND APPLICATION

We have seen that nuclear shell structure effects do
appear. But they are not large even for small |E|, and muon capture
data suggest that the effects will be smaller in reality than in our
model. Moreover these effects disappear quite rapidly with increasing

E, and so even if real will not be easy to see.

One place where such effects might play a role, and it was
one of the motivations of this work, is in the small angle experiment
of Borer et al. 4). This experiment was designed to look for a possible
nuclear shadow effect in inelastic reactions, by comparing nuclei of
different sizes as inelastic scatterers, and the quasi-elastic contri-
bution is an unwanted background. In Table VI are given calculated
quasi-elastic cross-sections per nucleon, averaged over the CERN
neutrino spectrum with the experimental cuts (muon angle < 50,
muon energy < 1.2 GeV) of the small angle sample. For carbon is
quoted the result of using the exclusion factor of the Fermi gas, of
our shell model functions and of using the shell model DS everywhere.
For Pb, our oscillator wave functions would not be relevant. However,

8)

curve quite close to that of the appropriate asymmetric (N/Z==126/82)

Bogan 2 found with infinite sguare well wave functions an exclusion
Fermi gas. For Pb we quote only the result with this latter. Despite
the appreciable variation between the three versions of the exclusion
effect exhibited for carbon, carbon is in each case substantially less
efficient per nucleon than Pb as a quasi-elastic scatterer. This

goes in the opposite direction to the hypothetical nuclear shadow effect,

as has been discuted elsewhere 2)’3).

Despite the varying structure of the nuclel considered,
the shell model exclusion curves of Figs. 1 -4 are all rather similar,
except for very small |a|2. They lie rather higher, except again for
small Ia]2, than the Fermi gas curves ; this is perhaps to be expected
simply because average nuclear densities are smaller than central
nuclear densities, on which the standard Fermi gas is based. The
curves are not high enough, however, to account for the experimental

1)

results of Kustom et al. . This is illustrated in Figs. 6 and 7,
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which apart from the broken lines that we have added are Figs. 3c and
3b respectively of Kustom et al., presenting the same data on different
scales. In each case the higher solid curve is their fit without
nuclear effects, i.e., for free neutrons, and in the lower solid curve
they have allowed for exclusion in a Fermi gas model. In Fig. 6 we
have added what we get by multiplying the free neutron curve by various
exclusion factors : (1) the symmetric Fermi gas factor of Figs. 1, 2, 3 ;
(2) the more appropriate asymmetric Fermi gas curve of Fig. 4 ; (3) the
shell model curve (on this scale it does not matter which) of Fig. 4.
This shell model curve is repeated on Fig. 7, and also what we get on
vincreasing it by 30 % - this is interesting because the experimenters

regard their absolute flux as possibly uncertain to that degree.

If the finding of Kustom et al. is confirmed, despite the .
strong exclusion effect in muon capture and the indications from electron
scattering, then the assumptions and approximations of the theory will
come under renewed scrutiny. We have in mind especially the closure
approximation, and the neglect of many-body terms in the pseudo-potential
and of correlations in the wave function. We will close with a general
remark on these last two questions. It is not always realized that
there is no clear separation between them. Given a picture involving
wave functions j? and operators O, an equally valid picture is

*
obtained by unitary transformation

-1S

' = @ﬁS@‘ o= eoe

In general single and many-body terms in operators will be changed and
mixed up by the transformation, and the correlations in the wave functions
will be altered. Loosely speaking, the same effect can appear in one
picture as due to a correlation and in another as due to a many-body

term in the operator. Thus effective interactions and correlation

functions are not separately well defined concepts. Yet it is possible

e o S —— T S —— — o T T T T "~ — T T ——— —— ———— T ———— — —— —— ——

*
) For example, one of us has used such a transformation in connection

with the hard core problem 44).
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to find in the literature estimates of many-body terms in interactions
made without any specification of the particular picture in which they
are appropriate. This is not very important when the effects are small
and the calculations are regarded as only exploratory. For serious

calculations of large effects the question would be a vital one.

In connection with this work we have profited from discus-
sions with M. Rho and O. Kofoed-Hansen, and from correspondance with
A. Bogan, C.W. Kim, C.A. Piketty and H. Primakoff.
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4 12 16 i28 a40 F656

V,; r2 > charge 1.68 2.50 2.70 3.04 3.52 3.80 10_130m

b 1.39 | 1.66 | 1.7 |1.77 |1.99 | 2.0 | 107 %cm

TABLE II Experimental root mean square charge radii and correspond-
ing oscillator size parameters. The experimental root
mean square radii are representative values from the com-

pilation of Hofstadter and Collard 25)

The range of
values quoted by these authors is such that the last

figure given in the Table is not really significant.

/\:r(exp) /\r (shell model) /\r<DL’ Dy~ Dg)
He' 0.086 + 0.007 0.085 0.085
c1? 0.125 + 0.004 0.209 0.113
ote 0.111 = 0.004 0.122 0.122
s12® | 0.137 + 0.005 0.181 0.122
ca®® | 0.130 £ 0.001 0.139 0.139
re?® | 0.108 + 0.001 0.151 0.137

TABLE IIT Experimental and theoretical results for reduced capture
rates. The second column gives the results directly
implied by the simplest shell model wave functions, and
the third column results from using the shell model DS

also for DT and DL'
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C12 Pb208
no exclusion 1.82 10_4ocm2 2.20 10_4Ocm2
Fermi gas 0.84 " 1.28 "

shell model 1.05 "

- "
shell model (DT, Dy DS) 0.94

TABLE VI

Quasi-elastic cross-sections per nucleon for production
of muons, within 59 of the forward direction and with
energy greater than 1.2 GeV, averaged over the CERN
neutrino spectrum 2). Conventional assumptions about

2)

form factors were made . The first row is the result

for a collection of free stationary neutrons and protons,

in the ratio N/Z, without nuclear effects. The

remaining rows allow for the exclusion principle in

‘various ways.

Si Ca

a (Levinger-Foldy-Walecka) 0.66 0.95 1.05 1.26 1.42

a = b2/2

0.96 1.38 1.55 1.57 1.98

10

-26

cm

2

TABLE V

The expansion parameter a of Eq. (36), as calculated
from the empirical formula (37) and from the parabolic

well shell model with the size parameters of Table II.
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FIGURE CAPTIONS

Figure 1 Shell model and Fermi gas exclusion factors for closed

shell nuclei.

Figure 2 Shell model and Fermi gas exclusion factors for 012.
Figure 3 Shell model and Fermi gas exclusion factors for Si28.
Figure 4 Shell model and Fermi gas exc;usion factors for Fe56.
Figure 5 Comparison with Goulard and Primskoff. The curve is from

their Eqs. (38) and (41) with the parameters of the central
curve in their Fig. 1 : (d/r ) = 1.5, r_ = 1.25 fm.
[e] (0] 1/3

This gives a root mean square radius 3/5 r, A

= 3.17 fm.

Figure 6 Figure 3c from Kustom et al. 1). The upper and lower solid
curves are their free neutron and Fermi gas theoretical
curves. The three dashed curves we obtained from the free
neutron curve by incorporating various exclusion factors :
(1) symmetric Fermi gas ; (2) asymmetric Fermi gas ;

(3) shell model.

Figure 7 Figure 3b from Kustom et al. 1). The solid curves are as
in Fig. 6, and (3) is again the shell model curve ; (4) is
the result of increasing (3) by 30 %. The experimenters
regard the absolute flux as possibly uncertain to this

degree.
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