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ABSTRACT

In this paper a graphical formalism is presented
that allows to write any dual N point meson function. The
technique allows to write the most general N point function
of the type in which a polynomial modifies the Chan integrand.

We can then single out solutions that have the pro-
per isospin structure and no ghosts along the leading and sa-
tisfy the bootstrap principle.

We have thoroughly analyzed the G = - unnatural
parity trajectories case for N pions. The novel features
associated with physical amplitudes are ¢

a) leading trajectories have also multiplicities ;
b) factorization of daughter trajectories breaks down.
The rules for +the other cases are explicitly given

and the theoretical and phenomenological implications of the
results are briefly discussed.
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INTRODUCTION

The generalized Veneziano model has been a fruitful labo-
ratory for hadronic amplitudes 1). Its interpretation has evolved
rapidly. It started as a solution to analyticity and bootstrap cons-
traints but lately an interpretation in terms of an infinite component

field theory seems most promising.

Unfortunately, the models under study have serious short-
comings and, sometimes, it is legitimate to ask how much the simple
amplitudes reflect the real world. The most outstanding problem along
these lines is the introduction of spin %‘ particles into the theory.
This problem in turn, when solved, might have profound influence over

the integer spin case.

Our task here is to give a general solution in the tree
approximation to the problem of N external physical pseudoscalar

mesons coupled by means of physical trajectories.

We have been able to solve the problem for an arbitrary
number of external particles and hence we can give a detailed account
of the properties of the internal states. The procedure is simple
but lengthy ; we have carried it out only for the case of the JT- A1
trajectory case for the N pion amplitude. The other cases can be
solved as well.

The modifications we propose are most conservative 2).

As a whole the results of the simple model are the same with two
exceptions. Due to the presence of different trajectories, cyclical
symmetry is lost by individual terms. As a direct consequence the
factorization properties are severely affected. The leading traject-
ory is not single anymore, though it is still not parity mixed.
Daughter factorization is lost since the number of states is a function

of the number of external particles.

We have been able to express the problem of ghosts and the
isospin content of the leading trajectory in a concise, diag:rammatic

fashion. As a consequence, we have deduced the existence of a unique
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two parameter N point function for G = -1 trajectories. Any N
point function can be written down without effort and hence applica-
tion of these functions to phenomenology are possible immediately.
However, the rules require detailed calculations to be justified.

For the reader who is willing to accept our results the paper provides
simple rules for writing amplitudes. The more enterprising one will

find an Appendix with a detailed example of how to proceed.

The main features of the N Jy amplitude with G = -
trajectories (JCA1) are ¢ .
a) the 3X-A, trajectory is simple, with I = 1,0 states except for
the J¢

b) the S -£® +trajectory is doubled ;
c) ghosts persist at the daughter level ;

d) factorization breaks down at the daughter level.

The second result is rather unpleasant at the :R level

and interesting at the 2+ level because of the reported A splitting.

There is room experimentally for a doubled j? but we feel ihat this
doubling is embarrassing. The presence of ghosts has been explicitly
checked and this result coupled to the lack of factorization poses a
new challenge of how to make the theory consistent with causality.

Section 1 contains the full discussion of the X -A case

and the general diagrammatic rules. Section 2 generalizes the ;esult
for the odd number of legs and for the (OLAQ) trajectory case. We

present explicitly the seven point function that might be useful phe-
nomenologically. We present a detailed example of how to check posi-

tivity and factorization in an Appendix.
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UNNATURAL PARITY G=-1 TRAJECTORIES

Our method to construct N point functions is best described by
means of graphical techniques. Using dual graphs, we will be able to
establish a one-to-one correspondence between the factors composing the
N point function and the geometrical structure of the graphs. These
graphs allow also a simple understanding of the properties of the lead-

ing trajectories in all channels.

These rules were established by painful calculations but the
results embodied in these rules are very simple and allow for the

construction of the desired amplitude in a very simple fashion.

A typical term of the amplitude with N pions is assumed to have

the structure

- _Qt--l
A(f»““Pn)g S l;,l‘ “':5 ’ P(q"‘)'"d‘j"' u""o“";‘ "‘1""“»-1,'«-»)‘{("(1)

where CKij==a(K)~b(pi+p. +.°cpj)2, a(K) (K==1,2) being the inter-
cept of the two possible types of trajectory, nij are the usual
N(N—B)/2 Chan variables, dV is the volume element which includes

N

functions to ensure duality. P(’(ij,u ) is a polynomial in

inj and u; e The main function of this ;glynomial is to eliminate
the unwanted poles at K ij==0 if the intercept is positive. Other
functions could be tried but the strict requirements of meromorphy and
absence of ancestors make any other choice difficult, if not impossible.
A natural choice like some simple denominator, for example, produces

inevitably ancestors in some dual channel.

Let us now see the effect each "building block" has on the ampli-
tude and associate to it a geometrical pattern that can be used in the

dual graph :
1) C(ij(1-uij) 5 — (continuous line in dual graph)

This factor clearly eliminates the C‘ iJ‘=:O pole in the
amplitude and on all thz trajectories dual tc (i,j) because
of the (1—uij) factor. Spin structure and Regge behaviour

is not affected since toth fzctors have compensating effects.

=]
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2) (1—u..) D - ———— (dotted line in duail graphs)
1]

This term eliminates the 0(ij:=0 on the trajectories dual to
the channel (i,j) and shifts these trajectories to the first
daughter level. The term has non-leading Regge behaviour for

the variables dual to (i,3).

%) u,. > +++++++ (lines with crosses in the dual
et diagrams)

These factors eliminate the & ij==O and shift the trajectory
to the first daughter level.

We then associate a graph to a given polynomial. To clarify how
the procedure works, we describe a simple example. In a six-pion

function a possible polynomial is

Pz (1-uyy) oGy Cl=Yyy) Ky (- Uy) (2)

Using the afore-mentioned rules, one obtains the graph depicted in Fig.1.
This graph then is associated to an amplitude that can be explicitly
constructed and whose properties are, using the afore-mentioned rules :
non-leading bekaviour in the channels (1,2), (4,5), (1,3), (3,5) since
they cross the dotted line and hence are dual to it; non-leading
bekaviour in (3,4), (2,4), etc., (they do not cross the dotted line).

The C‘ =0 pole is missing in all G=+ (two—body) channels.

Because of the factors ws rtave irntrcduced, cyclical symmetry is

not preserved term-ty-tcrm. The total amplitude is then written

A O TalTin)A@..2)

Pwmﬂ%ms =)

where Tr(‘t1,°..,'Tq) is the Chan-Paton iscspin factor and whose
presence ensures isosrpin invariance aud zbsence of exotics. The sum

is understood to be over all cyclical and non-cyeclical permutations.

It is both amusing and rewardirg that the properties of +the
amplitude, at the level of the leading traj5ectory, can be simply
expressed in terms of geometrical properiies of the graphs. These rules
are true as one can verify by direct computation, dbut we omit here all

these tedious calzulations.
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To illustrate the method, we go back %o the'example given by
Eq. (2). We fix our attention on the (1,3) pole and consider the
effect of all cyclical permutations when we study this particular
singularity. As seen in Fig. 2, we get two graphs that contribute.
The other four possible graphs have no leading trajectory in that
channel since the (1,3) pole goes across a line of type 2. The

contributions to'the amplitude from these graphs will be further

specified as follows :

\Q,ﬂ‘,‘l"ﬂ‘réf

where \}2 is the half left figure, \jz is the reflected figure .67
with respect to the pole axis, J{? is the inverted figure with respect
to the orthogonal direction. These definitions can be best understood
"by looking at Fig. 2. yfzcan represent a sum of diagrams as well in
the statements made below. The power of this technique stems from the

following simple theorem :

a) if the sum of cyclically permuted graphs has the structure

~ ~
T T
AR +R A
then the leading trajectory is ghost free and has for each J

both I=0 and I=1, except for J=0 where I=1 only

obtains;

b) the sum reads ~ ~r
(R+R7) (A~ RT)

In this case the leading trajectory is ghost free, for even
Jd one gets isospin 1 (if G=-) oro (if G=+). The

situation is reversed for cdd dJ;

c) T N_ AT
(RA-AT)(R-RT)
Again, the leading trajectory is ghcost “ree, for even J we

get isospin O for G=+ and 1 for G=- and the opposite for
J = Oddn
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If the amplitude contribution cannot be expressed in any of these
three forms, then ghosts on the leading trajectory are inevitable. We
must emphasize once more that the study of ghosts is a lengthy unpleasant
calculation, but these rules follow naturaily once these expressions are
written down. Once the amplitude has been brought to these forms, the
spin-isospin part of the theorem is trivial. To have the full amplitude

we must add the non-cyclical permutations given by the twisting operation

(ReRTXAAT) =
[(RARDT(RRV[(H+FT) ey
[(R-R)= (R-RDJ(A- f'?*)

to obtain

(case ¢);

g~
since under twisting uFl'ﬂIQ? or ~}2-+JQT up to a sign. In fact,
the signs depend on the spin-isospin structure. This comes as no
surprise since we know that twisting is intimately connected to signa-

ture.

Each graph has a different analytic structure and factorizes by
itself, However, if we accept a general solution with different diagrams

contributing, we will increase the number of levels accordingly.

By means of these tools we analyze the possible solutions.

The four--pion function

This is the Lovelace formula which is obtained choosing

PL«‘J‘”" “i}“) = q/n_(l- u!l.) (4)

in the expression (3) :

. t ol
A (_R PN)” = 'Sa gg“\z Ran P(‘Y.;,M“,) S.(I-H,‘: nl-‘) 4,4'&;]“1_5

(5)
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The graph associated with the polynomial (4) is shown in Fig. 3, as
well as the properties of the leading trajectory. We obtain two "b"-

type graphs, so that the amplitude can be written as
~ -~
RAR+BB
where \Q =J?,T; B =BT° In this case \Eand B are analytically

the same, even if the graphical structure is different (this is true
only for the four-pion function) and thus we have a simple G=+1

trajectory of "b"- type, i.e., the \3 -£%  trajectory.

The six—pion functions

A systematic study considering the different possibilities to

build the six—-pion function is shown in Fig. 4.

Let us first consider those solutions which contain only conti-

nuous lines. They have maximum Regge behaviour term-by-term.

nAn has ghosts [ihis solution was in fact considered in Ref. 2),

it cannot be cast in the forms a, b, or é];

"B" is of Ma" type, has not the A\ pole, has no ghosts and has,
as can be seen by direct calculation, pure d wave coupling

for the A, - gndecay;
npn has ghosts.

Thus the single solution which is leading term-by-term and has no ghosts
would be "B". But "B" has no JSU pole and we have thus to consider

amplitudes which have ac leadingz Regge behaviour in all channels term-

OO

by-term.

"RpiM has no leading behaviour in any G=-1 channel but has the
g—g-—f coupling;

nen is a "maximum duality" type solution (maximum duality means

maximum asymptoitic behaviour compatible with the pole structure

for each term) considered in Ref, 2), it has alsc ghosts;
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np has no ghosts, is of "a" +type and has s wave A1-'$}‘C

coupling;

ng" if of "b" +type and thus has no J=1, A1 pole. This is

the solution considered in Ref. 3);

2"DW'E"ig a "e" +type solution, has no Jz: pole but has the I=1,

A1 pole.

Thus the general solution for the six-pion amplitude should bé
' D-ED E
e, B+¢, B'+cy D+, (2D-EJ +C¢ (6)

As we shall see, most of these solutions are ruled out by the bootstrap

principle at the eight-pion level.

Eight-pion function

The "B"™ solution may be extended at the eight-pion level, as
in Fig. 5. Unfortunately, it has ghosts and is thus ruled out. The
same is valid for the (2D-E) solution. The "D" solution has no
ghosts and gives two "b"™ +type trajectories, as well as the "E"
solution. Since, however, the "E" solution has not the A, ‘traject-
ory and since the "2D-E" sclution which gives the A1 trajectory
does not work for G=4+1 poles, it follows that the eight-pion function

should be written as
¢
C,B8' <3 D (7)

the "B!'" solution may be maintained if we want to have the g—f—f‘

coupling which does not exist either in the "D" solution or in YE',

N¥¥pion fuxction

This will be (7) wrare ™B!" and "D" have to be éefined for
N pions. The "D" solution is defined in the general case through
those graphs where the G=+1 1lines are continuous and open (there are

no G=+1 "loops") and where the G=-1 1lines are dotted and have at
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most one extremity touching a G=+1 1line., The total number of lines
per graph being N-3. The "B!" solution is defined in the general

case by the condition that it does not contain G=-1 1lines. The total

number of lines per graph being N-3.

The solution (7) has the o —A1 trajectory singled and exchange
degenerated and the 3 -£° trajectory doubled (c2=0) or tripled
.(02£0)o

Leg dependence of the level structure

The degeneracy of the parent trajectory is easily seen to be leg
independent. By loqking at the diagrams, it is seen that only one
configuration always contributes for the Jﬂ:’trajectory and two for the
£P~f°. Other cuts invariably cross a line that make the contribution

non-leading.

For the daughters the situation is essentially different. At
every 1eﬁe1 of the graph structure new possible cuts appear and these
affect the degeneracy of some states, However, for a givenAspin, the
number of lines thét can be crossed is finite and so knowledge of these
contributions completely determines the degeneracy of that level.
However, the complete amplitude lacks factorization in the sense that
some daughter states have an infinite degeneracy. This precludes their

use for simple-minded loop calculations.
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GENERALIZATION TO OTHER CASES

In this section we discuss briefly how one must generalize the

rules of the previous section to discuss the following two cases :

a) 0dd number of pseudoscalar mesons as external particles;

b) natural parity trajectory in the even number case for three-

body channels.
These two cases complete all possibilities for mesonic amplitudes.

The odd diagram case does not mix with the one discussed in
Section 1 because of parity conservation. Hence, the bootstrap principle
holds independently. There are two new "building blocks" to be added to
the ones discussed in Section 1. These new elements are pentagons and

hexagons.

Let us first consider the odd particle case. The equivalent of

the Lovelace formula here is the Bardakgi—Ruegg one. It reads 4)

Alp-B)= 7?<1:~r:)€,»mff,;; B (%12, 1- gy ()

The contribution associated with these variables is now associated with
a pentagon. More precisely, in a 2N+1 1leg diagram consider any set
of contiguous five-momenta. Take any four of them to saturate the
epsilon tensor and write always dotted lines when any of the five
momenta are internal lines. TFor all internal pentagon variables, write
a uij factor. No liﬁgé should be drawn inside the pentagon. This
completely defines the contribution at the five-point level. Consider
now the seven-point function as depicted in Fig. 6. Clearly the boot-
strap condition demands the function to break into the product of
Lovelace!s expression and formula (9)° This completely defines the
possible contribution as the one shown : a full line. Other configu-
rations must be summed over. We have not investigated this problem in
further detail, but a solution can obviously be built. Case b) can be

5)

analyzed likewise. The "Born" term here is the expression of Ref,
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Py
LT 0T Guoe PR €papy REF

(10)
B(("‘n., "*’u, "qﬁ‘, I- xﬂ ’2-4” ) 2'413", =%y ) 3"'(1., ’ 3 -d;r)

This will be associated with the contribution of the internal part of
the hexagon. By choosing the appropriate number of uij factors, cne
reproduces the expression (10)o The perimeter is treated like for the
pentagon. Notice that the rules are local and hence no new phenomena
appear. One can then proceed and construct the eight-point function
as in the previous case. Adding this amplitude to the one of Section 1

gives the full solution of the N pseudoscalar function.
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APPENDIX

We illustrate the method of calculation of the pole structure at
the level of the six—pion function., We shall do it for the "B
solution (see Fig.4) and look at the (1,3) poles. TFollowing the rules
used in the text, for a given order of the external legs, the sum over

the cyclical permutations will give the following polynomials :

%2(1-v)2) Ky (1- “)q)*n(l- ay) +%3(:-u,;)al,"(,-u")o(zs.(n-u,,.) (4.1)

and, using the duality relations (1—u .-u23u24u25, etco) we get :

A (P. .es P‘) =¥ n_q)w lm B(“nl,"ﬂ;,’dﬂ,z"n,

+ A2y Ky Xy - B(R-‘f,z l-°63 2y 23,1~ %2y "‘"'z.r 2-a3,, ,..q”._qv r)

In order to study the factorization properties, we shall consider for

\_/

Tan 2 %r, Ay - % 2 A"%f

simplicity zero mass pions, with units such that the slope of the
trajectories is unity and assume that the 3 -£° trajectory has the

intercept one-half,

We first write the B function using Chan variables in the

peripheral configuration :

B(xn., %13, Hiv, Xu,xw, er, X)q) X){, er) =

¢ - X l (4.3)
jg (d“ud"- dw R,Y“ - (:-un_)xz's ) “,3 1} Y A3

. re! - X
‘("“,‘) X)q ,(/ U, ) (l'“'; 3)2‘, 2‘3 3}’

(= tery g )0 - 3v"‘w' (1= Uyp Uy 2, Y5 +9 %y~ X

where

Xt o M s
V= M-

We now make the change of variables
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fifl*f) . . . G(f) el e’
U 1= (t-2f,)§ “"(';4;;)2 ) Uy = 1-(1-26; Sf‘ Si=S = ')

' (2.
93 T d‘é Y= "
{ Xz X335% ‘)&OQ) ; Xz X@@; Y32 Xr5); X"'gxm
erXii@*Xs@@,Xzs' X505 %orX0;X 3 55 %5 9= Xro®
"'n.‘ 'M.. . (A.6)

23 ) 13" Mzl e m@@@; Lie.. .

P"F} ) P\.‘P\.) A~ ; =9, F- *Hh, KR (4.7)

The change of variables corresponds to the configuration shown in Fig. 7.
We also denote

e 3@ "o ™5 ; 950 Mo

Q3= -l+vn1-®+m 30-"500- M3 ®

4302 1~mr3 - "M@ +"MITO

479- I-Me®- w TO+ V"TQ)@

0:0--) + ™M1 0 (4.8)
Gos -1+ "3E)

A50: M3z myz- mrzs- Miio
“19° Mo+ o - Mo0® - ™00

With 'the new variables (A. 3) reads :

By X5 i: 4&,’[!2. §}S‘§'fl:"z .xw?wfdle’n%"i;)lF«gfz)

(A.9)

T M 500
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' ) Xri- 33
more  4p[84 Xrz X535)= (§-50) " '(:,f-f.{)x’ y
3 -
AT [-e-2ss(-aep] R0

> g=

--‘*P{ z ‘f [V‘“’w"" Za (I-zf)(/-zm')]j (a-10)

he)

(m-ir(hzg) B W(”_,,{_ i(l 2T

Equations (A. 9) and (4. 10) may be used to study the whole factor-
ization problem. Since we are interested here only in the leading

trajectory, we shall take instead of (A.10) :

F’(g;_‘e,'_,g): J“XP{§ V“) W“)J (a.101)

since the other terms in (A.10) cannot contribute at the level of the

leading trajectory.

We now go back to our example given by Eq. (A°2). The contribution

to the leading trajectory is

AGp- py=-z. T8 (15 s %3,-%53) (Rt o o

> [otes 852 g /-0 B o0 g o33
S [yewe]”

We now take into account non-cyclical permutations and isospin invariance
as given by Eq. (3) and thus consider the contribution of the twisted

graphs.,

Since under twisting the trace over Z' matrices gives a factor

+ for I=1/0, g’ 2 g ( ) «TE 2 423, we get
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(-
Az-2. ‘l‘qrﬁﬂj"f 2§ g J4s:

n<o

OLY, trs, a5 )L B(St 61) @5t 0 B8 oy 5]
9y, N ’ " (A.12)
U RO (O T Ty T3

and thus we have no ghosts and both isospins, i.e., we are in the "a"

case, as discussed in the text.

Every term can be analyzed by this method. The connection
between the diagrams and the symmetry of the expressions is now
apparent. This is due, of course, to the simple transformation of V

in this representation.
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FIGURE CAPTIONS

Figure 1 Graph illustrating the polynomial given by Eq. (2) for the

six-pion function. Continuous line represents a (1—u)g&

factor ; dotted line represents a (1-u) factor.

Figure 2 The contribution of the cyclically permuted graph shown

in Pig. 1 to the (1,3) leading trajectory (wiggled line).

Figure 3 Graphical interpretation of the four-pion function.

Figure 4 Analysis of the G = =1 trajectory for different solutions
of the six-pion functions. Continuous line represents
QL(1-u) factors, dotted lines represent (1-u) factors,
lines with crosses represent u factors, the wiggled lines

represent the pole line.

Figure 5 Analysis of G = +1 trajectory for different solutions of

the eight-pion functions. The different lines have the same

meaning as in Fig. 4.

Figure 6 Graph used to write the KK + 5 fC function. The shaded

pentagon represents the Bardakgi-Ruegg formulae for
KK - 3K, the dotted line and the continuous line have

the same meaning as in Fig. 4.

Figure 7 The external legs ordering used in the Appendix for the

six-pion functions.
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