CERN LIBRARIES, GENEVA

CM-P00057631

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Date: 21 March, 1966

6631

MEMORANDUM

To : Professors W. Paul and P. Preiswerk

Members of the EEC

Members of the NPRC

PS co-ordinator

Dr. G.L. Munday

Dr. G. Petrucci

Dr. P. Standley

From: M. Borghini, G. Coignet, L. Dick, L. di Lella, P. Macq,

A. Michalowicz and J.C. Olivier

Subject: : Need for a positive high-energy beam and request to modify

the d₂₃ beam in the South Hall.

We have recently measured the polarization P_0 of the recoil proton in π^-p scattering at 6.0, 8.0, and 10.0 GeV/c¹, for momentum transfers from t = -0.1 to t = -0.75 (GeV/c)², using 4.5 weeks of PS time on the d_{23} beam. Our results show the existence of important spin effects, and are in qualitative agreement with theoretical prediction based on Regge-pole models².

As already pointed out in two preceding memoranda to the EEc^3 , an extended research programme on the spin effects present in elastic scattering at high energy demands the use of a high-intensity beam ($\ge 10^6$ pions/burst), of both signs. The following measurements could be performed using such a beam:

HOUSE AND TO THE COMPANY OF THE BUILDING

- 1. Measurements of P_0 in the t-interval already explored, but with statistical errors highly reduced, for both π^- and π^+ . As a matter of fact, one of the crucial points of the Regge-pole interpretation of high-energy elastic scattering is the comparison of the results obtained with positive and negative pions.
- 2. The measurements of P_0 with π^{\pm} could be extended to t values as high as $\sim 2(\text{GeV/c})^2$.
- 3. The polarization parameter could also be measured simultaneously for K^{\pm} , p and \bar{p} which will be naturally present in the beam.
- 4. Experiments requiring a second scattering of the recoil proton would require much less machine time than in the d₂₃ beam. These experiments are necessary in order to have a complete description of the scattering matrix at high energy.

The only beam which fulfils all these requirements is, of course, a secondary beam produced at $\sim 0^\circ$ from the slow-ejected ez beam. We demand that such a beam be installed as soon as possible, as already requested in a previous memorandum to the EEC 3 .

It is possible, however, to extend the measurements of P_0 to π^+ and protons simultaneously, with the same statistical accuracy as was obtained for π^- , using a modified version of the d_{23} beam and the same experimental apparatus used until now. After discussions with G. Petrucci, the following modifications have appeared necessary:

- 1. The production angle must be increased to ~ 70 mrad. The first magnet of the m₄ beam must therefore be removed from the vacuum tank; as a consequence of this, the m₄ beam will not run.
- 2. The first two quadrupoles and the first 1-metre bending magnet of the $\rm m_{\Delta}$ beam must also be removed.
- 3. It is useful to modify the position of the special magnet (NP10) of the d_{23} beam, to increase the flexibility in varying the beam momentum.

Switching from the actual configuration to the proposed one, or vice versa, could be done during a normal maintenance stop of the machine.

The modified d_{23} beam will **y**ield a flux of π^+ comparable to the π^- flux of the actual d_{23} , up to ~8 GeV/c, and about $\frac{1}{2}$ at 10 GeV/c⁴⁾.

The p/π^+ ratio will vary from \sim 2 at 6 GeV/c to \sim 8 to 10 GeV/c⁴⁾. Using the d₂₃ beam it is therefore possible to measure simultaneously P_o also in pp scattering. Running for about four weeks on the modified d₂₃ beam will allow us to perform measurements of P_o in π^+ p and pp elastic scattering at two or three beam momenta, with statistics comparable to those relative to the experiment with π^{-1} , and for the protons, in fact, even better.

This modification to the d_{23} beam, if it will be accepted, should of course be done during the present year. We have considered the perturbations that this modification will induce on the experimental programme on the m_4 beam, and it seems to us that these perturbations will be smaller during next summer.

e san ten onen e errore er aleren erre errore

- 1. M. Borghini, G. Coignet, L. Dick, L. di Lella, P.C. Macq, A. Michalowicz and J.C. Olivier (submitted to Physics Letters).
- 2. R.J.N. Phillips and W. Rarita, Phys.Rev. <u>139</u> B, 1336 (1965); see also UCRL 16185 (1965).
- 3. L. Dick et al., Memo 65/1709/5; M. Borghini et al., Memo 65/1825/5.
- 4. B. Jordan, CERN 65-14 (1965).