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ABSTRACT

Assuming Regge trajectories fall linearly
for negative t, we formulate superconvergence
relations at infinitely many discrete t values.
We saturate with an infinite number of resonan-
ces ; but only a finite number is involved at
each finite t. Assuming the spacing in the
grid As= at= (X ')_1 we construct a unique
solution, which turns out to be the Veneziano
formula. Duality is not used as an input, it

comes out as a consequence.
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Our central assumption is that the t channel Regge tra-
jectories continue to drop linearly for negative t. We assume that
the Regge expansion is dominated by these Regge poles, i.e., that there
are no higher lying cuts, K cut(t) > L pole(t); This requires that
more and more superconvergence relations (SCR) are satisfied as we

¥
go to larger values of (-t) .

We saturate the SCR's by direct-channel poles, i.e., poles
in the s and wu channels. We neglect the non-resonating background
in the direct channels. Within the framework of the narrow resonance
approximation, ImX(s) = 0, Im(3(s) = 0, there are no double spectral
functions. Therefore, the problem of fixed poles in the signatured am-
plitude at wrong-signature, unphysical integer values of j does not
arise. Resonance saturation in the direct channels forces us to ignore
the Pomeranchuk pole in the crossed channel (t channel) ***). There-
fore, we can formulate SCR's even for I_ = O, where a fixed Pomeran-

t
HHHK:
chuk singularity would otherwise destroy superconvergence ).

In order to simplify our expressions we consider the s

channel process 1T+?-- ~’W'+1T-. The u channel has Iu = 2 and

contains no resonances. This induces exchange degeneracy in the s

- - ——— - — ——

*
) We consider here only superconvergence relations 1) in the proper
sense, but not finite energy sum rules, which are sometimes called gene-

ralized superconvergence relations.
**

) This is quite different from the usual SCR approach 1) where one
stays at t=0, but enforces superconvergence by taking I,=2 and/or
helicity f£lip # O.

*xx) . 2) .

The "Harari ansatz" is an inescapable consequence of the fol-
lowing two assumptions : (a) resonance saturation for the imaginary
part ; (b) no resonances in channels like K%p,pp.

****) .
. These assumptions about the Pomeranchuk play no essential role
in the followinge E.g., we could consider the s channel process
k'K~ - K°KO.
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and t channels for the trajectory functions o and the reduced resi-
*
due functions (3 ) :

do(th= dele)s g+t (1)

peé,ww- (t) = f?’fo, T (4) (2)

By eliminating signature we remove the qualitative diffe-
rence between even and odd momentum SCR's. We shall talk directly about

YT - T*W~. We can forget about their isotopic spin

the poles in T
assignments (which can always be reconstructed by using Bose statistics)
and the I- spin Clebsch-Gordan coefficients. The s channel is iden-
tical to the t channel. However in this article the 8-t symmetry
will never be used, because we work at t< 0 (SCR's) and at

s=m _2>0 (resonance saturation).

It is convenient to introduce a discrete energy scale, is.e.,
to combine all direct-channel resonances with masses within a bin of
As = 1 GeV2 into one "direct-channel pole". Its residue function
Ri(t) is the sum of a finite number of Legendre polynomials. - The
choice of 1 GeV? for A s is motivated (a) by the experimental spacing,
(b) by the fact that two resonances with the same j are indistinguish-

able if As g2mF ~ 0.5 GevZ.

Where should we cut off the superconvergence integral ?
Because t 1is negative the SC integral, which runs from s8=0 +to
8=, covers the unphysical region zs'< -1 for low s. In this
region the direct-channel resonances generally give very large contri-
butions, because z <« -1 in Py (z). As we increase the energy s
(integration variable) at fixed t, we come to the point fis = 180°,
We know experimentally (from X p backward elastic scattering) that
the backward amplitude is very small if one cannot exchange a u chan-
nel Regge pole. As we increase s even more (at fixed t) we come
into the region i}s < 1800, and the experimental cross-sections become

even smaller. Therefore we cut off the SC integral just before we reach

*) . . 2 2
All our units are in GeV'. We set mo< = 0, n1€ = %,
dL /dt = 1, o((O) = %o
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180°, i.e., at s < s(t,{}s= 180°). This means that at each finite
t we saturate with the finite number of those direct-channel poles
which are in the unphysical region. As (-t) becomes larger, this

number of direct-channel poles becomes larger.

That this is very reasonable is illustrated in Fig. 1,
where we show the analogous 8 channel process KN — KN with Is=:0.
We choose this example because it contains a string of five experi-
hentally known resonances on one (exchange degenerate) trajectory. We
have plotted their contributions C[Im B] to the SCR f{Im Bav =0
at t = -3.3%4 GeVz. The first four poles lie in the unphysical region
beyond 180°, n°< s(t, D = 180°). They give large contributions since
the large |zs| values together with the large K (8) cause the
Py (zs) to blow up. On the other hand the fifth resonance, the
Y:(2350) sits at s = 3(88= 180°) for the t value used in Fig. 1.
It gives a very small contribution, only 1.4% of the 5/2+ contribu-
tion. The experimental amplitude at 180° is even smaller, because the
various partial waves cancel. Note that (dﬁi‘/du)exp at 1800 3)
is about f:*. times smaller than the contribution by the Y*(2350).
It is therefore an excellent approximation to cut off the SCR at
sgs(t, O _=180°),

Is the saturation by the leading resonances a good appro-
ximation for zS<K =1 ?2 The fear that resonance saturation becomes
worse and worse as Izsl becomes larger and larger is unfounded,
because Regge theory tells us that resonance saturation becomes better
and better as z  — + ®. In our case |zs| is just large, but not
infinite, in the important region. That it is large enough for the
saturation by the leading resonances to be excellent is indicated by
the following fact : all other Y: resonances in the Rosenfeld table,
which lie on lower trajectories o (s) and are less peripheral, each

contribute less than 4% of the 5/2% contribution.

At what t values shall we formulate our SCR's ? We have
assumed that the cancellation of the resonances is achieved in a dif-
ferent way at small (-t) and at large (-t). Therefore we want to
keep the various t regions separate. This means that we are not
allowed to enforce a SCR exactly in g continuous interval St at
small (-t). If we did that, then the SCR would be satisfied
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automatically for all t. We must formulate the SCR's at discrete t
values. For the spacing, we choose At =1 GeVZ. This choice corres-
ponds to the typical structure length in experimental differential

cross-sections.

For small (-t) we saturate with a small number of direct
channel resonances. This is only possible because we use discrete t's.
Had we required So(t) = 0 for continuous t in a small interval then

we should have needed an ® number of resonances even at small (-t).

The SCR S, (t) =°J'°° ds Im A(s,t) = O holds when o(t)< -1.
At K (t) = =1 the SC integral is not at all zero, at that point it
measures the residue [($(t) of the (moving) t channel Regge pole.
We formulate So(t) = 0 at infinitely many discrete points separated
by At = 1GeV2 starting at ~(t) = -2. The next SCR, S1(t) =
= ‘("’ ds s Im A = 0, holds for £(t)< -2. We formulate it at
oc?t) = =3, =4, eee And similarly for S2(t), 83(1:), etc. At *)

N ek e :
o((t“)- PRSERS 1 j= 1.2, (3)

we formulate j SCR's : SO, S We saturate with those

1, o0 0 S(j-1). o
direct-channel poles which have m? = 8 < 8(t,180")

u
+

Si< s (), By (a3 (4)
'

sp= Le'g (=0 1,0 ] (5)

As we go to larger (-t) we impose more and more SCR's
and we saturate them with a larger and larger number of 8 channel

resonancese.

For t =t  we have (j+1) resonances to saturate j
SCR's. Therefore, we obtain a unique solution. Had we chosen a grid
with As < 1/X'(t) then there would have been infinitely many solu-
tions. Had we chosen As » 1/X ', there would have been more equa-

tions than unknowns, and no solution would have existed.

*)

See footnote p. 2.
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The residue function of the pole at 8 = 8, will be called

i at the various points tj as

independent unknowns. Our problem is now reduced to the following ma-

Ri(tj), and we treat the values of R

thematical form : we have a triangular array (see Fig. 2) of unknowns
Ri(tj) with j=1... ® and i=0, 1, «e. j. In the row j there
are (j+1) elements labelled by i, and we impose j SCR's :

4
i=20 Ri (t:}) i" = o n:0¢,1,... (J'-n) (6)

The factor i corresponds to the moment factor t)n, where

Vv = (s-u)/2. The translation of the origin of the weight function :

V;:

L= SL-‘- tJ/Z. — L: Si"/z (7)

is irrelevant as long as we set all moments up to n equal to zero.
We solve the system of homogeneous linear equations (6) separately
for each row j. A normalization factor for each tj remains unde-
termined. We use the residue of the lowest s channel pole as our

normalization :
Ra (H’)’ NJ (8)

The solution to our algebraic problem (6) is the binomial coefficient

()

e Y. N (=0t (4
Ri L) = Ny ¢0° () (9)
The proof follows from the definition of the binomial coefficient :
\. } I I
(|+z_¥‘§= Z 24 !)‘] (10)
' =0 ‘i

We multiply both sides n times by the differential operator (z é% :

(2 4) (1s2)’ i 2t "))

oz o VL (1)
and set z H i
= “‘l ay = "\
° :ZB‘ P ({) et (3 (12)

This proves that the expression (9) solves the system of equations (6).
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We choose the normalization Nj by requiring that the pole
at s = % has a linear residue function, like a superposition of §>
and € (750). Note that the zero of Nj will appear in all resonances
8y with 1 — @ . Because of exchange degeneracy our Regge amplitude
must be real for o (t) = integer. This implies that Im ARegge =0
for £ = 0, -1, =2,... The zeros at high energy for A = -1, =2,...
are automatically produced by the fact that (i) =0 for i> j. On
the other hand the zero for & (tj) =0 and s

by the vanishing of the normalization factor Nj H

- @ must be produced

Ng: -(J-r'}: t}-r‘/z' (13)

This completes the solution of our problem (see Fig. 2) :

R, Hé) = - (é*'} (-0 (%) (14)

We now come to a crucial test. The residue functions Ri(tj) have
been determined independently at ® many t.. Are they consistent
with being (a) polynomials in t, and (b) polynomials of reasonable
order ? Our explicit solution (14) shows that both conditions are
fulfilled :

R'L ({,\. Foiyuowiai of (i+t)+l‘ ordec i + (15)
J',Max (S;)E O((S‘J:i.*’l ='/7_+S'L (16)

This result is connected to our choice At = 1/X '(t). It turns out
that jmax(si) is not only reasonable, but we even have obtained the
form required by crossing symmetry and Eq. (1), although we never
imposed crossing symmetry.

An additional test is the requirement that all coefficients
g2 of the Legendre polynomials be positive. We have not succeeded in
giving the general proof that this is the case, but explicit calculations
by Dr. F. Wagner for i = 0, 1,...940 show that g2; 0 for these re-

sonances.

In the spirit of the resonance saturation model we replace

tj by continuous t in (14) :



& (50)
‘R\({): r[‘~°L({)] (~l) (141)
Fld(si)] mi-&(s)-A#]

The full amplitude A(s,t) is approximated, for t ¢ -1.5, by the

sum of these s channel resonances. A(s,t) can be written as a
product of the residue function R(s,t) times a function which con-
tains simple poles of unit strength :

— (& (5)41
Als4) - K(st) T 120 (17)
sin TA(s)
The apparent poles at o{ (8) = 0, -1, =2... are actually absent
because R(s,t) = O for those s values. Inserting (14') into (17)
we obtain :

Ast). - [L-d®) T0-4@)]
' Flo-2(s) - (1)] (18)

There is an arbitrary, positive normalization constant multiplying

the whole expression.

The expression (18) is nothing else but the Veneziano
— =
i\ W

5)

4)

formula in the form appropriate for scattering. Veneziano

found the formula using the duality concept and making an inspired
guess. Here we have arrived at this form by means of a construction,

in which the duality concept was never used as an input, since we

worked at t = negative. But the duality concept automatically comes
out as a consequence at t = positive. We recall that (a) the full
amplitude (18) was constructed, for negative t, as a sum of s channel
resonances * s With nothing more added ; (b) this sum of s channel
poles automatically and inevitably contains, at positive t, the t

channel poles.

- — —— - - —— o —— —— —— o S — T T ———— T~ — — - o -—— - - ———

*) For t(-% we can write an unsubtracted dispersion relation for
expression (18). This dispersion representation of A(s,t) reduces
to a sum of s channel poles, with no other terms added (in parti-
cular no t channel poles).
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Our construction also throws light on the question to what

extent the Veneziano ansatz is unique.
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FIGURE CAPTIONS

Figure 1 The exemple of the experimental Y:'s in KN - KN. It
shows (i) that the unphysical region, z,< -1, is all-
important for superconvergence, and (ii) that a cut-off
at s=s8(t, 8‘8= 180°) 1is an excellent approximation. On
the vertical axis we plot the contributions C[im Eﬂ of
the Y: resonances to the SCR {Im B dv at t=-3.34 GeVZ.
The dashed envelope only serves to guide the eye. The pole
parameters are taken from Ref. 6) for the 5/2° and 7/27,
from Ref. 7) for the 1/2%, and from ref. 8) for all other

resonancese.

Figure 2 The solution of the superconvergence problem. The trian-

gular array of numbers gives the residues R, (t ) of the
i*® 5 channel pole at t=t., of (t;) = =3=1." Ry (%))

J
are essentially the binomial coefficients (g), see

Eq. (14). At tz'tj the saturation is achieved with those
poles which are already in the unphysical region,

cos f7s< -1. (Note that we set m~ = 0.)
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