65/56

CM-P00057084

Date: 6th December, 1965

Memorandum

To : Professors W. Paul and P. Preiswerk, members of the NPRC and

EEC PS co-ordinator, Dr. G.L. Munday, Dr. G. Petrucci,

Dr. P. Standley and Dr. A.M. Wetherell.

From : M. Borghini, G. Coignet, L. Dick, L. di Lella, P. Macq,

A. Michalowicz and J.C. Olivier.

Subject: Request for a high intensity beam of pions, kaons and protons

of both signs.

In the momentum range from 5 to 13 GeV/c, the d_{23} beam can only yield negative particles ¹)*). On the other hand, the theoretical predictions ²) on elastic π -p scattering on polarized target must be checked by experimental data obtained with particles of both signs.

We require therefore a beam of high intensity and both signs:

- a) to extend to positive pions the measurements we are performing;
- b) to measure simultaneously and with the same geometry the polarization parameter for K^{\pm} , p^3) and p, which naturally will be present in the beam;
- c) to investigate spin effects in π -p scattering at higher [$\sim 1 \, (\text{GeV/c})^2$] momentum transfer.

The next step should be the measurement in the 5 to 15 GeV region of the Wolfenstein parameters (D,Cnn) in p-p elastic scattering and (A,R) in hadron-p elastic scattering on a target polarized in the scattering plane when such a target will be operative. A very intense beam ($\sim 10^6~\pi/\text{burst}$) is also imperative in this case.

No solution exists to obtain positive particles from target 1 with momentum loss than 13 GeV/c for the actual PS configuration.

^{*)} In order to obtain a positive beam of \gtrsim 13 GeV/c, two special bending magnets, with a total excitation power of \sim 240 kW, should be built. The cost of these two magnets would be \sim 20,000 Sw. Fr. and their delivery time about five months. Moreover, the d₂₃ line should be completely repositioned in the South Hall. Even in this case, however, the beam would contain only \sim 5000 $\pi^+/10^{11}$ protons on target 1, and 10 times more protons.

In conclusion, the best solution to satisfy our requirements seems to be a secondary beam produced at small angle by the slow ejected beam in the East Area, with an external target.

65/1825/5 p/eht

REFERENCES

- 1) Memorandum 23 November 1965 from L. Dick et al.; G. Petrucci, private communication.
- 2) R.J.N. Phillips and W. Rarita, Phys.Rev. 139B, 1336 (1965); UCRL 16185 (1965); H.G. Dosch and A. Fridman, Heidelberg University report, May 1965.
- 3) Proposal to measure possible spin dependent effects in (p-p) scattering at high energies using a polarized target,
 M. Borghini et al., November 1964.