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ABSTRACT

Analyticity properties of the pres-
sure, and the correlation functions, in
the chemical potential, temperature, and
the interaction potentials are given for
a system of classical particles on a lat-
tice interacting through many-body poten~-

tials.
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v The purpose of this note is to give certain analyticity pro-
perties of a system of classical particles on a lattice interacting
through many-body potentialé. We prove analyticity of the pressure, and
the correlation functions, in the chemical potential, temperature, and
the interaction potentials. Our methods are those first developed by
Dobrushin et aloj) for two-body potentials. Results are obtained by. com-

- bination of two features. Firstly we use the structure of an integral
equation for the correlation functions and secondly we utilise a symmetry
Cproperty of the pressure as a functionai of the interaction potentials.
Physibally these properties are of interest'because it is known that for
the values of the thermodynamic parameters in the domain of analyticity
the lattice gas is in a single phase state. Thus such results delimit

the regions where phase transitions are possible.

Let Z0 be a V dimensional lattice and assume that at
egch lattice point‘there can be either O or 1 particles and hence a
finite configuration X of the system is specified by a finite subset
X(;Zb « We suppose that the particles interact through symmetric trans-
lationally invariant many-body potentials @g(k)(x1,a..,xk) and we
regard these potentials as a function on the finite subsets X,
of 7' , defined by & (x)= @(k)(x,l,.”,xk) T X= Sxipeeeyx ] e
In what follows we consider only those interactions Q§ which involve

a finite number of particles and which are such that

We denote this set of interactions by é}o and we use the notation
@ = (@)(1), (I'), where @' is the in:ceraction obtained from @

by setting thefone particlé potential @5(1) equal to zero. The
one—particle potential can bé'interpreted as —}k, where }& is the
chemical potential. The energy U@E(R) of a finite configuration of

particles on the subset XC_ZQ with interaction d; is
N P
t)@<><) - zi;1_§2<g)
SCX
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: 1 . ,
" If x,e¢X we denote by X< ) the set X/% x.% obtained from X by

1
subtfacting the point ?% and we introduce the definition
U i-/' | T - cn
B : XeSOY - .

To complete our notation let ?; be the Banach space of bounded functions
on the finite non-empty sets of gV equipped with the sup-norm topology
" and, denoting by N(X) the number of points of the configuration X,

Cdefine ®¢ & by OA(X)=1 if N(x)=1 and x(X)=0 if N(X) >1.

Integral Equations

The correlation functions ‘Fg,Q ( jsiis the inverse tem-
perature) of the classical lattice system can be regarded as elements of
the space 6 satisfying the following equations (for details, cf. Ref. 2)).

-

0 _ e

) ﬁ)§ | + e-\gT“ o + ){1 5% {
where the operator Fb<¢,§ on & is defined by

R N—~Ué¢@) » ‘ 7 W

gt = L)+ S, Kogloorfpetr)- o)

( H$?<\ |+ oo Ups0d) X KMZXTWQ%Uﬂ 4 MHWU
T(")( 17\

U

< Yo, '
4:;] %k§%§1<X5~f>§ é {n P(& ‘@‘i ,1) -

for all C?& & , and the kernel K @1(X T) has the property that
TNX=g

for fixed X
THo

[:q)(y(1)) has to be interpreted as zero if N(X)::i}. It follows that
the norm on Ei of the operator }f% F is majorized by

. HGQ )‘ ’*'g"")l.ﬁl o m“ )
T, = B g [, ohEd
a5 e 2R * -
it }1_}} ﬂc[,(\ 1 { AL-.X 22 —1 L
1+J s;&;, | N
Thus we see that there exists a function f(Ei) defined on the positive

axis, f(&)=-log oet [éxp(e§'~1)—i], such that
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PET < F(p8)

implies that || d0p,d ||<1. Note that £(&) satisfies

Litﬂ (S\ = + o0
E=0 o (1)
Now with the same methods. as Refs, 2),3) it is possible to prove that
if || "}{,JG D | {1 then the correlation functions ) g < E

~ ?
are an analytlc vector for y} J: around |2 ’@o' Explicitly we have

0
that for n arbitrary vectors \P 47 4}2,. vey qfn QEB o the vector

Prd ez B
is an analytic vector in (fb, X1””’ ;\n) around (ﬁo,o,...,o). The

same analyticity property can be proven for the pressure P(‘é ,@ ).

Symmetry Property

We next prove a symmetry property for the pressure P(}?’,§ ).
o (— -— J i =
Let the operator i H &50 iﬁ o be defined by

(LE)) = (02 &6

SOX (2)

(Wote that {,2= 1) and then by direct calculation we can verify that

Ug 0} - UggWe) = NIYAG - N{A)(Ag A )+ () xeA

(3)

where /’\ is a finite subset of 2" s Ag 1is defined by

oS0
N cesezy N(S) (4)

- <1

and ZH”\(X) is a surface term, i.e., Z__]A(X) is such that

o e

. i \’ . B
%TM V(/\\ _IU/\ }L:/\(X}}
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From definitions (2) and (4) it readily follows that Ap +Ayp =0 and
thus from (3) we deduce that the pressure P( ﬁ,@{ ), defined by

o0 B = L A L S o BV
T(%,@) = /&'_%O V(M !ﬁ?«“f{_‘/\é—) 3(X)

has the symmetry propefty

.P(M) s 3 her = PR 48) v 3 Angs (5)

4))

This is the many-body generalization of a well-known formula (cf. Ref.

Now if ll?@;g ) 0.8 || <1 we have deduced that both
0 >Y¥ 0

P(SS,I,& ) and Po,8¢ e analytic in 3 and 33_5&'80 around
L b -
‘Aor §oe Therefore (5) implies that under the same condition P(f, &)

and Ppg  Bre also analytic in R, § ¢ 80 eround (., §,+ Hence
we have deduced that P(f: »$ ) and fp,§5 are analytic around ’
2, &

53,5 if one of the two following inequalities is_satisfied
SE<Aseyy )
- PUE < §(pha) ) (6

However, from (2) we find that

(£3)"= -3 2 8
6eS (1)

and hence We see that if

~Hpl ) - L (g} < -5 5, Tls) ©

we have analyticity of the pressure and the correlation functions in 53
around ~-ﬁo’ in @' around {)é, ~ and for all values of @(1). But,
due to (1) this last inequality. (7) must surely be satisfied if R, 1is

sufficiently small.



A simple explicit example which illustrates the nature of
the analytlclty domain obtained above 1s glven by choosing @(2)
and @ )..O for k »2. In this case we find from (6) and (7) that

we have analyticity if either of the 1n<,qua11tles

e ) -t
Oz < T [expleP-1)-1]
~ ~ac [ ne
Z >/ e {e@{e"'“%) 'l]

is satisfied, where Z=exp(- § 4:9‘(1)) is the activity and

(2} Ay (AYIN
el = >, ¢%(s)
OeS
Let us conclude by observing' that a property similar to (5)
follows for the correlation functions. To deduce this property. intro-

duce for any X an interaction f}LKED by the definition

)0

Y‘X(%\ =0 'xf— i/a € Z_O such that X"’Q - ()‘

o>

7‘1{ (S\ =1 'jf 5 a e Z,Q such that X+a = §

and then we have

fs t(x) - - dP( gs,@*m

i

From this equation and

; “f ~ \'{‘;‘v N(\)
L = 2, (V9%
we deduce the property
A ™ A
P F(x) = %(.,)N(ﬁz ﬂﬁf&{g)

where we take (%) = 1.
H
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