
ATLAS HIGH LEVEL TRIGGER INFRSTRUCTURE, ROI COLLECTION
AND EVENT BUILDING

K. Kordas, INFN Frascati, Italy

J.Schlereth, Argonne National Laboratory, IL, USA
 J. Masik, ASCR Prague, Czech Republic

 H.P. Beck, S. Gadomski, C. Haeberli, Bern University, Switzerland
 S. Armstrong, Brookhaven National Laboratory, NY, USA

A. Bogaerts, N. Ellis, S. Gameiro, B. Gorini, M. Joos, J. Haller, T. Maeno, C. Padilla, T. Pauly, J. Petersen, M. Portes de
Albuquerque, R. Spiwoks, L. Tremblet, G. Unel, P. Werner, CERN, Switzerland

E. Ertorer, CERN, Switzerland & University of Ankara, Turkey
C. Bee, C. Meessen, F. Touchard, CPPM Marseille, France

Y. Nagasaka, Hiroshima Institute of Technology, Japan
M.L. Ferrer, W. Liu, INFN Frascati, Italy

M. Bosman, E. Garitaonandia, H. Segura, S. Sushkov, IFAE Barcelona, Spain
Y. Yasu, KEK, Japan

G. Comune, R. Hauser, Michigan State University, MI, USA
G. Kieft, S. Klous, J. Vermeulen, NIKHEF Amsterdam, The Netherlands

J. Baines, V. J. O Perera, F. Wickens, Rutherford Appleton Laboratory, U.K
S. George, B. Green, A. Misiejuk, J. Strong, P. Teixeira-Dias, Royal Holloway, University of London, U.K.

A. Gesualdi Mello, M. Seixas, R. Torres, UFRJ - Rio de Janeiro, Brasil
T. Bold, A. Lankford, A. Negri, S. Wheeler, University of California Irvine, CA, USA

R. Cranfield, G. Crone, University College London, U.K.
X. Wu, Université de Genève, Switzerland

P. Morettini, C. Schiavi, University of Genova & INFN, Italy
R. Stamen, S. Tapprogge, J. Van Wasen, Universität Mainz, Germany

A. Kugel, M. Mueller, M. Yu, Universität Mannheim, Germany
R.Ferrari, W. Vandelli, Università di Pavia & INFN, Italy

A. Di Mattia, S. Falciano, E. Pasqualucci, Università di Roma I “La Sapienza” & INFN, Italy
A. Dos Anjos, H. Zobernig, W. Wiedenmann, University of Wisconsin, Madison, WI, USA

 (Presented by Kostas Kordas on behalf of the Data Collection, HLT-Integration & HLT Core s/w

and Steering Groups of ATLAS TDAQ)

Abstract

We describe the base-line design and implementation of
the Data Flow and High Level Trigger (HLT) part of the
ATLAS Trigger and Data Acquisition (TDAQ) system.
We then discuss improvements and generalization of the
system design to allow the handling of events in parallel
data streams and we present the possibility for event
duplication, partial Event Building and data stripping. We
then present tests on the deployment and integration of
the TDAQ infrastructure and algorithms at the TDAQ
“pre-series” cluster (~10% of full ATLAS TDAQ).
Finally, we tackle two HLT performance issues.

INTRODUCTION
The ATLAS experiment is designed to observe the

outcome of collisions between protons of 7 TeV (i.e., at
the highest energy to-date), provided by the Large Hadron
Collider (LHC), which will start operating in 2007 at
CERN. Bunches of 1011 protons will cross each other at
40 MHz, providing about 25 proton-proton interactions
per bunch crossing at the centre of ATLAS. Nevertheless,

only a small fraction of this ~1 GHz event rate results in
interesting physics processes. The TDAQ system of
ATLAS has to select a manageable rate of such events for
permanent storage and further analysis. ATLAS records
about 1.5 MB of information for each event and we aim
in keeping about O(200) events per second.

We use a three-level trigger system to achieve this goal.
An overview of the system is seen in Fig. 1. The first
level trigger (LVL1) uses coarse calorimeter and muon
detector information to reach a decision within 2.5 µs.
The accept event rate is 75 kHz (upgradeable to 100 kHz).
Upon an event accept from LVL1, the front-end
electronics of the various sub-detectors pass the
corresponding data to the Readout Buffers (ROBs),
hosted in the Readout Subsystem (ROS) PCs. Event data
remain there and are pulled by the second level trigger
(LVL2) and then by the event builder nodes on demand.

LVL2 receives a list of η−φ Regions of Interest (RoIs)
identified by LVL1, from the Region of Interest Builder
(RoIB). It then accesses the appropriate ROSs to pull and
analyse data from the ROBs corresponding to the Regions
of Interest; thus, the LVL2 uses only ~2% of the full

A
T

L
-D

A
Q

-C
O

N
F-

20
07

-0
02

11
 Ja

nu
ar

y
20

07

event information to take a decision. At this level the
event rate is reduced to ~3 kHz with an average latency of
O(10) ms. Subsequently, the Event Builder (EB) nodes,
also known as the “sub-farm input” (SFI) nodes, collect
all data from the ROSs and, upon request, provide fully
assembled events to the Event Filter (EF) farm, which is
the third level trigger. The EF analyzes the entirety of
each event data to achieve a further rate reduction to
~200Hz, with a latency of O(1) second per event. Finally,
accepted events are sent for local TDAQ storage to the
“sub-farm output” (SFO) nodes.

SFI SFI SFI SFI

Muon

ROD

LVL1

Calo Inner

Pipeline
Memories

RoI

LVL2

Event Builder

ROB

EF
Farm

LVL2
farm

Read Out
Drivers

Read Out
Systems

Sub Farm
Input

Sub Farm
Output

Sub
Farm

Detectors

ROBROB

ROD ROD

SFI SFI

SFO

SFI SFI

Muon

RODROD

LVL1

Calo Inner

Pipeline
Memories

RoIRoI

LVL2LVL2

Event Builder Switch

ROB

EF
Farm

LVL2
farm

Read Out
Drivers

Read Out

Sub Farm
Input

Sub Farm
Output

Sub
Farm

Detectors

ROBROS
12 ROBs

ROB

RODROD RODROD

ROS
12 ROBs

ROS
12 ROBs

SFO

SFI SFI SFI SFI

Muon

ROD

LVL1

Calo Inner

Pipeline
Memories

RoI

LVL2

Event Builder

ROB

EF
Farm

LVL2
farm

Read Out
Drivers

Read Out
Systems

Sub Farm
Input

Sub Farm
Output

Sub
Farm

Detectors

ROBROB

ROD ROD

SFI SFI

SFO

SFI SFI

Muon

RODROD

LVL1

Calo Inner

Pipeline
Memories

RoIRoI

LVL2LVL2

Event Builder Switch

ROB

EF
Farm

LVL2
farm

Read Out
Drivers

Read Out

Sub Farm
Input

Sub Farm
Output

Sub
Farm

Detectors

ROBROS
12 ROBs

ROB

RODROD RODROD

ROS
12 ROBs

ROS
12 ROBs

SFO

SFI SFI SFI SFI

Muon

RODROD

LVL1

Calo Inner

Pipeline
Memories

RoIRoI

LVL2LVL2

Event Builder

ROBROB

EF
Farm

LVL2
farm

Read Out
Drivers

Read Out
Systems

Sub Farm
Input

Sub Farm
Output

Sub
Farm

Detectors

ROBROBROBROB

RODROD RODROD

SFI SFI

SFOSFO

SFI SFI

Muon

RODROD

LVL1

Calo Inner

Pipeline
Memories

RoIRoI

LVL2LVL2

Event Builder Switch

ROB

EF
Farm

LVL2
farm

Read Out
Drivers

Read Out

Sub Farm
Input

Sub Farm
Output

Sub
Farm

Detectors

ROBROS
12 ROBs

ROB

RODROD RODROD

ROS
12 ROBs

ROS
12 ROBs

SFOSFO

Figure 1. Basic components of the ATLAS TDAQ system.
The data flow from the pipeline memories on the
detector’s front-end electronics (top), towards local
storage in the TDAQ system (SFOs, at the bottom), where
they wait to be pulled to permanent mass storage.

While LVL1 is based on custom hardware, the LVL2,
Event Builder and EF are based on computer farms of
O(3000) PCs which are interconnected via Gigabit
Ethernet and run Linux.

 The LVL2 and EF are collectively called High Level
Trigger (HLT). We call “Data Flow” the part of the
TDAQ system which is responsible for buffering the
event data at the ROSs, feeding the HLT with the data it
needs in order to reach a decision, and, eventually store
the accepted events at the SFOs.

Detailed description of the system can be found in [1],
while extensive tests are described in [2] and [3]. This
paper discusses functionality improvements on the Data
Flow system and results obtained by running algorithms
at LVL2 and the EF. We also discuss two tests which
demonstrate the proper scaling and the matching of the
performance requirements for the LVL2 system.

DATAFLOW
The dataflow components and their interaction with the
HLT components which run the algorithms are shown in
Fig. 2. The only custom-built hardware in this figure are
the LVL1 trigger, the RoI Builder and the custom-built
cards inside the ROS PCs [1]; all other components run
on standard PCs as C++ applications developed in a
common software framework which imposes a suite of
common functionalities, e.g., application control, message
passing, etc. The dataflow applications are multi-
threaded, since they must react to asynchronous ‘events’,
such as run control commands, request for monitoring
data and interaction with other components.

L2PU

pROS

(EB node)

RoIB

L2SV

ROS

LVL1
Trigger

EFD/PT
(EF node)

4: RoI Request

5: RoI Data

6: L2Result

7: Ack

16: Full Event

12: Data Request
15: Clear event

13: ROS Data

2: L1Result
3: L1Result

8: L2Decision

9: L2DescisionGroup

10: Ack

1: L1 Trigger streams

15: Clear event
13: ROS Data

DFM
11: Assignment

SFI

12: Data Request

14: End Of Event

SFO

17: Full Event

L2PU

pROS

(EB node)

RoIB

L2SV

ROS

LVL1
Trigger

EFD/PT
(EF node)

4: RoI Request

5: RoI Data

6: L2Result

7: Ack

16: Full Event

12: Data Request
15: Clear event

13: ROS Data

2: L1Result
3: L1Result

8: L2Decision

9: L2DescisionGroup

10: Ack

1: L1 Trigger streams

15: Clear event
13: ROS Data

DFM
11: Assignment

SFI

12: Data Request

14: End Of Event

SFO

17: Full Event

Figure 2: Flow of data and messages relevant for the HLT.
The LVL2 selection software runs in the L2PUs
requesting selected data from the ROSs according to the
RoI information provided by LVL1. The EF deals with
full events, received from the SFIs.

 The trigger decisions are taken by algorithms running
on the LVL2 Processing Units (L2PUs) and on the Event
Filter’s Processing Tasks (PTs). The rest of the system
deals with the flow of data; it serves them to the HLT, and
eventually to storage, and deals with the event according
to the HLT decision (e.g., it releases the data buffers upon
a rejection by the HLT).

The flow of data complies to a pull scenario: data are
requested according to needs from subsequent clients. All
applications involved in the LVL2 and Event Building
communicate via message passing; data is one of the
message types flowing from the requested ROSs to the
appropriate client. Each EF node (EFD/PT in Fig.2) gets
an already assembled event from an SFI and, if it accepts
the event, it sends it to an SFO for local storage.

Data Flow for LVL2
After a LVL1 accept, and while the data are buffered

into the ROSs, the RoIB collects RoI information from
the LVL1 calorimeter and muon triggers and from the
LVL1 central trigger processor. This information is put in
the “L1Result” and is forwarded to one of the LVL2
Supervisors (L2SVs) in a round-robin fashion. Each
L2SV serves a sub-farm of L2PUs and assigns one of
them to process the event.

The L2PU figures out the ROBs corresponding to the
given RoI and requests data only from the involved

ROSs. It also produces an accept/reject decision which is
passed back to the L2SV which in turn forwards it to the
Data Flow Manager (DFM). For accepted events, the
L2PU puts the decision details (the “L2Result”) in the
pseudo-ROS (pROS).

If the decision is to reject the event, the DFM sends
clear messages to the ROSs to free the involved buffer
space. If the event is to be kept, the DFM assigns an SFI
to assemble the event by requesting data from all
participating ROSs and the pROS. Events are buffered in
the SFI and made available to the EF upon request.

Data Flow for the Event Filter
The ATLAS EF system is organized as a set of

independent processor farms (sub-farms), each connected
to Sub-Farm Input (SFI) and Sub-Farm Output (SFO)
elements. Unlike the LVL2 system which involves many
components to deal with the dataflow and the trigger
aspects of the work, each EF node hosts both
functionalities. Dataflow functionalities are provided by
the Event Filter Dataflow process (EFD), while the
processing tasks (PTs) are in charge of data processing
and event selection.

The EFD manages the communication with the SFI and
SFO elements and makes the events available to the PTs
via a memory mapped file, called the SharedHeap, which
is used for local event storage and provides a safe event
recovery mechanism in case of EFD crash. The PT cannot
corrupt the event because it access the SharedHeap in
read-only mode. PT problems are handled by the EFD
which can identify PT crashes and dead locks. In both
cases, the EFD, which owns the event, can assign it to
another PT or send it directly to the SFO.

Inside the PT, the event selection algorithms produce a
filtering decision and a selection object (used to classify
the event and guide the off-line analysis steps) which are
communicated back to the EFD. The filtering decision
steers the EFD dataflow and thus decides the event fate.

Partial Event Building and Data Streams
A full event, assembled by an SFI which has gathered

all the fragments from the ROSs, is about 1.5 MB in
ATLAS. There are cases though, where we may only need
“partial” events which contain information from some of
the ATLAS sub-detectors only.

The TDAQ system resources can already be partitioned
in mutually exclusive configurations. Thus, we can have
parallel calibration runs, each dealing with part of the
ATLAS detector and giving out partial events.

During a physics run, accepted events will be stored in
four different data streams at the SFO level: physics,
express physics (for fast reconstruction of very interesting
events), calibration and debug. Further refinement is
envisaged outside the TDAQ system. In order to optimize
bandwidth, processing and storage resources in the
TDAQ, we are adding partial event building functionality
for events which are only good for calibration and/or
debugging.

For routing and (partial or full) event building
purposes, we define a stream-type message to be used up
to the event builder. Since the EF is handed already
assembled events, the SFI will incorporate this
information in the event. The trigger part of the system
(LVL1 and HLT) is responsible for deciding on the stream
tag(s) characterizing each event, whereas, as usual, the
dataflow components have to act according to these tags.

The LVL1 central trigger processor generates triggers
for testing (debugging) and calibration purposes of
various sub-detectors, mixed with the physics triggers.
An event accepted by LVL1 with a non-physics trigger
will not be processed by a L2PU and it will be built
partially: the assigned SFI will pull data only from the
ROSs corresponding to the sub-detector’s needs for
calibration and/or testing. Physics-triggered events will be
always analyzed by the LVL2. In case they satisfy a
physics trigger, they will be always built fully, no matter
if they are also good for calibration and/or debugging
purposes. On the other hand, an event which is rejected
for physics and is only found useful for calibration and/or
debugging will be built partially, according to the info
passed to the event builder by the stream-type message.

An equivalent strategy is envisaged at the EF level.
E.g., an event can be routed by the EFD directly to the
SFO, without making it available to a processing task. In
case an event is sent to a PT and it is accepted for physics,
the full event will be sent to the SFO which will check the
event’s stream tag(s) and store it locally to the appropriate
data stream(s). Note that an event which is tagged as
express physics as well, will be written to both the
standard physics and the express physics streams. If an
event is only good for calibration/debugging though, the
EFD will strip the unnecessary information and send the
partial event to the SFO for writing to the appropriate
stream. All use cases and the details of the
implementation are currently under investigation.

Event Filter I/O protocol
The EFD manages the EF host’s connection with the

data sources (SFIs) and destinations (SFOs) and
implements the client part of the communication protocol,
EFIO [4]. As part of the configuration information, at
start-up each EFD receives the host and port numbers of
the SFI(s) and SFO(s) to which it must connect. The EFD
then establishes one or more TCP connections to these
SFI and SFO and in case of breaking connections, the
EFD reestablishes them to ensure the proper flow of data.

It is always the EFD which initiates the transactions: it
requests events from the SFIs and after it receives all
Ethernet fragments successfully, it acknowledges the
event reception and is ready to initiate a new event
request. The EFIO was designed with full events (~1.5
MB) in mind. However, this hand-shaking mechanism is
inefficient in case of very small event sizes (which could
occur in the case of partially built events), because a large
fraction of the event transaction time consists of the event
request and acknowledgement messages from the EFD
towards the SFI. For this reason, the latency overhead is

compensated by having multiple connections between
each EFD and the serving SFI(s). Thus, an SFI can wait
for an acknowledgment message in one channel, while
fully utilizing the offered network bandwidth to serve an
event to the same EFD via a parallel channel.

The connection towards an SFO works essentially the
same way, but the EFD initiates the event transaction by
sending a space request to the SFO when it has an event
to send. If space is available, the SFO requests an event
from the EFD and, after receiving the event, it
acknowledges its’ receipt. Here too, the latency overhead
is compensated by having multiple connections between
each EFD and SFO(s).

HIGH LEVEL TRIGGER
Both LVL2 and EF use online software for the control

and data collection aspects, but the event processing and
trigger algorithms are developed and tested in the ATLAS
offline software environment (Athena). A common
approach of the LVL2 Processing Unit and the EF
Processing Task for the steering, seeding and sequential
processing of the selection algorithms has been developed
[5]. Through a sequence of “feature extraction” and
“hypothesis testing” algorithms, the HLT tries to reject the
event as soon as possible in order to minimise required
CPU resources. By dealing only with RoI data at LVL2,
we also minimise the required network resources.

A thin layer of software, common to LVL2 and the EF,
acts as an interface between the dataflow and selection
software. This maps the online state machine used by the
run control on the event loop manager of Athena; it
provides access to the data in the format the algorithms
need it (e.g., RoI data for LVL2); and, it maps online
services on equivalent Athena services (e.g., initialization,
data access, error reporting). The idea is to be able to
“plug” easily the event selection algorithms developed
offline into the online HLT framework.

For the EF this task is easier, because the less stringent
latency requirements (~1s, compared to ~10ms per event
at LVL2), allow the straight-forward reuse of offline
algorithms as configurable plug-ins. For LVL2
algorithms, the relatively long idle time between requests
and arrival of RoI data (~10 to 20% of total, see next
section) allow resource sharing in multiple-CPU nodes.
An L2PU could then deal with multiple “worker threads”,
each handling one event. Thus, algorithms which run at
LVL2 should be designed to be thread-safe and efficient.
For most algorithms this is not yet the case. The
alternative (and our baseline solution) is to run multiple
applications on each node at the cost of using more
resources.

Because online and offline software releases are
independently managed using different tools and
conventions, we install all the software needed by the
HLT, together with setup scripts and data files, into an
‘image’ for deployment on multi-node test beds [6].

Tests with algorithms at LVL2
Recently we have tested the ‘e/γ’ and ‘µ selection

slices’ on the “pre-series” cluster, which is about 10% of
the full TDAQ system installed at the ATLAS site [2,7].
A ‘selection slice’ involves running a series of feature
extraction and hypothesis algorithms on RoIs identified
by LVL1 in the muon spectrometer or the calorimeter.
The algorithm sequence proceeds “outside-in”: E.g., if the
RoI seeds in the muon spectrometer contain a good muon
candidate, algorithms requesting a matching track in the
inner tracking detectors (Si pixel and strip detectors) are
executed next.

We preloaded eight ROSs with three different data files
containing simulated muon, dijet and single electron data;
the corresponding LVL1 RoI information was preloaded
to one L2SV which triggered the system. The algorithms
ran on a single L2PU which put the L2Result for selected
events into a pROS. We note that the dijet sample is the
most representative of LHC conditions, because in p-p
collisions jets occur much more frequently than
electroweak events. Each dijet event had, on average, 23
minimum bias events superimposed.

The dataflow application running on the L2PU was
instrumented to provide timing and data throughput
information. Though neither the trigger menu nor the
event mix were representative of the final ATLAS (such
tests are planned for later in 2006), the runs give us
already useful estimates of the required CPU power and
bandwidth. Most importantly, valuable lessons were
learned about the complex software integration procedure.

The results of the measurements are summarised in
Table 1, where we see the average values (per event) for
the LVL2 decision latency, the processing time (i.e., the
actual execution time for the chain of algorithms), the RoI
data collection time, the size of RoI data requested, and
the number of requests for RoI data.

Table 1: Results of algorithm testing at LVL2 with
simulated events preloaded on ROSs.

The electron sample used was pre-selected and the

complete chain of algorithms had to be ran, so results
from this sample are not representative. From the muon
and dijet samples though, we observe that i) 80-90% of
the LVL2 latency is due to the algorithm processing, with
the time spent to collect the RoI data from the ROSs
being a small fraction of the total, and ii) the size of RoI
data requested per event is indeed very small (recall that
the full ATLAS event size is about 1.5 MB). By plotting
the fraction of events processed as a function of the LVL2

Data
File

LVL2
Latency

Process
Time

RoI
Coll
Time

RoI
Coll
Size

#Reqs
/Event

 (ms) (ms) (ms) (bytes)
µ 3.4 2.8 0.6 287 1.3
jet 3.6 3.3 0.3 2785 1.2
e 17.2 15.5 1.7 15820 7.4

latency, we also observe that the majority of events is
processed early (e.g., within the first 2ms more than 80%
of the dijet events in this sample are rejected).

Tests with algorithms at EF
A similar test was performed for the EF at the pre-

series machines. Simulated muon events were preloaded
in an emulated SFI node which served a number of EF
nodes, each running two Processing Tasks. Fig. 3 shows
the data throughput achieved as a function of the number
of EF processing nodes, for two different algorithms.

Figure 3: EF data throughput as function EF farm size in
EF-only configuration with dummy (top) and realistic
algorithms. The top two curves are obtained with an event
size of 1 MB. The bottom curve was obtained with a 3 kB
event size and shows ten times the measured throughput.

The upper curve corresponds to the case of a “dummy”
algorithm which randomly accepts or rejects events of
1MB in size with a fixed latency. The performance scales
linearly with the increasing number of EF nodes, till the
limit of the Gbit connection between the SFI and the EF
sub-farm is reached. The middle curve is obtained under
the same conditions, but the muon selection algorithm
(“TrigMoore”) was running in the PTs. The average
processing time is found to be 150 ms per event and the
system performance scales again linearly with the EF
farm size, but 9 EF nodes were not enough to saturate the
Gbit link from the SFI.

The bottom curve is obtained with the same realistic
muon selection algorithm, but for events with 3 kB in size
and it actually shows ten times the measured throughput.
The EFIO protocol used in these tests allowed only one
TCP connection between the SFI and each EF node,
which clearly limited the data rate for such a small event
size. This problem could occur in real ATLAS running
for partially built events from the SFI to the EFDs, and
for stripped events from the EFDs to the SFOs. Allowing
multiple EFD-SFI connections, as discussed in the
relevant section above, cures this limitation.

 Apart from physics selection algorithms, we have also
run monitoring algorithms on the PTs. Actually, for more
universality and flexibility, the PT I/O interface is
generalized in such a way, that one can easily switch

between the various event sources at configuration level:
the standard TDAQ dataflow (EFD), the online event
monitoring service or a data file on disk. Using the EF for
online monitoring is going on as part of the activities of
the Atlas TDAQ Monitoring Working Group [8].

Scaling tests at LVL2
The capability of the RoI Builder and LVL2

Supervisors to cope with the maximum LVL1 output rate
is of fundamental importance to the TDAQ. The scaling
of the LVL2 system has been verified by preloading RoI
information into the RoIB, which triggers the system and
serves one or two L2SVs. Each L2SV receives the
L1Result from the RoIB and distributes it to a sub-farm of
one to 8 L2PUs.

In the case of the setup with one L2SV, the sustained
rate is ~35 kHz, constant to within 1.5% independent of
the number of L2PUs. When two L2SVs are served by the
RoIB, the sustained rate is ~70 kHz with an equal sharing
of the load between the two L2PU sub-farms, each
managed by one L2SV. Since ATLAS will have a
handful of L2SVs, we are confident that we can easily
manage the max. 100 kHz LVL1 rate.

Performance of processing nodes
In the TDAQ Technical Design Report [9] the

computing power for LVL2 was estimated to require the
equivalent of ~500 dual processor CPUs at 8 GHz each,
resulting in an average latency of 10 ms at the maximum
LVL1 design output rate of 100 kHz. This assumption
was used to plan the budget but also the infrastructure,
such as available space, power and cooling.

The CPU clock speed is unlikely to exceed 4 GHz.
However, multi-core CPUs would fulfil the computing
power requirement of 16 GHz per box (e.g., 2 CPUs with
2 cores each at 4 GHz in 2007), provided that the
processing power of such machines shows scaling with
the number of cores they contain. A preliminary
measurement shows that this is indeed the case, as
illustrated in Fig. 4.

Scaling of a dual-core dual-CPU Processor

0

100

200

300

400

500

1 2 3 4 5 6

Number of Processes

Ac
hi

ev
ed

 L
V

L2
 R

at
e

(H
z)

Series1

Figure 4: Rate of processed events by LVL2 as a function
of the number of identical L2PU applications running on
a dual-core dual-CPU LVL2 processing node.

As a LVL2 processor node we used a rack-mounted
processor from Super Micro containing two dual core
AMD CPUs running at 1.8 GHz with a total of 4 GB of

memory. A similar configuration to the one described
above to test the algorithms at LVL2 was deployed, but
we preloaded just four ROSs with simulated muon events.
We observe that the rate of processed events scales
linearly with the number of identical L2PU applications
running on the node, till the resources (four cores in this
case) are exhausted; additional L2PU applications do not
increase the LVL2 rate any further. Therefore, we believe
that the multi-core multi-CPU technology should be able
to provide the necessary performance per PC, at the cost
of higher memory needs and latency. Such problems
could be alleviated if we were running applications in a
shared memory model .

CONCLUSIONS AND OUTLOOK
We have presented the base-line design and

implementation of the Data Flow and High Level Trigger
part of the ATLAS Trigger and Data Acquisition system
and discussed improvements of the system design to
allow the handling of events in parallel data streams and
the possibility for event duplication, partial Event
Building and data stripping.

The communication protocol between the Event Filter
nodes and its’ data sources (event builder nodes) and data
destinations (local storage nodes) has been improved to
handle efficiently small-size events, like partially built
events into the EF and stripped events shipped from the
EF to local storage nodes.

We have also exercised the integration of algorithms
into the DAQ/HLT infrastructure by running algorithms
seeded by the result of the previous trigger level. We
observe that the RoI collection at LVL2 behaves as
expected and that the data throughput scales linearly with
EF farm size.

The LVL2 system is shown to be able to cope with the
maximum LVL1 rate possible (100 kHZ) and we have
also provided evidence that the multi-core multi-CPU
technology should be able to deliver the original
landmark performance expected from PCs with “dual
CPU, 8 GHz each” for the HLT nodes.

Running algorithms at LVL2 and EF in a single chain is
currently in progress at the pre-series cluster on the
ATLAS site. We are also getting ready to test the system
with realistic trigger menu and simulated events, and also
to use the HLT on real muon data from the upcoming

cosmic run with part of the muon spectrometer and the
calorimeter already installed in their final position. We are
thus working on delivering an HLT system which shows
the proper scaling and matches the performance and
robustness requirements of ATLAS towards the proto-
proton data-taking starting in 2007.

ACKNOWLEDGEMENTS
The authors would like to acknowledge the help and

support of the ATLAS TDAQ group. K.K would also like
to thank the local organising committee for the excellent
organisation of the conference.

REFERENCES
[1] B. Gorini et al, “The ATLAS Data Acquisition and

High-Level Trigger: concept, design and status”,
CHEP06 conference, 13-17 Feb. 2006, Mumbai,
India.

[2] G. Unel et al, “Studies with the ATLAS Trigger and
Data Acquisition pre-series setup”, CHEP06
conference, 13-17 Feb. 2006, Mumbai, India.

[3] D. Burchart-Chromek et al, “Testing on a large scale:
Running the ATLAS Data Acquisition and High
Level Trigger software on 700 PC nodes”, CHEP06
conference, 13-17 Feb. 2006, Mumbai, India.

[4] H.P Beck et al, “ EFIO: Protocol Specification”,
ATLAS DAQ note: ATL-DQ-ES-oo40 (v.2.0), 2006.

[5] G. Comune et al, “ Steering the ATLAS High-Level
Trigger “, CHEP06 conference, 13-17 Feb. 2006,
Mumbai, India.

[6] H. Garitaonanda-Elejabarrieta et al, “Worm and Peer
To Peer Distribution of ATLAS Trigger & DAQ
Software to Computer Clusters”, CHEP06
conference, 13-17 Feb. 2006, Mumbai, India.

[7] M. Dobson et al, “The architecture & administration
of the ATLAS online computing system”, CHEP06
conference, 13-17 Feb. 2006, Mumbai, India.

[8] W. Mandelli et al, “ Strategies and Tools for ATLAS
Online Monitoring“, CHEP06 conference, 13-17 Feb.
2006, Mumbai, India.

[9] The ATLAS TDAQ Collaboration, “ATLAS High-
Level Trigger Data Acquisition and Controls
Technical Design Report”, CERN/LHCC/2003-022
2003.

