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Abstract 

We describe the base-line design and implementation of 
the Data Flow and High Level Trigger (HLT) part of the 
ATLAS Trigger and Data Acquisition (TDAQ) system. 
We then discuss improvements and generalization of the 
system design to allow the handling of events in parallel 
data streams and we present the possibility for event 
duplication, partial Event Building and data stripping. We 
then present tests on the deployment and integration of 
the TDAQ infrastructure and algorithms at the TDAQ 
“pre-series” cluster (~10% of full ATLAS TDAQ). 
Finally, we  tackle two HLT performance issues. 

INTRODUCTION 
The ATLAS experiment is designed to observe the 

outcome of collisions between protons of  7 TeV (i.e., at 
the highest energy to-date), provided by the Large Hadron 
Collider (LHC), which will start operating in 2007 at 
CERN. Bunches of 1011 protons will cross each other at 
40 MHz, providing about 25 proton-proton interactions 
per bunch crossing at the centre of ATLAS. Nevertheless, 

only a small fraction of this ~1 GHz event rate results in 
interesting physics processes. The TDAQ system of 
ATLAS has to select a manageable rate of such events for 
permanent storage and further analysis. ATLAS records 
about 1.5 MB of information for each event and we aim 
in keeping about O(200) events per second.  

We use a three-level trigger system to achieve this goal. 
An overview of the system is seen in Fig. 1. The first 
level trigger (LVL1) uses coarse calorimeter and muon 
detector information to reach a decision within 2.5 µs. 
The accept event rate is 75 kHz (upgradeable to 100 kHz). 
Upon an event accept from LVL1, the front-end 
electronics of the various sub-detectors pass the 
corresponding data to the Readout Buffers (ROBs), 
hosted in the Readout Subsystem (ROS) PCs. Event data 
remain there and are pulled by the second level trigger 
(LVL2) and then by the event builder nodes on demand. 

LVL2 receives a list of η−φ Regions of Interest (RoIs) 
identified by LVL1, from the Region of Interest Builder 
(RoIB). It then accesses the appropriate ROSs to pull and 
analyse data from the ROBs corresponding to the Regions 
of Interest; thus, the LVL2 uses only  ~2% of the full 
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event information to take a decision. At this level the 
event rate is reduced to ~3 kHz with an average latency of 
O(10) ms. Subsequently, the Event Builder (EB) nodes, 
also known as the “sub-farm input” (SFI) nodes, collect 
all data from the ROSs and, upon request, provide fully 
assembled events to the Event Filter (EF) farm, which is 
the third level trigger. The EF analyzes the entirety of 
each event data to achieve a further rate reduction to 
~200Hz, with a latency of  O(1) second per event. Finally, 
accepted events are sent for local TDAQ storage to the 
“sub-farm output” (SFO) nodes. 
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Figure 1. Basic components of the ATLAS TDAQ system. 
The data flow from the pipeline memories on the 
detector’s front-end electronics (top), towards local 
storage in the TDAQ system (SFOs, at the bottom), where 
they wait to be pulled to permanent mass storage. 

While LVL1 is based on custom hardware, the LVL2, 
Event Builder and EF are based on computer farms of 
O(3000) PCs which are interconnected via Gigabit 
Ethernet and run Linux. 

 The LVL2 and EF are collectively called High Level 
Trigger (HLT). We call “Data Flow” the part of the 
TDAQ system which is responsible for buffering the 
event data at the ROSs, feeding the HLT with the data it 
needs in order to reach a decision, and, eventually store 
the accepted events at the SFOs.  

Detailed description of the system can be found in [1], 
while extensive tests are described in [2] and [3]. This 
paper discusses functionality improvements on the Data 
Flow system and results obtained by running algorithms 
at LVL2 and the EF. We also discuss two tests which 
demonstrate the proper scaling and the matching of the 
performance requirements for the LVL2 system. 

DATAFLOW 
The dataflow components and their interaction with the 
HLT components which run the algorithms are shown in 
Fig. 2. The only custom-built hardware in this figure are 
the LVL1 trigger, the RoI Builder and the custom-built 
cards inside the ROS PCs [1]; all other components run 
on standard PCs as C++ applications developed in a 
common software framework which imposes a suite of 
common functionalities, e.g., application control, message 
passing, etc. The dataflow applications are multi-
threaded, since they must react to asynchronous ‘events’, 
such as run control commands, request for monitoring 
data and interaction with other components. 
 

L2PU

pROS

(EB node) 

RoIB

L2SV

ROS

LVL1 
Trigger

EFD/PT 
(EF node)

4: RoI Request

5: RoI Data

6: L2Result

7: Ack

16: Full Event

12: Data Request
15: Clear event

13: ROS Data

2: L1Result
3: L1Result

8: L2Decision

9: L2DescisionGroup

10: Ack

1: L1 Trigger streams

15: Clear event
13: ROS Data

DFM
11: Assignment

SFI

12: Data Request

14: End Of Event

SFO

17: Full Event

L2PU

pROS

(EB node) 

RoIB

L2SV

ROS

LVL1 
Trigger

EFD/PT 
(EF node)

4: RoI Request

5: RoI Data

6: L2Result

7: Ack

16: Full Event

12: Data Request
15: Clear event

13: ROS Data

2: L1Result
3: L1Result

8: L2Decision

9: L2DescisionGroup

10: Ack

1: L1 Trigger streams

15: Clear event
13: ROS Data

DFM
11: Assignment

SFI

12: Data Request

14: End Of Event

SFO

17: Full Event

 
Figure 2: Flow of data and messages relevant for the HLT. 
The LVL2 selection software runs in the L2PUs 
requesting selected data from the ROSs according to the 
RoI information provided by LVL1. The EF deals with 
full events, received  from the SFIs.   

 The trigger decisions are taken by algorithms running 
on the LVL2 Processing Units (L2PUs) and on the Event 
Filter’s Processing Tasks (PTs). The rest of the system 
deals with the flow of data; it serves them to the HLT, and 
eventually to storage, and deals with the event according 
to the HLT decision (e.g., it releases the data buffers upon 
a rejection by the HLT). 

The flow of data complies to a pull scenario: data are 
requested according to needs from subsequent clients. All 
applications involved in the LVL2 and Event Building 
communicate via message passing; data is one of the 
message types flowing from the requested ROSs to the 
appropriate client. Each EF node (EFD/PT in Fig.2 ) gets 
an already assembled event from an SFI and, if it accepts 
the event, it sends it to an SFO for local storage. 

Data Flow for LVL2 
After a LVL1 accept,  and while the data are buffered 

into the ROSs, the RoIB collects RoI information from 
the LVL1 calorimeter and muon triggers and from the 
LVL1 central trigger processor. This information is put in 
the “L1Result” and is forwarded to one of the LVL2 
Supervisors (L2SVs) in a round-robin fashion. Each 
L2SV serves a sub-farm of L2PUs and assigns one of 
them to process the event. 

The L2PU figures out the ROBs corresponding to the 
given RoI and requests data only from the involved 



ROSs. It also produces an accept/reject decision which is 
passed back to the L2SV which in turn forwards it to the 
Data Flow Manager (DFM). For accepted events, the 
L2PU puts the decision details (the “L2Result”) in the 
pseudo-ROS (pROS).   

If the decision is to reject the event, the DFM sends 
clear messages to the ROSs to free the involved buffer 
space. If the event is to be kept, the DFM assigns an SFI 
to assemble the event by requesting data from all 
participating ROSs and the pROS. Events are buffered in 
the SFI and made available to the EF upon request. 

Data Flow for the Event Filter 
The ATLAS EF system is organized as a set of 

independent processor farms (sub-farms), each connected 
to Sub-Farm Input (SFI) and Sub-Farm Output (SFO) 
elements. Unlike the LVL2 system which involves many 
components to deal with the dataflow and the trigger 
aspects of the work, each EF node hosts both 
functionalities. Dataflow functionalities are provided by 
the Event Filter Dataflow process (EFD), while the 
processing tasks  (PTs) are in charge of data processing 
and event selection.  

The EFD manages the communication with the SFI and 
SFO elements and makes the events available to the PTs 
via a memory mapped file, called the SharedHeap, which 
is used for local event storage and provides a safe event 
recovery mechanism in case of EFD crash. The PT cannot 
corrupt the event because it access the SharedHeap in 
read-only mode. PT problems are handled by the EFD 
which can identify PT crashes and dead locks. In both 
cases, the EFD, which owns the event, can assign it to 
another PT or send it directly to the SFO. 

Inside the PT, the event selection algorithms produce a 
filtering decision and a selection object (used to classify 
the event and guide the off-line analysis steps) which are 
communicated back to the EFD. The filtering decision 
steers the EFD dataflow and thus decides the event fate. 

Partial Event Building and Data Streams 
A full event, assembled by an SFI which has gathered 

all the fragments from the ROSs, is about 1.5 MB in 
ATLAS. There are cases though, where we may only need 
“partial” events which contain information from some of 
the ATLAS sub-detectors only.  

The TDAQ system resources can already be partitioned 
in mutually exclusive configurations. Thus, we can have 
parallel calibration runs, each dealing with part of the 
ATLAS detector and giving out partial events.  

During a physics run,  accepted events will be stored in 
four different data streams at the SFO level: physics, 
express physics (for fast reconstruction of very interesting 
events), calibration and debug. Further refinement is 
envisaged outside the TDAQ system. In order to optimize 
bandwidth, processing and storage resources in the 
TDAQ, we are adding partial event building functionality 
for events which are only good for calibration and/or 
debugging.  

For routing and (partial or full) event building 
purposes, we define a stream-type message to be used up 
to the event builder. Since the EF is handed already 
assembled events, the SFI will incorporate this 
information in the event. The trigger part of the system 
(LVL1 and HLT) is responsible for deciding on the stream 
tag(s) characterizing each event, whereas, as usual, the 
dataflow components have to act according to these tags. 

The LVL1 central trigger processor generates triggers 
for testing (debugging) and calibration purposes of 
various sub-detectors, mixed with the physics triggers.  
An event accepted by LVL1 with a non-physics trigger 
will not be processed by a L2PU and it will be built 
partially: the assigned SFI will pull data only from the 
ROSs corresponding to the sub-detector’s needs for 
calibration and/or testing. Physics-triggered events will be 
always analyzed by the LVL2. In case they satisfy a 
physics trigger, they will be always built fully, no matter 
if they are also good for calibration and/or debugging 
purposes. On the other hand, an event which is rejected 
for physics and is only found useful for calibration and/or 
debugging will be built partially, according to the info 
passed to the event builder by the stream-type message. 

An equivalent strategy is envisaged at the EF level. 
E.g., an event can be routed by the EFD directly to the 
SFO, without making it available to a processing task. In 
case an event is sent to a PT and it is accepted for physics, 
the full event will be sent to the SFO which will check the 
event’s stream tag(s) and store it locally to the appropriate 
data stream(s). Note that an event which is tagged as 
express physics as well, will be written to both the 
standard physics and the express physics streams. If an 
event is only good for calibration/debugging though, the 
EFD will strip the unnecessary information and send the 
partial event to the SFO for writing to the appropriate 
stream. All use cases and the details of the 
implementation are currently under investigation. 

Event Filter I/O  protocol 
The EFD manages the EF host’s connection with the 

data sources (SFIs) and destinations (SFOs) and 
implements the client part of the communication protocol, 
EFIO [4]. As part of the configuration information,  at 
start-up each EFD receives the host and port numbers of 
the SFI(s) and SFO(s) to which it must connect. The EFD 
then establishes one or more TCP connections to these 
SFI and SFO and in case of breaking connections, the 
EFD reestablishes them to ensure the proper flow of data.  

It is always the EFD which initiates the transactions: it 
requests events from the SFIs and after it receives all 
Ethernet fragments successfully, it acknowledges the 
event reception and is ready to initiate a new event 
request. The EFIO was designed with full events (~1.5 
MB) in mind. However, this hand-shaking mechanism is 
inefficient in case of very small event sizes (which could 
occur in the case of partially built events), because a large 
fraction of the event transaction time consists of the event 
request and acknowledgement messages from the EFD 
towards the SFI. For this reason, the latency overhead is 



compensated by having multiple connections between 
each EFD and the serving SFI(s). Thus, an SFI can wait 
for an acknowledgment message in one channel, while 
fully utilizing the offered network bandwidth to serve an 
event  to the same EFD via a parallel channel.  

The connection towards an SFO works essentially the 
same way, but the EFD initiates the event transaction by 
sending a space request to the SFO when it has an event 
to send. If space is available, the SFO requests an event 
from the EFD and, after receiving the event, it 
acknowledges its’ receipt. Here too, the latency overhead 
is compensated by having multiple connections between 
each EFD and SFO(s). 

HIGH LEVEL TRIGGER 
Both LVL2 and EF use online software for the control 

and data collection aspects, but the event processing and  
trigger algorithms are developed and tested in the ATLAS 
offline software environment (Athena). A common 
approach of the LVL2 Processing Unit and the EF 
Processing Task for the steering, seeding and sequential 
processing of the selection algorithms has been developed 
[5]. Through a sequence of “feature extraction” and 
“hypothesis testing” algorithms, the HLT tries to reject the 
event as soon as possible in order to minimise required 
CPU resources. By dealing only with RoI data at LVL2, 
we also minimise the required network resources. 

A thin layer of software, common to LVL2 and the EF, 
acts as an interface between the dataflow and selection 
software. This maps the online state machine used by the 
run control on the event loop manager of Athena; it 
provides access to the data in the format the algorithms 
need it (e.g., RoI data for LVL2); and, it maps online 
services on equivalent Athena services (e.g., initialization, 
data access, error reporting). The idea is to be able to 
“plug” easily the event selection algorithms developed 
offline into the online HLT framework.  

For the EF this task is easier, because the less stringent 
latency requirements (~1s, compared to ~10ms per event 
at LVL2), allow the straight-forward reuse of offline 
algorithms as configurable plug-ins. For LVL2 
algorithms, the relatively long idle time between requests 
and arrival of RoI data  (~10 to 20% of total, see next 
section) allow resource sharing in multiple-CPU nodes. 
An L2PU could then deal with multiple “worker threads”, 
each handling one event. Thus, algorithms which run at 
LVL2 should be designed to be thread-safe and efficient. 
For most algorithms this is not yet the case. The 
alternative (and our baseline solution) is to run multiple 
applications on each node at the cost of using more 
resources. 

Because online and offline software releases are 
independently managed using different tools and 
conventions, we install all the software needed by the 
HLT, together with setup scripts and data files, into an 
‘image’ for deployment on multi-node test beds [6]. 

Tests with algorithms at LVL2 
Recently we have  tested the ‘e/γ’ and ‘µ selection 

slices’ on the “pre-series” cluster, which is about 10% of 
the full TDAQ system installed at the ATLAS site [2,7]. 
A ‘selection slice’ involves running a series of feature 
extraction and hypothesis algorithms on RoIs identified 
by LVL1 in the muon spectrometer or the calorimeter. 
The algorithm sequence proceeds “outside-in”: E.g., if the 
RoI seeds in the muon spectrometer contain a good muon 
candidate, algorithms  requesting a matching track in the 
inner tracking detectors (Si pixel and strip detectors) are 
executed next.  

We preloaded eight ROSs with three different data files 
containing simulated muon, dijet and single electron data; 
the corresponding LVL1 RoI information was preloaded 
to one L2SV which triggered the system. The algorithms 
ran on a single L2PU which put the L2Result for selected 
events into a pROS. We note that the dijet sample is the 
most representative of LHC conditions, because in p-p 
collisions jets occur much more frequently than 
electroweak events. Each dijet event had, on average, 23 
minimum bias events  superimposed.  

The dataflow application running on the L2PU was 
instrumented to provide timing and data throughput 
information. Though neither the trigger menu nor the 
event mix were representative of the final ATLAS (such 
tests are planned for later in 2006), the runs give us 
already useful estimates of the required CPU power and 
bandwidth. Most importantly, valuable lessons were 
learned about the complex software integration procedure.   

The results of the measurements are summarised in 
Table 1, where we see the average values (per event) for 
the LVL2 decision latency, the processing time (i.e., the 
actual execution time for the chain of algorithms), the RoI 
data collection time, the size of RoI data requested, and 
the number of requests for RoI data. 

 
Table 1: Results of algorithm testing at LVL2 with 
simulated events preloaded on ROSs. 

 
The electron sample used was pre-selected and the 

complete chain of algorithms had to be ran, so results 
from this sample are not representative. From the muon 
and dijet samples though, we observe that i) 80-90% of 
the LVL2 latency is due to the algorithm processing, with 
the time spent to collect the RoI data from the ROSs 
being a small fraction of the total, and ii) the size of RoI 
data requested per event is indeed very small (recall that 
the full ATLAS event size is about 1.5 MB). By plotting 
the fraction of events processed as a function of the LVL2 

Data 
File 

LVL2 
Latency 

Process 
Time 

RoI 
Coll 
Time 

RoI 
Coll 
Size 

#Reqs 
/Event 

 (ms) (ms) (ms) (bytes)  
µ 3.4 2.8 0.6 287 1.3 
jet 3.6 3.3 0.3 2785 1.2 
e 17.2 15.5 1.7 15820 7.4 



latency, we also observe that the majority of events is 
processed early (e.g., within the first 2ms more than 80% 
of the dijet events in this sample are rejected). 

Tests with algorithms at EF 
A similar test was performed for the EF at the pre-

series machines. Simulated muon events were preloaded 
in an emulated SFI node which served a number of EF 
nodes, each running two Processing Tasks.  Fig. 3 shows 
the data throughput achieved as a function of the number 
of EF processing nodes, for two different algorithms. 

 

 
Figure 3: EF data throughput as function EF farm size in 
EF-only configuration with dummy (top) and realistic 
algorithms. The top two curves are obtained with an event 
size of 1 MB. The bottom curve was obtained with a 3 kB 
event size and shows ten times the measured throughput. 

The upper curve corresponds to the case of a “dummy” 
algorithm which randomly accepts or rejects events of 
1MB in size with a fixed latency. The performance scales 
linearly with the increasing number of EF nodes, till the 
limit of the Gbit connection between the SFI and the EF 
sub-farm is reached. The middle curve is obtained under 
the same conditions, but the muon selection algorithm 
(“TrigMoore”) was running in the PTs. The average 
processing time is found to be 150 ms per event and the 
system performance scales again linearly with the EF 
farm size, but 9 EF nodes were not enough to saturate the 
Gbit link from the SFI. 

The bottom curve is obtained with the same realistic 
muon selection algorithm, but for events with 3 kB in size 
and it actually shows ten times the measured throughput. 
The EFIO protocol used in these tests allowed only one 
TCP connection between the SFI and each EF node, 
which clearly limited the data rate for such a small event 
size. This problem could occur in real ATLAS running 
for partially built events from the SFI to the EFDs, and 
for stripped events from the EFDs to the SFOs. Allowing 
multiple EFD-SFI connections, as discussed in the 
relevant section above, cures this limitation. 

 Apart from physics selection algorithms, we have also 
run monitoring algorithms on the PTs. Actually, for more 
universality and flexibility, the PT I/O interface is 
generalized in such a way, that one can easily switch 

between the various event sources at configuration level: 
the standard TDAQ dataflow (EFD), the online event 
monitoring service or a data file on disk. Using the EF for 
online monitoring is going on as part of the activities of 
the Atlas TDAQ Monitoring Working Group [8]. 

Scaling tests at LVL2 
The capability of the RoI Builder and LVL2 

Supervisors to cope with the maximum LVL1 output rate 
is of fundamental importance to the TDAQ.  The scaling 
of the LVL2 system has been verified by preloading RoI 
information into the RoIB, which triggers the system and 
serves one or two L2SVs. Each L2SV receives the 
L1Result from the RoIB and distributes it to a sub-farm of 
one to 8 L2PUs.   

In the case of the setup with one L2SV, the sustained 
rate is ~35 kHz, constant to within 1.5% independent of 
the number of L2PUs. When two L2SVs are served by the 
RoIB, the sustained rate is ~70 kHz with an equal sharing 
of the load between the two L2PU sub-farms, each 
managed by one L2SV.  Since ATLAS will have a 
handful of L2SVs, we are confident that we can easily 
manage the max. 100 kHz LVL1 rate. 

Performance of processing nodes 
In the TDAQ Technical Design Report [9] the 

computing power for LVL2 was estimated to require the 
equivalent of ~500 dual processor CPUs at 8 GHz each, 
resulting in an average latency of 10 ms at  the maximum 
LVL1 design output rate of 100 kHz. This assumption 
was used to plan the budget but also the infrastructure, 
such as available space, power and cooling.  

The CPU clock speed is unlikely to exceed 4 GHz. 
However, multi-core CPUs would fulfil the computing 
power requirement of 16 GHz per box (e.g., 2 CPUs with 
2 cores each at 4 GHz in 2007), provided that the 
processing power of such machines shows scaling with 
the number of cores they contain. A preliminary 
measurement shows that this is indeed the case, as 
illustrated in Fig. 4.  
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Figure 4: Rate of processed events by LVL2 as a function 
of  the number of identical L2PU applications running on 
a dual-core dual-CPU LVL2 processing node.  

As a LVL2 processor node we used a rack-mounted 
processor from Super Micro containing two dual core 
AMD CPUs running at 1.8 GHz  with a total of 4 GB of 



memory. A similar configuration to the one described 
above  to test the algorithms at LVL2 was deployed, but 
we preloaded just four ROSs with simulated muon events. 
We observe that the rate of processed events scales 
linearly with the number of identical L2PU applications 
running on the node, till the resources (four cores in this 
case) are exhausted; additional L2PU applications do not 
increase the LVL2 rate any further. Therefore, we believe 
that the multi-core multi-CPU technology should be able 
to provide the necessary performance per PC, at the cost 
of higher memory needs and latency. Such problems 
could be alleviated if we were running applications in a 
shared memory model . 

CONCLUSIONS AND OUTLOOK 
We have presented the base-line design and 

implementation of the Data Flow and High Level Trigger 
part of the ATLAS Trigger and Data Acquisition system 
and discussed improvements of the system design to 
allow the handling of events in parallel data streams and 
the possibility for event duplication, partial Event 
Building and data stripping.  

The communication protocol between the Event Filter 
nodes and its’ data sources (event builder nodes) and data 
destinations (local storage nodes) has been improved to 
handle efficiently small-size events, like partially built 
events into the EF and stripped events shipped from the 
EF to local storage nodes. 

We have also exercised the integration of algorithms 
into the DAQ/HLT infrastructure by running algorithms 
seeded by the result of the previous trigger level. We 
observe that the RoI collection at LVL2 behaves as 
expected and that the data throughput scales linearly with 
EF farm size.  

The LVL2 system is shown to be able to cope with the 
maximum LVL1 rate possible (100 kHZ) and we have 
also provided evidence that the multi-core multi-CPU 
technology should be able to deliver the original 
landmark performance expected from PCs with “dual 
CPU, 8 GHz each” for the HLT nodes. 

Running algorithms at LVL2 and EF in a single chain is 
currently in progress at the pre-series cluster on the 
ATLAS site. We are also getting ready to test the system 
with realistic trigger menu and simulated events, and  also 
to use the HLT on real muon data from the upcoming 

cosmic run with part of the muon spectrometer and the 
calorimeter already installed in their final position. We are 
thus working on delivering an HLT system which shows 
the proper scaling and  matches the performance and 
robustness requirements of ATLAS towards the proto-
proton data-taking starting in 2007. 
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