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SUMMARY.

An experiment is proposed to test the validity of the
AQ =/\S rule by studying the time distribution of K° leptonic

decays.

If the presence of both £ ( A Q =AS) and g( A Q=-4s)
amplitudes is proved, the same distribution is also sensitive to

a CP violation in this type of decay.

The proposed experimental apparatus is discussed. The
obtainable rates of events and the level of background signals

are evaluated. It is found that

a) it is possible to collect a statistics of the order of 1000
event /day
b) call x = g/?. Then using a sample of 104 events the Re x can
be determined with an accuracy of + 2% and Im x with an accuracy
of + 4%.
The evaluation of the event rate is based on some assump
tions about the charge exchange K¥ - nucleus cross section. A

preliminary test measurement , with different target nuclei,would

give very useful information on the charge exchange differential
cross section and would allow us to check the validity of the abo-

ve assumptions.

For this purpose the spectrometer (magnet + spark cham-
o

o
;" K2 interference experi-

ment by the CERN dgroup, could be placed on the M4 beam, parasy-

bers) that is presently used for the K

ting the present experiments.

(o]
The cross section will be determined analyzing K1~927T
events. Scan and measurement could be done by Luciole, using the

reconstruction and analysis programs already existing.



1. Introduction

The decay modes

Ko T7 ™ {f 1% (£)
K- AT Y (£%)
are allowed by the £ Q = /A S rule, whereas
SR LR Y (g*)
K= T+ Y (9)

are forbidden by the same rule but allowed by all Q =-AS rule.
Let £, £*; g, g¥ be the form factors related to the correspon

ding amplitudes (as indicated above).

Given an initially pure K° beam, the decay rates for

IT ety and mhe~ v modes, expressed as a function of time, are

(6)

respectively
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where

3
Meo = Mo = 0.445 tf (7)
1 2

X

m =
Z1 and 2:2 are the lifetimes of the short and long lived K°

A value of x £ O implies a violation of AQ = A s

CP - conservation (in leptonic decays) implies & =

It follows that if AQ = AS rule is found to be violated (x # 0)

then a test of CP-invariance in leptonic decays is possible.

Present experimental knowledge on this question is sum

marizd in Table 1 and Fig. 1.

All experiments carried out so far are affected by large
errors, both statistical and systematic ones. In particular it is
worth noting that:

..3...
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"~ TABLE 1 (from Cabibbo's report at the Berke

ley Conference 1966)

Ref. Technique Re x Imx
Paris (1) Fr BC
PL 17,59 (65) K nak°p .og7e 1 YRR
-.13 =1
Padua (2) Fr BC
N.C 38,684(65) K —K°p .06+.25 +.43+.25
Columbia (3) HBC
o™ o

PR. 140,127(65) pp—>K K :07+.2 223+.2
Carnegie-Brookhaven D, BC
_— (4 +. 0 +.10 +.14
T2l ) K'n-X p .,18__"14 19_912
Pennsylvania (5) Sprk

- o  o© +.16

PPk A . 187_ 35 .0+.25

a) in experiments performed with a propane-freon bubble chamber
(1,2) the momentum of the X 's could not be determined directly.
Only the average value could be established, on a distribution

which was spread over an interval of~ + 30% of its average.

[o]
Thus the"life time" of each individual X observed

to decay was uncertain by the same amount.

Moreover, in a non negligible number of cases, an
unambiguous association of the decay products with the parent

interaction producing the K° was not possible.

b) On the other hand, experiments performed with hydrogen or
deuterium bubble chambers (3, 4), fast pions, muons and elec-

trons are in general undistinguishable.

Leptonic decays are selected on the basis of kinema-

tical analysis upon all 2 body decays of neutral k°'s. Even so,



the identity of the lepton (and so its charge) cannot be esta-

blished in general.

Finally, in either cases the collection of large sta-
tistics implies long and difficult work in the analysis of the

photograms.

To overcome these difficulties, an experiments 1is pro-
posed based on wire chambers and counters. As compared to bub-
ble chamber work, the use of these techniques would allow more
precise determination of the kinematics of the K’ decays and
yield results of much larger statistical weight in a considera

bly shorter time.

2. Description of the experiment.

The experimental apparatus, which is proposed to measu
re the temporal distribution of the K° leptonic decays, is desi
gned to obtain

a) a good momentum resolution ( <5%) of the primary x° beam
b) unambiguous identification of the decay mode

c) a large angular acceptance of the recording system to ensure

the collection of large statistics.

k°'s will be produced by "charge exchange" sc¢attering of " on
neutrons of complex nuclei. As an example, we have considered
a target, formed by Eive/1—cm thick, copper plates, separated-

by 1-cm thick scintillators (Fig. 5, inset 2).

The X°'s thus produced will be allowed to decay in a
(o]
space corresponding to 6 Ea_ ( 7, = lifetime of K1)° For lon-

ger times the initially pure k° beam has decayed into an almost

(o]

2
to the value of x. (see 1.1, 1.2 and Fig. 2). For K  momenta of

+ - . . -
pure K. beam and the rates R ;, R become practically insensitive

~ 2.5 Gev/b,6 T, corresponds to ~s 80 cm.

-5 -
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Charged decay products which have the appropriate geo-
metry, will traverse a spectrometer formed by a system of wire
chambers and a wide gap magnet, in which their momentum is de-

termined.

The final counter system (region D in Fig. 3), placed
after the spectrometer, divides the solid angle viewed by the
decay products, into 4 quadrants. Each quadrant is covered by
a scintillator followed by a gas Cerenkov, adjusted to record

electrons only.

To select K —TT+ e +V events it is required that two
particles enter two separate quadrants but one and only one trig-

gers the gas Cerenkov counter,

The spectrometer and the electron detector (Region C
and D in Fig. 3) have been built by the CERN-Aachen groups and

are been tested in the PBS .

The Turin group will build
1) the detectors designed to separate K from the rest of the
beam. This consists of two gas threshold Cerenkov counters

and three scintillators.

2) The copper target with the counter system designed to deter

mine the position of the x° production. -

3) All the electronics related to the above system of counters.
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3, The beam and the experimental apparatus

The experimental apparatus was designed to provide the
discrimination of Kaons against pions and protons background
(to take into account the possibility of an unseparated K+
beam, if a separated one will not be available).

The assumed beam features are:

K" mean momentum 2.5 GeV/c
AN
momentum spread —EE- =x 2%
angular spread + 006 rad
i : 5 _+
intensity 107 K /pulse

The beam will be focused on a rectangular spot ~ 0.5 x
1.5 cm2 in front of the target.

The apparatus is described in Fig. 3.

Part A - is required to determine the trajectories of the
incoming K and separate kaons from pions and protons,

The discrimination from the background of other parti-
cles will be obtained by the two hethy&ene filled %erenkov

v v
counters (C1 and C,. in Fig. 3 and 5). C1 is 40 cm long and

15 cm in diameter;zé2 equally long and 12 cm in diameter.

The first with be filied to 10 atms which corresponds to a
threshold velocity B = 0,993. Using a beam 2.5 GeV/c in mo
mentum, this counter will record only pions, 52 will be filled
to 35 gtms and will record both Kaons and pions of the same

momentum.
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Thus the individuation of the Kaons is clearly possible.

Counters S1 82 are scintillation counters used as beam

monitors; 83 is introduced to limit the size of the beam. It has
a rectangular hole of 0.5 x 1.5 cm2 and it anti-coincides stray

particles at large angles.

Part B - contains the hodoscope H1 and the target (see in_set

2 in Fig. 5) and the system of counters which are required to
determine the origin of the Koo The hodoscope is made of 3 scin
tillators, arranged as indicated in Fig. 5. Each scintillator
presents to the beam a total surface of D x . Ay = 0.5 x 0.5
cm2° Thus the intersection of a trajectory with the plane of
the hodoscope is determined with a precision of Ax = +0.25

A v =+ 0.25,

The target is formed by five 1 cm thick plates of cop-
per, separated by 1cm thick plastic scintillators. Copper was
selected as a medium giving comparatively high production of
Ko's and relatively low coulomb scattering on the primary K.
Signals from each scintillator are analyzed in amplitude, digi-

tized by a fast pulse encoder and stored in a buffer memory.

Thus the Z-coordinate (see Fig. 3) of the charge-ex-
changeﬁnteraction is determined to + 0.5 cm. The x and y coordi
nates are determined extrapolating the " direction, which will
be known to within + 6 mw at the entry into the target. Due
to multiple scattering in the copper target, the precision in
w and y decreases when z increases. For instance for a K+ which
interact on the last plate, the uncertainly in its direction is

~ 0.02 rad, corresponding to a maximum deplacement of 0.2 cm.

The spectrometer (Part C(W>) is formed by a wide gap

magnet. The gap presents a cross section 2 m. wide and 0.3+

(*) part C and part D, have been built by the CERN-Aachen group.
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the shaped pulses from the x associated Cerenkov counters;
the outputs of the coincidences are fed into a circuit performing
the logic function of an EXCLUSIVE OR. Let's call B its possible

output. On the other hand, signals from S are also sent

10 7 513
to two majority coincidences. One of these ( > 2) is inhibited
by the output of the other one ( > 3). The output of the first
VOTER, say A, is fed into a three-fold coincidence together with
pulses B and C. The latter comes from the "drilled" scintillator
89. The event ABC indicates a useful decay, and the corresponding
pulse is therefore sent to the trigger generator (see Fig. 6).

Finally, when a trigger occurred, the pulses from S and

A 107 513
from CS ) C6 are also stored in a pattern unit, thus enabling

the subsequent labelling of the trajectories seen by the wire
chambers.

4., Montecarlo estimates of the efficiency of the apparatus

In this section we shall briefly describe a Montecarlo
calculation performed in order to
a) optimize the geometrical efficiency of the apparatus
b) evaluate the experimental errors
c) subtract the background
d) calculate the event rates.

a) Production and efficiency

(
&)

+ .
A X' Dbeam of 2.5GeV/c(+ 2%),with an angular spread += + 6

mrad,inpinges on the copper target. For each K the z Eoordinate
of the interaction is chosen at random froma uniform distribution
over the 5 plates of the target. The other two coordinates,
x and y, are derived from the distribution of the trajectories
of the X' in the beam, taking into account the sprcad of the
incident beam as well as the Coulomb scattering in the copper
plates. The K°'s are produced both in "elastic”

K° + (n) —sK° + p T 4.1

as well as in inelastic reactions ( (n) indicates a bound neutron)

- 11 -



We consider elastic production at first, and we shall evaluate
later the inelastic one, which gives rise to a unwanted back-
ground.

The angular distribution of the K°'s is determined by
- the angular and momentum distribution of the K"
- the Fermi motion of the target nucleons. We have assumed a

distribution function

dN = oe p2 exp(—pz/pi) dp (poz 165 MeV/c)

- the cross section Ciﬁﬂﬂiilﬁfor reaction 4.1. We have taken
experimental results for charge exchange scattering of K+of
comparable energy on deuterium (Fig.8) and assumed that in the
C.M. system dOﬂd{Lwa did not debend critically on the energy.

The angular and momentum distributions of the K° thus produced
and recorded by the apparatus are given in Fig. 9+10. The
distribution of the recoil proton ranges, projected along the
beam direction, is shown in fig.11. The'proper" life time
distribution for the same events is given in fig.12.

The lepton charge is assigned on an "a priori" probabillity
defined by the assumed values for Re(x) and Im(x). The dynamics
of K°= T +e + ¥ decays are those predicted by a pure V-A
interaction, taking the form factor f+=const° |
The trajectories of the charged decay products are followed

through the magnetic field and their intersection with the wire
chambers and counters calculated. Thus the detection efficiency
is determined. Numerical results are summarized in Table 2.

As one can see from the quoted values, an efficiency of

at least 8% seems easy to obtain in our experiment.

- 12 -
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% losses
due to

The values in the last column are obtained

Table 2.

Efficiency of the apparatus

P+ (Gev/c) = 2.5

Particles missing 75.5
the magnet gap °

Particles missing
the wire chambers 4.5

TY or e missing

the Cer.detector 10.
Both charged parti-
cles going to the 5

same quadrant of
the terminal detec.

Efficiency 8.0
Magnet current (A) 200

Number of quadrants
in the electron 4
detector

3.0

63

11.7

5.5

11.5

200

2.5 2.5 2.5
80 75 53
1.5 5.2 5.8
10 9.8 20
5.1 5.8 8.5
3.4 4.2 12.7
300 200 300
2 2 2
B *
assuming cos 9K° .94



B. Reswlution in "time of flight" determination

Experimental errors

Let us consider the uncertainties on the measured
quantities by the reconstruction procedure due to
measurement errors.

Having "produced" a number of events, one can simulate
the reconstruction starting from the following experimental
information: pion and electron coordinates in wire chambers,
magnetic field intensity, average coordinates of the
production point in the target element, average K" direction
as defined by the hodoscopes.

A comparison between the "original" and the "reconstructed"
values ( Fig. 13-22) permits to evaluate the reconstruction
errrs., Experimental uncertaities taken into account are:
in the experation point coordinates : .5 cm along the beam
direction,due to the target thickness and h .25 cm in the
normal plane, defined by the hodoscope in front of the
target; in the K+ incident direction : .006 rad in the wire
chambers coordinate -~ .04 cm (1/3 the wire spacing).

As it appears from the Figs. 14 ( a,b,¢,d) the uncertainties

on the coordinates of the decay point are of the order of:
h .4 cm along the beam direction pratically constant along
the decay volume ( Fig. 14a); A -1 cm in the normal plane.
These values are of comparable magnitude(or less) than the
uncertainties at production point.

Let ué consider in the errors of the main guantities to
be determined, i.e. time of flight and Komomentumy necessary
to convertfthe decay path into proper time. At the K° decay
vertex a zero constrint fit gives two possible solutions for
K° momentum Pé and Pﬁ( Figs. 15a, 15b). Fig. 15a contains
"real" events; Fig.15b "reconstructed" events (The enlargement

of thdregions¢Y'{5 corresponds to the experimental spread).
S
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The following cases are possible:

CL) one of the solutions gives a value which is higher than
the maximum momentum §K° compatible with the angle of
emission. In fig.15a this case is represented by points
in region¢( .

ﬁ5) both solutions are acceptable, i.c. boths;Eko . These
points are represented in region}B + Smaller values
could be due to K°'s produced inelastically.

When this happens, there is no way to decide which is the
true solution, and one is forced to disregard this kind of
events (~40% of the total sample of recorded events). In

fact inelastic charge exchange can take place in any of

the following processes

K+ + (p) —> K*+ + P

+
—>1t + p + K°
+ *
K + (n) —>X ° +p
—= K% + [ °
*+4
—>K° + N
—>»K° + p +W°

-+
—>K° + n + 1T

which have a cross section compérable with the "elastic"
processes (4.1).

Of the above processes, the most important one is that
associated with N* and K* production. Due to the lack of
precise experimental knowledge a simple model has been used,
assuming that in the C.M. frame the angular distribution
of the N* is the same as that of the recoil nucleon in
elastic production processes and, moreover, that the N*

decay isotropically in teir rest system.

- 15 -



Proceeding as for the elastic events, one can calculate the
solutions one obtains from the "reconstruction'" of inelastic
ones. The scatter diagram is shown in fig.16. In about 25%
of the inelastic events produced by this channel (N*) the
analysis would determine the momentum in an unambigous way.

Similarly for K°'s from K* production. The acceptance, in
this case is reduced to ~10%. Similar percentage is obtained
for the contribution of all other non resonant channels.

In total, the sample of events accepted in the "reconstru
ction analysis" contains 40% of the elastic production and
~/40% of the inelastic.

In fig. 17 = 18 the difference AP, between the true K°
momentum for "elastic " events and the "experimental'" K°
momentum_gK reconstructed starting from decay parameters
and average production for region A, is plotted vs decay
position along the becam. Half width in the ﬁ\g distributions,
roughly indipendent of Z coordinate in the decay volume, 1is
about 130 MeV/c. This value, that takes into account all
the reconstruction errors, corresponds to ~5% of the K°
mean momentum, selected by our apparatus. The figs. 19-20,
corresponding to the preceding ones, represents AP' distri-
bution for all events, in the hypothesis of "elastically"
produced events. In this case "experimental'" K° momentum
is calculated only by production kinematics, ignoring all
decay parameters, except decay point. The resulting error
is ~s3% of the K° mean momentum. Finally it may be worth
noting that one could use this value for the K° momentum in
the case of complete separation between "elastic" and inelastic
events. This separation depends mainly on the two-body
production angular distribution and measuring errors.

With the assumed angular distribution and the above

- 16 -



momentum resolution only a fraction of "elastic” events
can be unambiguously reconstructed. These events will
constitute a reduced, but very precise sample for the fi
nal analysis.

L
!

. AN
In analogous way fig. 21 is the error ( ~

) distribu
tion of the XK° time of flight, in units of ££e K? mean
lifetime. AT is again defined as the difference  be-
tween real and reconstructed (from ka ) Valuesﬁﬁ=mﬁ({r@mé
The width of the distribution, ~s 7%, results indipendent
from the time of flight (fig. 29) so insuring a very good
time resolution in all the time interval ( ~/6 K? life-

times).
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C. Background.

We have to deal mainly with two different types of
background.

1) K° anelastically produced: wrong momentum may be assi
gned outside the accepted region. As discussed in the
preceding section, with appropriate K° momentum cutoff;
a negligible fraction of wrong momentum K° will survi
ve in the final sample.

2) Events simulating K% decay.

-¥»e"re”
The requirement of only one minimum ionizing track
in the electron detector will considerably reduce the
trigger due to electron pairs. In any case from the
final sample will be rejected all events giving a
missing mass less than 70 MeV if interpreted as elec
tron pairs. No background event will survive and the
loss of good events will be about 2% (fig. 2%).
- Ko W T triggering the gas Gerenkov counter.The

Gerenkov feed-through is ~J.5 1073,

A missing mass
cutoff (resolution =~ 3 MeV) will eliminate this source
of background, rejecting the events giving 2 missing
mass = 498 = 12 MeV (4 standard deviations) from K°
mass). The loss of K° events falling in this interval,
is € 10% (fig. 23).

- KO»T W ¥ with ¥ conversion in the electron de-

tector wall and scintillators. Due to the small amount

of traversed material (conversion probability ~<1%)

and to the small K° —» MM ¥ Dbranching ratio
( £.3%) (12), (13), we can conclude that this type

of background will be less 0.1%, even disregarding the

geometrical efficiency factor,

- 18 -
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- Ko = prua®

With similar considerations as before one can evalua

te to few %, the contribution to the background from

this decay. ThHis value has to be further reduced for

geometry requirements (one electron has to cross the

final Cerenkov in — 2009),

Decay and production fit (see, for instance, dis

cussion :of references 13?) may also help in rejecting

these events.

- N—p e v

This type of events might constitute a serious trouble

in our experiment, because it simulates events of the

forbidden type K°—+TT+e-V in the first lifetimes.

Nevertheless, the effect is negligible, because ﬁ?

are produced mainly via 'ty — K A0 (cross section

of the order of .5 mb) and

a)

b)

c)

the rejection efficiency against pions of the
Cerenkov counters on the beam is of the order of
99.9%;

the production angular distribution favours K in
the forward cone, controlled by the anticoinci -
dence:

ﬁwgdecay has a rate 107> less than the normal

mode,

- 19 -



D. Events rate.

To evaluate the counting rate of our apparatus,we have
to make some assumptions about the cross section for the

"elastic" charge exchange reaction
+
K (N) > Ko P

By using the cross section measured in deuterium, a
Fermi gas model for the Cu nucleus and taking into account
the Pauli principle the total charge exchange cross section
results ~ 12 mbarns/Cu nucleus. This figure corresponds to
an interaction mean free path in Cu of ~ 1000 cm.

With the following input parameters:
beam intensity 105 K /pulse
beam momentum 2.5 = .05 GeV/c
geometrical average detection efficiency .08
loss for ambiguous P, solutions and background cutoff

K

.05

target thickness Cu 5 cm

decay length 80 cm (.,009 KS lifetimes ~ 6 K? lifetimes)

KSB /Kg branching ratio .38

electron detector efficiency ~..9
the resulting rate is of the order of .06/pulse
accepted KS, produced by charge exchange K™ velastic" in-
teractions,

On the other hand, a fraction of K° produced by anelastic
processes will also trigger the system and will contribute
to the final sample (see discussion in section 4.C). The
requirements imposed on the trigger will eliminate events
with charged particles ( T, p) associated to the KO produc
tion or converted }¥'s from TI°'s, that reach the anticoinci

dence counter behind the target.

- 20 -



A rough calculation permits to evaluate the contribution,
in units of the "elastic" event rate:
from N¥ X° production ~ 30%
from K*¥ nucleon production ~ 10%

from non resonant T production ~ 10%

K+p cross section are taken from ref. 11. K'n ones are
assumed of the same order. Kinematical and geometrical cuts
are applied as for "elastic" events. Nuclear 1 interactions
have been taken into account. |

As already pointed out the above conclusions are stron-
gly dependent on the assumptions about charge-exchange cross
section on heavy nuclei.

We conclude that it will be necessary a preliminary mea
surement of the K= nucleus charge exchange cross section
for various types of nuclei.

We think this could be easily done using the spark cham
o ¢t decay.

]
zx‘Xz analysis has been performed in order to find  the

ber apparatus of the Cern group tuned on K

minimum AQ/ A S violation that is detectable in our ex-
periment with a reasonable statistics.

7(2 is. calculated by comparing the experimental time di-
stribution of the reconstructed events with "theoretical"
curves (efficiency and experimental errors folded in) cor-
responding to different values of the parameters Re X,Im X.

The uncertainty of these parameters, resulting from sta
tistics of 8500 Monte Carlo generated events, is + .02 for
Re X and + .04 for Im X.

As appears from fig. 1, this represents a substantial
improvement compared with the preceding results. Actually,
with an event rate of .06 events/pulse, it seems possible

to collect a statistics of 15.000 + 20.000 events, which is

- 21 -



. 2 .
twice the value we have considered in the X calculationg

in a period of ten days CPS.
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Appendix T

The beam Cerenkov counters.

—— - - ——— —. — — G— —— - w— - —— ——

The identification of the particles in the beam will
be performed by means of two threshold gas Cerenkov counters.
We have compared the performances of several gases, and even-
tually we have decided to £ill counters with ethylene. 1In order
to specify the mechanical characteristics of the counters, we
have calculated the mean number Ne of photoelectrons emitted by
the photocatode of a 56 UVP tube coupled with a fused quartz
window to the body of the Cerenkov detector (Fig. A1)

A -
N, =oma L (47,——5)-;—7.?((\) T(X) 5, (A) A

Ay

where = fine structure constant
L = useful length of the counter (cm)
n = refractive index of the gas
o
A, = 2000 A
1 o]
/\2 = 6000 A

.R(\)= fraction of the produced photons reaching
the quartz window

T(\)= transmission of the SiO2 window

(A) = photocatode quantum efficiency of the 56
UVP tube (see photomultiplier tubes - Phi
1ips Oct. 65)

S11

R (A ) has been assumed independent of A and equal to 0.5: this
value has been estimated to be conservative. In fact, for exam-

ple, the reflectivity of evaporated A is very near to 90%.

T(A ), on the other hand, has been caréfully (+ 0.5%)
measured and the results, just referring to the window we will

use, are quoted in Table 1.
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TABLE 1

A T% by g
225 nm 86.5 550 nm 93.2
250 nm 88.5 600 nm ‘ 93.1
275 nm ©89.5 650 nm 92.8
300 nm 90.2 700 nm 93.0
325 nm- 91.0 750 nm 93.4
350 nm 91.2 800 nm 94,0
275 nm 91.6 850 nm 94.0
400 nm 92.0 900 nm 94.3
450 nm 92.6 950 nm 94.3
500 nm 93.0 17000 nm 94.6

The light absorption in the gas itself has been disregarded.

Neglecting dispersion, and using the above data, we obtain

1
S — ——
N, 70 L (7 %)
n” 5
n is given by the Lorentz-Lorentz formula which (for n— 1)

reads

s
]
+
|

<4 b

=1 + 0,564§’ (for 02 H4)

where
R = molecular refraction
M = molecular weight

Q = density o©f the gas

? as a function of the pressure is tabulated in "Thermodynamic
function of gases" ed. by F.Din, London 1961. A temperature of
25°C has been assumed. The results of these calculation are sum

marized in Figs. A2, 3, 4.

Fig. A2 gives, as a function of ﬁ,, the threshold pres-

sure of 02 H4°

From Fig. A3 and A4 useful pairs of values of pressure

- 24 -



(p) and length (L) are deducible, with N as a parameters: Fig.

A3 refers to pions, and Fig.A4 to Kaomns.

In conclusion,the first Cerenkov, intended to detect
only pions, will have a useful length L = 40 cm, a internal dia

meter of 15 cm and a 02 H, pressure of about 9 atms.

4
The second counter, which has to detect both pions
and Kaons, will be 40 cm long and filled with about 35 atms of

ethylene. The mechanical details are visible in Fig. A1l.
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Appendix II

Lacking direct experimental information, we have cal-
culated the yield of K°'s from a XK' beam on copper using

the following geometrical model,

Te-36—ﬂ>

K*! K®

./

Let R be the nuclear radius of copper (R = 1.1x10
= 4,4X1O_13cm) and }) = 38 -3

=13,1/3 _

4rrr§f"': 1.8x10 cm ~. Tet also
Aw:be the mean free path of K in nuclear matter for charge
exchange scattering

K"+ (n) —> Ko + (P) ;

}f+> the mean free path for a K" to scatter outside the

0.
angular interval accepted in the experiment; and }\ ( )the

(o}
same quantity for K°'s. We assume )k(+) = )j ) = )L

A completely degenerate Fermi gas model has been as-
sumed for the copper nucleus, with P, = 250 MeV/c.

The effect of the Pauli principle has been calculated
by taking all events which would be accepted by our appara
tus and eliminating those for which the recoiling proton
could still be inside the Fermi momentum sphere.

Thus,busing the differential cross section for K —> KO
charge exchange, mentioned in the text, we have deduceq that
the Pauli principle reduces the total yield of events by
a factor

f = 0,72
D

The mean free path A. has been obtained from known cross

sections C&x(K%n —> X' n) and. C&,(K+p —> X'p) on free
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nucleons taking a weighted average in proportion to the num
ber of protons and neutrons in the nucleus (see G. Kallén,
Elementary particle Physics, ch. X). The effect of the Pauli
principle can be neglected in this case as only high momen
tum transfers contribute to 7\ . In any case, the neglect
of the Pauli principle will make the calculated A shorter
than its real value and thus produce an estimate which, if
anything, is pessimistic in view of the scope of the exper
iment.

To a first approximation, largely justified by the
smallness of the cross section for charge exchange,the prob

ability for a K+ entering the nucleus, to emerge as a K°©

. R

) Pee [ e s
fp)\5 r 1 /2R\Z 2R 2R
A_;gz ‘_1 ( Z L~7:~) AN ¥’l) 1

If only charge exchange processes were taking place()\—cO)
and no account was taken of the Pauli principle (fp = 1)
Pap =2
S
The quantity
f—-—E-—?— X f 11— ( 2?)+2R+4 e’ /'}
n P4 R3‘

can be seen as the number of'"equivalent free neutrons",

i.e. to how many free neutrons a copper nucleus corresponds
for the process which is considered.

Taking

- (0, fh)” = H x197 " em (ot 25GeV/)

then {' ._/i’lx%P—i"-.-_
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