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SOMMAIRE

Nous donnons la forme générale de la section efficace dif-
férentielle pour des réactions entre particules de spin arbitraire
ol un nombre limité J ma: de moments angulaires intervient dans une
des voies croisées, ce qui constitue une généralisation du cas ol
une seule particule (ou résonance) est échangée entre la particule
incidente et la cible. Nous montrons alors que la section efficace,
mis & part des facteurs cinématiques connus, est un polyndme de
degré maximum 2T oy €0 8y carré de l'énergie totale dans le sys-
tdme du centre de masse, dont les coefficients sont des fonctions
du transfert d'impulsion lorsque 1'état final ne renferme que deux
corps. Une généralisation est faite au cas ou 1'état final comporte
plus de deux corps. Nous montrons dans quelles situations le nombre
de fonctions de structure indépendantes peut se réduire, Ces consi-
dérations sont illustrées par divers cas particuliers: diffusion
Ol&othUG et inélastique dlectron-noyau, compte tenu de la possibi-
1ité d'dchenge de plusieurs photons; réactions induites par des
neutrinos et des antineutrinos dans 1'hypothise d'un courant lepto-
nique vectoriel et pseudovectorlel désintégration d'une particule
en trois corps; applications & la physique nucléaire et aux inter-
actions fortes des particules élémentaires. Dans ce dernier cas des
analyses quantitatives des résultats expérimentaux seront données

ultérieurcment.
*) Submitted to Nuovo Cimento
%*) A preliminary version of this work was given in the preprint

CERN/3568/TH/261/March 1962
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INTRODUCTION

It has been noticed that in various reactions the differential
cross—sectlon has a simple structure when the reaction is due to a

31ngle particle exchange. This is the case, for 1nstance, in electron-

2),3)

nucleus elastic 1) and inelastic scatterlng, the same happens in

neutrlno reactlons via intermediate bosons or in local Fermi interactions;

flnally, this 31mpllclty character of the cross-section appears also in

5)

lperlpheral collisions via one-pion exchange . Ve w1sh in this paper,

to unify and generalize these results and to exhibit the deep character

of their simplicity. Wetwant to throw away all unnecessary assumptions,
for instance neglect of the form factors and of the off=shell behaviour
of the propagator of the exchanged particle, narrow width (if the
particle exchanged is a resonance). It is clear that if the reaction
AB —> C+D is domlnated by the exchange of a particle of spin J
coupled to AC and BD the possible angular momenta, in the reactlon

A+C - B+D are :
T, J=l, J2, eeeeeees 0 (%)

As an example, a vector boson induces J=1 and O angular

momenta.

In the following we shall only assume‘that one‘or several states
of glven total angular momentum J and, possibly, of given parity w ,
otherwise unspe01fled are exchanged between the incident partlcle and
the target. It will turn out thet the simplicity of the cross-section
is essentialiy independent of the spins of the ingoing and outgoing‘

particles. However, some further restrictions occur in special cases.

Though one could construct the‘expression of the cross-section

directly, we prefer to use the crossed channel where Lorentz invariance
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2.

can be reduced to three-dimensional rotation invariance in the centre-of-
mass system. In this crossed channel, the above limitations restrict
the number of partial waves. Then one can use well—knowﬁ results on the
expansion of the cross-section in Legendre polynomials of the centre-of-
mass angle. The most convenient formalism seems to be the helicity
formalism introduced by Jacob and Wick 6). The maximum value of J,
determines the number of structure functions of the differential cross-
section, which is at mpst 2J+1l. . An analogous result is well known in

an ordinary partial wave expansion, where the maximum power of cos ¢ is

the minimum value of the three quantities 3

2J, 2Li' 2Lf

where Li and Lf are the initial and final angular momenta 7)’8). We

shall not use the restrictions due to Li and Lf because no centrifugal

barrier argument can be used in the present situation.

The unpolarized cross-section is a function of the square of the
momentum transfer t and of the square of c.m. energy s. In ordinary
partial wave expansions, apart from trivial kinematical factors, it is
expanded in powers of t with coefficients depending only on s. In the
present approach, we expand it in powers of s with coefficients depending
on t. We can disregard the question of convergence of sucﬁ an expansion
because we shall restrict ourselves to cases where a finite number of
exchanged angular momenta dominate the process. It is clear that very
high-energy phenomena cannot be described by such a limited expansion
without violating general asymptotic behaviour of cross-sections deduced

9)

from analyticity and unitarity arguments .

Sections II and III contain the mathematical formalism
necessary to establish the shape of the cross—-section; they can be
omitted by the reader oni-r interested in practical applications; further,
Section IIT deals with important particular cases where the number of

independent structure functions can be restricted. In Section IV we
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3.

‘study- the- electron-nucleus elastic and inelastic scattering; we
construct the general formule which replaces the Rosenbluth formula
when more than one photon is exchanged and we give a possible inter-
pretation of the deviations observed in electron-proton scattering.
~In Section V neutrino induced reactions are analysed; in particular
we show that three structure functions only are necessary to describe
unpolariéed cross—sections for produétidn of leptons of non—zero;mass
on arbitrary nuclei by neutfinos; the same three functions describe
also the antilepton production by antineutrinos. Section VI is an
extension to three-body decay processes in which one has information
on the relative angular momentum of two of the decay products.
Finally, in Section VII we consider applications to strongly inter-
acting particles leading to some kind of generalized peripherism; in
particular we suggest applications both to nuclear physics and to
elementary particle physics; quantitative analyses are postponed to

a later publication.
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II. GENERAL FORM OF THE DIFFERENTIAL CROSS-SECTION EXPANDED IN PARTIAL WAVES
IN THE CROSSED CHANNEL

We consider the reaction
A+B —» C+D (1)

and define the following scalar invariants

™~
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The crossed channel we shall consider, corresponds to the
reaction
A+C —> B+D (11)
so s is the square of the c.m. total energy for the crossed reaction.
We can write the differential cross-section for reaction (I) in the
following invariant form :
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where the invariant T matrix corresponds to fixed valies of the four

polarizations. At this point we notice that :

T e

polarizations

is a Lorentz invariant quantity depending only on s and t which can
be prolongated in some way from channel (I) to channel (Il)av We take
advantage of the invariance properties to evaluate (3) in the c.m.
system of reaction (II), and we use the Jacob-Wick helicity formalism 6)
to expand the Qorresponding T matrix elements in partial wave

. amplitudes.

__(J (4)

(T 2T 130, >D (M/;.q)

A

TR >

<4 §\/ l

where /\ is the helicity of the ith—particle, jl and EL the -

:relatlve 1n1t1al and final helicities defined by :

LI e
- do-0y

J - the total angular momentum and ﬁ, o{ the reaction angles in
channel (II). As a result of the properties of the Wigner D functions,

expression (3) takes the form

g:-.{’.\ :s 11» . . o \'/'fSlbb - P; [_’ > (5>
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or, equivalently,

" < = e T )
Aj? ( ZP Dt‘ :-7 4 ; ( 5’ " : /) <“/’(1 r\’ Fu s v ’A{ ( :\"‘»;3 >D) ‘

Al <\a 0) /*‘ ‘\'}\C

i

Formula (6) exhibits the expansion of the differential cross-

section in Legendre polynomials of the c.m. angle for the crossed

reaction. In terms of the scalar invariants s,t,u cos g is given by :

wi

Gs ¢ E(5-U )~ (Hi- ME)( M -y )
O/(f S - AL AN o r

with

2 | |
(6] b- (Hgattc] ) 4= —tsc\J b {Bgr i .ﬂlr ()]

o

Let us now assume that all angular momenta in the erossed
channel are smaller or equal to a given value Jmax' Formulae (5) and

(7) show that in this case the maximum value of f, is 2Jmax’ Using

4804/ p
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the linear dependence of cos “with respect to s for fixed t,

we get

AL

Theoren
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if the maximum angular momentum in the crossed channel. is

J s
max

2JInaX whose coefficicents are functions of t.

:EJT‘Z is a polynomial function of a of degree

Therefore the cross-section (2) may be written

Te

(10)



III. FURTHER RESTRICTIONS ON THE CROSS-SECTION

So far we have only considered one limitation of the co-
efficients A () in expansion (6), However, it may happen that
some of the coefficients vanish under certain general cifcumSténces.
To study this problem we first look at the symmetry properties of the

Clebsch-Gordan coefficients. We shall just make use of the relation

JA45, 4P

L B Ny O (fey = (1)
(_, - \.Lw{), N ) } Cijif.-_(f’ >>“ )

“"Tt 4 2

This relation is the only one which can be useful when one does not

want to look at the detailed mechanism of the reaction%

An immediate consequence of (11) is CJ T (+,0;0,0) =0 if
‘ 472 : :

Jl + J2 + /9 is odd and we get the following theorem :

Theorem 'B

if particles A and C have both spin O

N T
/—— VA /
AL T 0520
if Iy 4 T, £ is odd.

We get immediately the following corollary :

Corollary 'a'

if particles A and C (or B and D) have both spin zero
and if the values of the angular momenta in the crossed
channel are all even (or all odd), the coefficients Aﬁ,(t)

in expansion (6) vanish for odd values of Eﬂ.
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9.

This corollary ‘takesv an especially simple form, according to

Eq. (9), when M, =M, (or My = MD) :

B
i

AG l S T
ma _ L {e) (A-u

Of course, if a single angular momentum is exchanged, corollary

'a! can be immediately applied.

To get further information we have to use the symmetry properties

-of the reduced T matrix elements with respect to the exchange ) - ——) o

We now want to relate T matrix elements corresponding to
helicities ?A ,7‘ G and - %A " —]5. Then it is convenient to work
with eigenstates of parity which are linear combinations of helicity
states corresponding to opposite values of ;} . Following Jacob and

Wick 6), we write

o Tihede
{ %m ;%5 >+ w r/;} 95;‘_“{‘; ‘ ”>H)”>‘é>:) =

M~
1

with

? ‘»)\QIQA{)LU> = W l AA' >\C~5w>

where P is the parity operator, and YA ?(_3 the intrinsic parities

of A and C.

From relation (13), one gets :

A " vx..);+’g;~,"i'lgc_
{“X;w‘ WS = WY DY [, de WD (14)
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10,

After some algebraic manipulations, the coefficient

AJélJZ( A ’kD) given in equation (8) can be written as
b Ot T3 Tl (R,
Az =t 20 2 D (O (Vo Ama) X
t < pEw Z*cdﬁl\ Wtlox ('513» “ !
N JZ N \:x MJ;" ) \ (/L)
X </:>/\331T({f‘\’Am>'cfwz/<)f":’\o\i‘ k'uk o '>
-t = N\ 3'412/,.“ L S (15)

5 %‘]u). ¥ \C ( A% ’.AD VOO, (,u&) ‘

In the summation over heiicity states oc‘curriﬁg in Eq. (15),
it is convenient to associate the couple of values A‘A"\ 5, - >’A.'—>{6
corresponding to opposite values of ;) . Then, taking into account the

symmetry relations (11) and (14), one arrives at the following theorem :

Theorem 'C!

e 1T
the coefficient AL (A 3 A i W

(—1)2

10 u)2) vanishes if .‘

= W .
1Yo
We notice that Theorem 'B' is a particular case of Theorem 'C';
indeed if particles A and C have both spin zero, the product of

Jq+J
parities 601 Q)Z is equal to (—l) 1 2.

Theorem 'D' in its general form does not imply parity
conservation and does not bring any restriction on AJl 2(/\}-3-, ) D)'
The only inter‘est‘ing'physical situation is the one where in the
summation over (,l)l and (J - only one term is present; '_.;inbo_vt_her
words, a single value of (,()i corresponds to a given value of Ji.

We can then derive under this hypothesis the follbwing corollaries :
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11.

Corollary 'b'

if only one angular momentum J 'is'éichuhged éhd if the

parity of AC is defined *,Ae (t) =0 ir & is odd.

Such a result must be used with some care because in the case
of half integral spin exchange, we know that the parity of a virtual

particle is not defined without any sﬁpplementary assumption,

~ Corollary 'c!'

if several angular momenta J are exchanged and if the
parity of AC  ie unicgucly defined A E,<t) =0 if El

is odd.,

Before closing this section, it is worthwhile to notice that
the above results are still valid when one of the particles, say D,
is replaced by a group of particles of total energy W invtheir bwn
centre~of-mass system and the differentiél crosé-section cofféspoﬁding

to the detection of particle C only is given now by

q?@? t o
= - - \ &w/ L, .
ﬂmwz L-%‘C‘J‘"fmm, JM" Ty -ty ?2 (k (.,;e‘(. s )

(16)
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\PPLICATION TO HIGH-ENERGY ELECTRON SCATTERING

IV,

General considerations

a)
We wish to analyse, as an illustration of the general method

elastic scattering of electrons by nuclei, and, in particular electron-
profon scattering.
We first express the invariants s, t, and u in terms of

laboratory variables of the electron.

We define as E, E', and 6,

respectively, the initial energy,
final energy and scattering angle of the electron in the laboratory

system.
The cosine of the c.m. angle ¢ in channel (II) is given by

2MIELE") (17)

§ -
CQ"D %ﬁ == ° u =
- VD BV D
2

where M is the mass of the target nucleus, with q2 = -t = 4EE' sin g,
neglecting the electron mass. ‘
The scattering angle in the lab. system is related to
electron energies by
(18)

g\:lfD

/ nr eyt 1

a— ! . !/.[l L‘i 4 Zi ",.-( )

E+E :\\/!(;/———\—— + g C{
[ !

We can now write the differential cross-section in the

laboratory system, when the meximum angular momentum exchanged between

.
.

the electron and the nucleus is J
max

7 jqu
E VL "\'\I“ )
A ( {'F: = (19)

!::’l (‘5
i {7 (DU

@Q{qh " E Q L‘\
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13,

Using formula (18) we can re—express the sum in (19) in terms of ¢
and tgzvg"bhly. When only the even values of 4. contribute (for
instance, if the exchanged states have all the same parity), the cross-

section can be expanded in powers of ctn2 g :

d - w— . w f (\.:}Vm.; v i)

d"Q ¥ S S LS g RS P S TeR . -]\
o A Bt B e D e D Gictn 8 | (20)
ALl 4k L < ‘ ‘ i = -

where the lMott cross-section is given by :

Lalp

We see that formula (20) contains as a special case the
Rosenbluth formula. In the one-photon exchange aésumption only
J=1 (W= ~1 is present, because conservation of current at the

electron electromagnetic vertex suppresses a possible J = 0 sState.

However, it is not obvious in Eq. (20) that the Rosenbluth
formula reduces to a single term when the target has zero spin.
The origin of the simplification ig helicity~conservation for high-
4energy electrons by the interaction zlje' KviijéAE . Let us
consider the one-photon case, It follows that the value A =0
for the relative e+e— helicity is excluded. In the caée of a
zero spin target, there is only one reduced T amplitude, and
making use of the properties of the Clebsch—Gérdan coefficients,

one shows that Bo(qz) in kq. (20) vanishes as expected.

If we now consider positron-nucleus elastic scattering
instead of electron-nucleus elastic scattering, we see that the

- M T
reaction. in channel (II) is in both cases ete — N+ JMQ, and
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14.

the only change in the differential cross—section consists in
replacing ¢ by,‘ﬁ‘ -ﬁ, S0 that»the general form of cross—

section (19) becomes, in the laboratory systemn,

AT A ——~fw, £ ¢
‘7‘1 S Q - )1 SO fa L et (21)
- - N R Y ! y

irrespective of the number of photons exchanged.

b) Electron-proton scattiering

There is at present some intefest in the shape of the
electron-proton scattering cross-sections, since one might observe,
in future experiments for large momentum transfers, deviations from
the Rosenbluth formula. The discussion which follows does not
depend on the spin of the target and could apply as well to other
cases. In this paragraph we shall try to find the simplest possible
déigins of deviations from the Rosenbluth formula. The main source
of deviation from the Rosenbluth formula certainly coﬁes_from two-
photon exchange, and more precisely from the interference of the
two-pﬁotoﬁ‘exchangé amplitﬁde with the one—fhoton exchange amplitude.
4 first estimate of these effects has been made by Drell and

10) ‘

Fubini , taking into accounf the rescéttering due‘to the 3/2 3/2
pion—nﬁcleon resonance; fhe two-photon contribution they get is
almost purely imaginary end fherefofe the interference term in the
differential cross-secfidn'is very small (whereas the polarization
effects might'be‘large). Any excited sfate of the nucleon will give
the same type of results. So the last remaining source of

deviations may be due to an interaction of theltwo photons with the

nucleon through a strongly interacting particle or resonance.

4804/ p



15,

_ Inspection of formula (éO) shows clearly that an engular
momentum larger than the one for the two-photon state gives a fixed
q2 cross-sectlon which is more singular in the high-energy limit
than the Mott cross-sectlon whlch for BE--»=?, behaves like E2.

”Though 1n thls case,vdue to the zero mass of the photon, it seens
dlfflcult to make any rigorous statemazt on the asymptotlc
‘behav1our of the croso—sectlon, annlogous to the one glven by
Froigsart 9) for the non-zero mass case, we bellove that a too
singular behaviour is not phys1celly acceptable. So two cascs may
occur, either only J =0 and J = 1. angular momenta are bresent,

_or all the angular momentﬂ contrlbute in such a way that the »
81ngular1ty is cancelled after summatlon. In the latter case our
analysis breaks down; however, one could fry then to take into
account complex angular momenta. Here we shall restrict ourselves
to J g; 1. According to the values of parity and angular momentum,

we have four possible states :

J=20 two-photon state, which may be coupled to

~ 0
the nucleon through a ' 7.

J=20 two-photon state, which may be coupled to
“the nucleon through a two-pion s state; - - -
. which might be the.one observed by -

Abashian_et'al.‘ll>.

J=1 one~photon state. The‘tWo-photbﬁ'stafe

is forbidden bj’ehdrge conjugatien invariance.

4804/p



16,

J = l+ two-photon state. Notice that the selection
rule J # 1 for two real photons does not

*)

hold for two virtual photons .

Let us first add to the one-photon exchange the J = Oi
two-photon states, From Theorem 'C' we have no interference between
the states O and 1~ and between the states O and O . Ve
shall now show that the conservation of helicity of the electron in
the 17 amplitudé suppresses also the interference between O+ and

1~. TWe have already seen that in the one-photon amplitude the

‘relative helicity A of o'e” camnot be zero and therefore the

Clebsch-Gordan coefficient Clo(é ,0; X, =A) in the interference

term vanishes. Hence, the cross-section has the following form :

A ~ - . LE A 0 o
fﬂzit%?xfwm§+bﬁwj (22)
d L@ " C{ Dpa/bﬂ ‘

Notice that if this 1+, C = +1, state, let us say & ,
was interpreted as a resonance, it would not be too
difficult to explain that it was not yet observed because
the decays 50@26(, 50_-—;»_"\70 + % ,& = 2°W
are forbidden by gauge invariance, charge conjugation and
parity conservation. The most likely decay mode will be
& — 31 but this may be forbidden if the mass is too
low. Such a particle has been postulated by P. Dennery
and H., Primakoff in the study of form factors in weak

interactions (preprint 1962).
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where ¢ .

Bl: is the same coefficient as in the one-photon case;

B. 1is the sum of three non-interfering positive
contributions from the three states.
Eq. (22) simulates the Rosenbluth formula but in the present éasé
we do not have the restriction on B1 and BO due to the reality

of form factors :

o . a°
g < 2+ 2‘;\2 | (23)

Here the slope of d“Z/dGZO versus tanz.g is arbitrary,

but the two parameters entering in the linear func%ion must be
positive., It must be kept in mind, however, that the O+ and O
contributions are expected to be small because they are of order
C}{ z with respect to the one-photon contribution to the cross-

section,

We now take into account the 1+ amplitude, Because of
the interferences l+I— and l+O—, formula (22) is no longer valid and

we must take expansion (19), which, using (18), may be written as

A g (24)

46 &QQX:Q.Qay%f£+ F*C7M-iff}%ﬁﬂfiéuﬁf cha'
Though formula (24) looks different from (22), one can
approximate the bracket by a linear function of tanz.g in the rahge

2 2
tan '2"7 2 A deviation from linearity of d& /a QO will only
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appear at small angles, Since deviations to the Rosenbluth formula
are expected for large momentum transfer only, this necessitates a
very high initial energy. However, the existence of the C term
can be detected by taking into account the requirement that the

cross~section should be positive at all angles.
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V.

APPLICATION TO NEUTRINO INDUCED REACTIONS

-~ The structure of the cross-sections for lepton'production by
neutrinos has been extensively studied by various authors 4),12),15),14)
under the hypothesis of a point structure of the lepton current.
Nevertheless, the present approach can give a more elementary derivation
of the general formula, independent of the spin of the target,»and, as
will appear later, exhibits a simpler structure of the cross-sections
for production of unpolarized massive leptons. We replace the
hypothesis of point structure for lepton curfent with V-A intersction
by the slightly more general assumption that the only angular momentum

exchanged between the leptons and the target is J = 1,

We first consider the reactions

:‘J e '/’”;\ —2 ,‘_% e {‘:‘ . ( 25&)

TR AL b
)/ H 6 > A - — (25b)

where € 's stand for the electron or muon. A and B are two

- particles of arbitrary spin, such that charge and baryonic number

—

.+ are conserved in the reaction. We can think of VY and V as

unpolarized four-component neutrinos, the interaction taking care of
the fact that only two components play a role. In doing so we just

neglect a trivial statistical factor. According to Theorem 'A' of



20,

Section II., the differential cross-section for the production of

unpolarized Q'—

J Cush oy Py

bt
|

is given by :

I BT A N QP S me T
‘\;;r_ } Js‘i\&ih‘l" 'tz(j}‘}\O:JL/} -+ ’{,7(1)(“}3‘—,} !
A e 1

with the following definitions (Fig. 2) {

—+

-

1

Fig, 2
j /")"x |
JT e ( %{u+ i\f)“ )Z
:"/ N RV
= e P;J v 1 A )

g AT NN
e

k,, is the energy
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of the incident neutrino in the rest system of
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particle A, cosff is given by formula (9)

- o — (28)

(E-ml }v b= (U J U=t

We now compare reactions (25a) an d (25b). Assuming CP

"1nvar1ance, one immediately sees that the same structure functions

f f , T ‘deseribe the reaction 1nduced by antlneutrlnos, more

1’72’73
prec1sely, the bracket in Eq. (26), expressed with the Same 1nvur1ants

'(27) and the saﬁe angle (28), is unchanged The only alteration is

the repiadement of k ” by k;;, energy of the antlneutrlno in the
rest system of particle B,

In the special case MA,= MB =M (for instance single nucleon

target), the eéxpressions of s,u,t in terms of the laboratory energies

“of the neutrino and the lepton for the first reaction (25a), are

respectively formally identical to those of wu,s,t in terms ef the
laboratory energies of the antineutrino and the antilepton for the
second reaction (25b). Hence, the two cross-sections may be written

simultaneously as :

Chy

G4 B R P! — (29)

i Al 4+ A 3 { RV o 'r",. U A N TS
; o g,‘\ R RO (RS I* 34 [ ZH(E )N
f{ C\ ‘{y L
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with
k;: = laboratory energy of the (anti)-neutrino.
E y = leboratory emergy of the (anti)-lepton of mass m, .
q2 = 2M(k -E_).
v £

The structure functions g, are easily connected with the fi's.

Such a simple structure is not obvious on the formulae given

14)

by Lee and Yang in Ref. in the case m % 0, because the cross-
sections for production of polarized leptons contain five independent

structure functions, assuming only time reversal invariance. Our

~ result can also be’defived after tedious algebraic manipulations from

~ Lee and Yang's formulae, but does not use the | ATl = 1 rule

for the baryon current.

When the lepton is an electron, one can neglect its mass
m‘E and then the function x ased by Lee and Yang_is given by the

relation :

Cy o -
C\J\)ﬁi |

These considerations apply as well to inelastic reactions.

X o=

Then, if one observes only the outgoing lepton

= E(:’% hi( W) W + (1‘,1//%1 (50)

Ny v , 4 :
(\&@‘?}W, h; ~ _,
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where q2 and w2 cen be expressed in terms of the Jlepton laboratory
varigbles © and E ¢

p

2

~with Ei = k. + m?

. E In this latter case, there is no relation

between neutrino reactions and antineutrino reactions,



VI, APPLICATION TO THREE-BODY DECAYS
We consider decay processes of the type

A.————‘)l+2+3 .

If the relative angular momentum of particles 2 and 3 is known,
our formalism furnishes restrictions on the differential spectrum.
This happens, for instance, if particles 2 and 3 are emitted via an

intermediate particle. Then, defining the three scalar invariants

2
"'(PA"pi>

(0]
il

with

A
H.(D
1l
:>E
+
AV
B

-

Fig, 3

we get the spectrum in invariant form :

230%@'\/
¢ ‘2 -«" ) F‘r\ e
r\g%% - 2 Ap(a) Fellop) 1)
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25.

where Jmax is the maximum relative angular momentum of 2 and 3, and
cos¢ is the reaction angle in the c.m., system of particles 2 and 3
[see By, (9)/. 1In the rest frame of the decaying particle, the

general structure of the spectrum is given by

S e
/\M = ..4?»:' f:%e( =) E - ' (22)
YVEDVE, <o o <

This formula applies to P z decay, (neglecting Coulomb
interaction), where, due to the V-A interaction, Jmax =1, and
the G * and Q»F decays are described by the same 3 structure
functions; in this case El is the nucleon recoil energy and E2
the electron energy. Similarly, we find the structure of the

spectrum of

+ —
K,_9{1@+ PMA-}J* J; G,QL

In this particular case, assuming the V-A character of the lepton
current, we deduce JE 1, and there are only three structure

functlons BO’ Bl’ Bg' o
“are electrons, it is legitimate to neglect their mass; then since

"In the special case where the leptons

V-A interaction conserves helicity, the only non-vanishing reduced
matrix‘element'in the crossed channel is

<o o | T “J ‘ >ﬂy= - % .,ITA -4+ >

| =
so that only one structure function determines the decay spectrum.

We realize that the examples considered in this section

4), 15)

have been already treated by other methods , but it seemed

to us interesting to present them in a unified manner.

*) It is clear, in this approach, that a final state interaction
between the lepton and the neutrino will not change the result.
In the special case where the lepton mass is neglected this
‘follows, as was noticed by Professor Pais, from 2{5 invariance

but, in fact, it still holds if the lepton mass is not zero.
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SOME APPLICATIONS TO STRONG INTERACTIONS

» We shall not consider the case where a strong interaction
between two particles can be described by the exchahgé of a limited
number of angular momenta. This category of reactions contains,
as a particular case, the single pion exchange model which has been
extensively studied recently 5)’16)’17)’18). In the more general
model, we are considering here, we shall meet the same type of

difficulties as in the one-pion exchange model.

Consider a reaction
A+B~—= C+D.

Our model is valid if only the iﬁtermediate states in one of the
crossed channels, for instance A€ —> B4D, are important.

So the intermediate states, as well as the initial and final inter-
actions, in the direct channel, must be negligible and one of the

crossed channels must predominate with respect to the other one.

This was the case for the examples given in the previous sections,

where the magnitude of the various interactions permitted to retain

only one channel. If the above conditions are fulfiiled, the

-experimental test of the exchange of a maximﬁm éngular momentum J_

consists in studying the energy dependepce of the‘differential cross—
section for fixed value of the momentum transfer according to
formula (lO). The same information can be obtained for processes in
which D, for insﬁénde, consists of a group of particles, if one
observes iny pdrtiCle C; in the latter case one has to find, for

each experimental situation, argumeﬁts to clagsify the outgoing

' ?articlés.

Oné mey think of applying these considerations to nucleon- -

nucleon scattering. In some region of energy, one may hope that
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thié interaction is essentially due to exchange of single pions

and composite resonant system of pions. However, there exists

..a: complete. symmetry between the two crossed channels and. the

only possibility to extract valuable information from this type

of ana1y81s is to restrlct oneself to, a llmlted range of momentum

wtransfer to elln1natecmm of the two crossed channels. Thls will

be studied later in detail.

If instead of taking hydrogen as a target, we use a nucleus,
the symmetry between the two crossed channels 1s destroyed end, if
1ntermed1ate states in channel (I) are. not too 1mportant, we can

try to use our formnlismy to analyse (p,p ) experlments :
p+N — p'+ N

N!' may be the initial nucleus or an excited state of this nucleus.

In the |ATI| = l‘ *) case, one may have the exchange
of a pion (J=0) 19) or a (\ particle (J =17) between the
proton and the nucleus. If only one pion is exchanged, the cross-—
section is described by one strueture function, whilst if also the
(3 particle plays a role, we have only two structure functions
according to. corollary 'c', and because of tine ;eversal invariance
oftthe‘ (‘pp' vertex.

If N and N' have both isospin O, for instance in
p+-He4 A p+He4, “only (Zhﬂiv = 0 isg present and the single

pion and the {3 particle are forbidden. The poss1ble candidates

*)

This refers to the isospin of the nucleus.
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21)

produced in the forward direction, which seems to indicate a peripheral

According to experimental results ,‘the Y are generally
mechanism via a K or‘a K*, Analysis of the energy dependence of
this reaction, when sufficient statistics are available, should give an
indication on the spin of the exchanged particle 22). If two structure
functions are necessary, this will be an indication that the K* has
spin 1 and plays a role in the reaction., If only one structure

function is needed, either K* has zero spin or it plays no role in

the reaction,

We would like to add the following remark, If the events under
consideration are rare, instead of considering a fixed value for
momentur transfer t, one can add up all the events in a strip
tl.ét;<t2 and apply the above considerations to an averaged expansion

of type (10) in powers of g.



VIII, CONCLUDING REMARKS

The above analysis shows the importance of performing experiments
at various energies for fixed value of the momentum transfer, in order to
know if the crossed channel partial wave expansion is meaningful for
the process under consideration, and, if it is the case, to determine the
angular momenta exchanged in order to give a basis for further theoretical

3)

analysis. An example of this wethod has been previously given in Ref, .
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