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SOMMAIRE

Nous donnons la forme générale de la section efficace dif-
férentielle pour des réactions entre particules de spin arbitraire
ol un nombre limité J .. &> moments angulaires intervient dans une
des voies croisédes, ce qui constitue une généralisation du cas ol
une seule particule (ou résonance) est échangée entre la particule
incidente et la cible. Nous montrons que la section efficace est
alors déterminée par 2Jp,,+1 fonctions de structure, au plus, dé-
pendant uniquement du moment de transfert lorsque 1'état final ne
renferme que deux corps. Une généralisation est faite au cas ol
1'état final comporte plus de deux corps.Nous montrons dans quelles
situations le nombre de fonctions de structure indépendantes peut se
réduire, Ces considérations sont illustrées par divers cas particu-
liers: diffusion élastique et inélastique électron-noyau, compte
tenu de la possibilité d'échange de plusieurs photons; réactions
induites par des neutrinos et des antineutrinos dans 1'hypothese
d'un courant leptonique vectoriel et pseudovectoriel;désintégration
d'une particule en trois corps; applications & la physique nuclé-
aire et aux interactions fortes des particules élémentaires. Dans
ce dernier cas des analyses quantitatives des résultats expérimen-
taux seront données ultérieurement.
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INTRODUCTION

It has been noticed that in various reactions the differential cross-section
has a simple structure when the reaction is due to a single particle exchange.
This is the case, for instsance, in electron-nucleus elastic 1) and inelastic 2),3)
scattering; the same happens in neutrino reactions via intermediate bosons 4);
finally, this simplicity character of the cross-section appears also in peripheral
colligions via one-pion exchange 5>. We wish, in this paper, to unify and generalize
these results and to exhibit the deep character of their simplicity. We want to
throw away all unnecessary assumptions, for instance neglect of the form factors
and of the off-shell behaviour of the propagator of the exchanged particle,
narrow width (if the particle exchanged is a resonance). We shall only assume that
one or several states of given total angular momentum J and, possibly, of given
parity ¢J , otherwise unspecified, are exchanged between the incident
particle and the target. It will turn out that the simplicity of the cross-section
is essentially independent of the spins of the ingoing and outeoing particles.

However, some further restrictions occur in special cases.

Though one could construct the expression of the cross-section directly, we
prefer to use the crossed channel where Lorentz invariance can be reduced to three-
dimensional rotation invariance in the centre-of-mass system. In this crossed
channel, the above limitations restrict the number of partial waves. Then one can
use well-known results on the expansion of the cross-—section in Legendre polynomials
of the centre-of-mass angle. The most convenient formalism seems to be the helicity
formalism introduced by Jacob and Wick 6). The maximum value of J, determines
the number of structure functions of the differential cross-section, which is at
most 2J+1. An analogous result is well known in an ordinary partial wave

expansion, where the maximum power of cosd is the minimum value of the three

gquantities

27, 2L, 2L,

where Li and. Lf are the initial and final angular momenta 7)’8). We shall not
use the restrictions due to Li and Lf because no centrifugal barrier argument

can be used in the present situation.
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The unpolarized cross-section is a function of the square of the momentum
transfer t and of the square of c.m. energy s. In ordinary partial wave
expansions, apart from trivial kinematical factors, it is expanded in powers of
t with coefficients depending only on 8. In the present approach, we expand it
in powers of s with coefficients depending on t. We can disregard the question
of convergence of such an expansion because we shall restrict ourselves to cases
where a finite number of exchanged angular momenta dominate the process, It is
clear that very high-energy phenomena cannot be described by such a limited
expansion without violating general asymptotic behaviour of cross-sections deduced
from analyticity and unitarity arguments 9).

Sections II. and III. are devoted to general considerations on the shape of
the cross-section; further, Section III. deals with important particular cases
where the number of independent structure functions can be restricted. In
Section IV, we study the electron-nucleus elastic and inelastic scattering; we
construct the general formula which replaces the Rosenbluth formula when more
than one photon is exchsnged and we give a possible interpretation of the deviations
observed in electron-proton scattering. In Section V. neutrino induced reactions
are analysed; in particular we show that three structure functions only are
necessary to describe unpolarized cross-sections for production of leptons of
non-zero mass on arbitrary muclei by neutrinos; the same three functions describe
also the antilepton production by antineutrinos. Section VI. is an extension to
three-body decay processes in which one has information on the relative angular
momentum of two of the decay products. Finally, in Section VII. we consider
applications to strongly interacting particles leading to some kind of generalized
peripherism; din particular we suggest applications both to nuclear physics and
to elementary particle physics; quantitative analyses are postponed to a later

publication.



3:

IT. GLNERAL FORM OF THE DIFFRRENTIAL CRUSS—SECTION EXPANDED IN PARTTAL WAVES
IN THE CROSSED CHANNEL

We consider the reaction

L+ B — C+D (1)

and define the following scalar invariants

A= - {’}%_f_]bg)\z
£ - - (B+r ) (1)

U = —-(73‘5 7*—/_‘::‘ )Z

The crossed channel we shall consider, corresponds to the reaction

LA+T —> B+0D (11)

80 8 1is the square of the c.m. total energy for the direct reaction and t for

the crossed reaction. We can write the differential cross-section for reaction

(I) in the following invariant form :

de y ) =

= 1 — 2
dt_ [””(M,ﬁ‘M%)Z}’[,&—MA»MQ\@J <23"‘)(25‘-@+‘) — \ | \ (2)

f polarizations
? jahons
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where the invariant T matrix corresponds to fixed values of the four polarizations.
At this point we notice that :
< — 2 5
2. T 2

polarizations
is a Lorentz invariant quantity depending only on s and t which can be
prolongated in some way from channel (I) to channel (II). We take advantage of
the invariance properties to evaluate (3) in the c.m. system of reaction (II),

and we use the Jacob-Wick helicity formalism 6 to expand the corresponding T

matrix elements in partial wave amplitudes.

375 1 T2 DTS T (wgwy (@)

—— ; 1 e’

(AD 5 X3
3

’A{«t

where ;k i is the helicity of the ith-particle, A and (% the relative

initial and final helicities defined by :

G=AE—}D,

J the total angular momentum and @§, "« the reaction angles in channel (II). As
a result of the properties of the Wigner D functions, expression (3) takes the

form

ST S T } 2 -p T T
! o '\,/ _L /— N . - Ml - > ’ 9 ‘
- } " _2—' GRS S CASSICD <Pz Apt Teeyl I CFONERCIEN Y

A ft 3.0
A
{__':_:I'*J/_ (5)
N - , . Ly
% ) Con- Y /
4 : J‘Té( INEEY A> CJ‘Iz{x (';O';.{‘l'»‘(q) ie' C(’S ¢)>
Q:‘J“_Tzl
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or, equivalently,

X — 2 <~ —_ )
= £) ol )
Li l ! \ - /,’/}_= "f“\,@(- —‘E" e SZ(/ (6)
with
Ao S \<'+i(.l,‘c D orn ) }rr,:sz\‘ .
- Te - P» : \%K 3 202 I'Tz(\ '°»€"(“ . (rB} X (7)
e
/‘ N T 7 ‘ 5, !
~ ) - | = P /1 L Y he R .
e ( EN /_;_.'\_, Y CJJ\ 10;)) A>\A€5/§D;T(L"Mﬂ.ﬂ€>< D é(T(t)MA)C—>

(8)

Formula (6) exhibits the expansion of the differential cross-section in
Legendre polynomials of the c.m. angle for the crossed reaction. In terms of the

scalar invariants s,t,u cos¢ is given by :

v 4 [ 4 2., 2 (9)
Cos ¢ =d?;) té(é‘“)’(’/‘é“mc X /(,/;4/‘,102)
with

Z _
YN -/ 27 £ ; _/ A - 2
ot { =) b= (bt J N E (M4, )) b= 1,00 TP 1, )]
Let us now assume that all angular momenta in the crossed channel are
smaller or equal to a given value J . Formlae (5) and (7) show that in this
case the meximum value of £ 1is 2Jmax' Using the linear dependence of cos @

with respect to s for fixed t, we get :



Theorem 'A'

if the maximum angular momentum in the crossed channel is Jmax s
;§3F}2 is a polynomial function of a of degree 2J _  whose

coefficients are functions of t.

Therefore the cross-section (2) may be written

A G y rMax

\ P
N — L B s (10)
db (et a0 my) 7o

ITI. FURTHER RESTRICTIONS ON THE CROSS=SECTION

S0 far we have only considered one limitation of the coefficients AAL(t)

in expansion (6). However, it may happen that some of the coefficients vanish
under certain general circumstances. To study this problem we first look at the
symnetry properties of the Clebsch-Gordan coefficients. We shall just make use

of the relation

VS ; T+T40

JJ,”

2.

CJ‘L< ‘?10;);)) . (11)

This relation is the only one which can be useful when one does not want to look

at the detailed mechanism of the reaction.

An immediate consequence of (11) is C, ( ﬂ,O;0,0) =0 if J +J2+,£

2o 1

is odd and we get the following theorem 3
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Theorem 'B!

if pariicles A and C have both spin O

“Jl*j‘L) R
_A (a2 )2

P R D
if I 4Tt P is odd.

We get immediately the following corollary :

Corollary 'a!'

if particles A and C (or B and D) have both spin zero and if the
values of the angular momenta in the crossed channel are all even
(or all odd), the coefficients A ﬂ(t) in expansion (6) vanish for

odd values of .f .

This corollary takes an especially simple form, according to Eq. (9),

when MA = MC (or MB = MD) 2

J

8 20
2= - L > Cledn-u)y - (12)
db R (Het Y S-S T

Of course, if a single angular momentum is exchanged, corollary 'a' can

be immediately applied.

To get further information we have to use the symmetry properties of the
reduced T matrix elements with respect to the exchange jﬁ - -'X + This
transformation can be made in two ways, either by exchanging the helicities of
particles A “and C or by reversing both helicities. The first operation can
be applied if A and C are identical particles without any new assumption.

In this case we obtain the following theorem :

Theorem 'C'

if A and T are identical, or if D and B are identical, the

coefficient A’f(t) vanishes for A odd. The cross-section is given
by expression (12).

3568



This theorem is actually trivial because odd powers of cos¢' should

disappear from the expression of the cross-section, owing to the symmetry
¢—érn"’¢o

Combining Theorems 'B' and 'C', we get :

Corollary 'b!

fal

if particles A and C have both spin zero and if A and T or B and

D are identical, the interference between an even angular momentum and

an odd angular momentum vanishes.

We now want to relate T matrix elements corresponding to helicities
p A}U and - ) A -}\U. Then it is convenient to work with eigenstates of parity
which are linear combinations of helicity states corresponding to opposite values

of P . Following Jacob and Wick 6), we write

T+ 5,4

[ ° D :L* Y e
LAy FiW Vi 2 e > Wy 9. ‘.‘AA"AE>]

(13)

b

with

T A e> 2w e

[ 3]

where P 1is the parity operator, and ?Ix PU’ the intrinsic parities of A and

C.

From relation (13), one gets .

IS4+ 5,

)’),A,“AE}UJ> = Lo?ﬂxggﬁ') | ‘AA);\C_. ;W (14)

3568
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JaJ
After some algebraic manipulations, the coefficient AQj Q(AF’AD) given

in equation (8) can be written as

7,7,

'A‘z (s ERE %{Z Z' _/ir(u))CT (19,0-/))...;)
(=11 (;;_” 9 \-1' 3 ) .
x < x-é ,;\D( T(V;) i TA/_‘_;,AC. ,(Lal‘} < )%AD \T(i:) \ )A,)C_ }(oz > |
15
L3 AT o)
2 w”w&" 0 ERD R Z

In the summation over helicity states occurring in Eq. (15), it is convenient
to associate the couple of values 7‘ A}U’ =) A —)'C’ corresponding to opposite
values of A . Then, taking into account the symmetry relations (11) and (14),

one arrives at the following theorem :

Theorem 'D!

4

vanishes if (—1) = -0 0,

12

Jqd
. 1200 VLo
‘ =, 2
the coefficient A . ( 55 &, u)z)

We notice that Theorem 'B' is a particular case of Theorem 'D'; indeed
if particles A and C have both spin zero, the product of parities (01 &)2 is
equal to (-1 )J1+J2.

, Theorem 'D' in its general form does not imply parity conservation and
does not bring any restriction on AJQ JZ(;\E.RD). The only interesting physical
situation is the one where in the summation over (J ] and (U 5 only one term
is present; in other words, a single value of {2 i corresponds to a given

value of Ji. We can then derive under this hypothesis the following corollaries :

Corollary 'c'

if only one angular momentum J is exchanged and if the parity of AC

is defined Af(t) =0 if A 1is odd.

3568



10.

This result is valid in particular if the system AC is connected through
a strong or electromagnetic interaction to a state of given angular momentum and
parity. In particular if J is half-integer (i.e., sA+sC half~integer), the
maximum value of /8 is 2J-1 instead of 27J.

Corollary 'd!

if several angular momenta J are exchanged snd if the parity of AC

is uniquely defined
A (3)=0 ir L is odd.

Before closirg this section, it is worthwhile to notice that the above
results are still valid when one of the particles, say D, is replaced by a
group of particles of total energy W in their own centre-of-mass system and the
differential cross-section corresponding to the detection of particle C only is
given now by

2 —1
A <

- T - 2 Ak w“*)?(ca ) (16)
db dW* [ 5-(Mem )y et 7] g (EM) S es )

IV, APPLICATION TO HIGH-ENBRGY ELECTRON SCATTERING

a) Jeneral considerations

We wish to analyse, as an illustration of the general method, elastic

scattering of electrons by muclei, and, in particular electron-proton scattering.

We first express the invariants s, t, and u in terms of laboratory

variables of the electron.

3568
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We define as B, &', and @, respectively, the initial energy, final

energy and scattering angle of the electron in the laboratory system.

The cosine of tie c.m. angle ¢ in channel (II) is given by

2 A= U 2 M
Covp o Azt o 2NCERED (17)
\/r»(c 40D \ ;\ <3§ +4M7)
L _ \ . 2 ., 20
where M is the mass of the target nucleus, with g = -t = 4EE' sin 5 1

neglecting the electron mass.

The scattering angle in the lab. system is related to electron energies by

/, 2 b A p)
TR = B (O\‘U—/QM‘) LAt "G (18)
=R s \/ & LM + 9 Che P

We can now write the differential cross-section in the laboratory system,

when the meximum angular momentum exchanged between the electron and the nucleus

is J H
max
pﬁjf"/ax
’)lg I"’E" \2’ N \ 2 — - e
o KE Vo Ai(c; y(E+E)™ - (19)
-0

o
Using formula (18) we can re-express the sum in (19) in terms of q2 and. tgz 5

only. When only the even values of il contribute (for instance, if the exchanged

states have all the same parity), tiue cross-section can be expanded in powers of

ctn2 g :

4@ ] 'Y

i - dco [?\ (5\2) t&h +’6 (C‘)+ D(.__‘)Ck. ﬂl u

o 3 S iy (20)
+ B (eycta " g j
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where the Mott cross-section is given by :

‘2 F
4B, el X cos 7_
a2 = 4 ‘Z/Suz b
,'QQ{*) 2—

We see that formula (20) contains as a special case the Rosenbluth formula,
corresponding to one-photon exchange (JmaX = 1). However, it is not obvious in
Eq. (20) that the Rosenbluth formula reduces to a single term when the target
has zero spin. The origin of the simplification is helicity conservation for
high-energy electrons by the interaction QZFG, 4;€L2A€G. Let us consider the
one-photon case., It follows that the value A =0 for the relative e+e-
helicity is excluded. In the case of a zero spin target, there is only one
reduced T amplitude, and making use of the properties of the Clebsch-Gordan

2
coefficients, one shows that Bo(q ) in Eq. (20) vanishes as expected.

If we now consider positron-nucleus elastic scattering instead of electron-
nucleus elastic scattgfing, we see that the reaction in channel (II) is in both
cases e++e_ —»,/VZFJVZ and the only change in the differential cross-~section
consists in replacing ¢ by T -ﬁ, so that the general form of cross-section (19)

becomes, in the laboratory system,

] ‘p: 5
4% e 12 . :
4Q,, ﬁ:;’ - LJ) A (qr) (E+E")
My p:() (21)

irrespective of the number of photons exchanged.

b) Electron-proton scattering

There is at present some interest in the shape of the electron-proton
scattering cross-sections, since preliminary results cast some doubt on the
validity, for large momentum transfers (q2;2:30 fermi_z), of the Rosenbluth

formula. The discussion which follows does not depend on the spin of the target
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and could apply as well to other cases. In this paragraph we shall try to firmd
the simplest possible origins of deviations from the Rosenbluth formula and to fit
the present data as they are, disregarding the possibility of an experimental
error. The main source of deviation from the Rosenbluth formula certainly comes
from two-photon exchange, and more precisely from the interference of the two-
photon exchange amplitude with the one-photon exchange amplitude. A first

0)

account the rescattering due to the 3/2 3/2 pion-nucleon resonance; the two-

estimate of these effects has been made by Drell and Fubini ! , taking into
photon contribution they get is almost purely imaginary and therefore the inter-
ference term in the differential cross-section is very small (whereas the
polarization effects might be large). Any excited state of the nucleon will
give the same type of results. So the last remaining source of deviations may
be due to an interaction of the two photons with the nucleon through a strongly

interacting particle or resonance.

Inspection of formula (20) shows clearly that an angular momentum larger
than the one for the two-photon state gives a fixed q2 cross-section which is
more singular than the Mott cross-section, which for tg2 g - 0, i.,e., for
E = o, behaves like EZ. Though, in this case, due to the zero mass of the
photon, it seems difficult to make any rigorous statement on the asymptotic
behaviour of the cross-section, analogous to the one given by Froissart 9) for the
non-~-zero mass case, we believe that a too singular behaviour is not physically
acceptable. So two cases may occur, either only J =0 and J =1 angular
momenta are present, or all the angular momenta contribute in such a way that the
singularity is cancelled after summation. In the latter case our analysis breaks
down; however, one could try then to take into account complex angular momenta.
Here we shall restrict ourselves to J £ 1. According to the values of parity

and angular momentum, we have four possible states :
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J=20 two-photon state, which may be coupled to the nucleon

through a T o.

J=0 two-photon state, which may be coupled to the nucleon
through a two-pion s state, which might be the one
observed hy Abashian et al. 11).

J =1 one-photon state. The two-photon state is forbidden

by charge conjugation invariance.,

J =1 two-photon state. Notice that the selection rule
J #1 for two real photons does not hold for two

*)

virtual photons ’.

Let us first add to the one-photon exchange the J = Oi two-photon
states. From Theorem 'D' we have no interference between the states O and
17 and between the states O and 0. We shall now show that the conservation
of helicity of the electron in the 17 amplitude suppresses also the interference
between O+ and 1 . We have already seen that in the one-photon amplitude the
relative helicity A of e+e- cannot be zero and therefore the Clebsch-Gordan
coefficient C1O( ﬂ,o; A,-:X) in the interference term vanishes. Hence, the

cross—-section has the following form

dc (&gk‘) ¥ } ) 5 4
= 222 Bebedd + B, Lﬂz)} (22)
d Q&‘;-{; O\ Q ol -

Notice that if this 1+, ¢ =+1, state, let us say & , was inter-
preted as a resonance, it would not be too difficult to explain that

it was not yet observed because the decays 50 - 2Y ’ ?:'_o - (\To+ 6 y
& = 27% are forbidden by gauge invariance, charge conjugation and
parity conservation. The most likely decay mode will be £ = 3T but
this may be forbidden if the mass is too low.

3568
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where :
B1 is the same coefficient as in the one-photon case;

B is the sum ~f three non-interfering positive
contributions from the three states.

kg (22) simulates the Rosenbluth formula but in the present case we do not have

the restriction on B1 and BO due to the reality of form factors :

De 2
AP JI | (23)
-7 2
51 2 M
Here the slope of d.G/d GB versus tanZ g is arbitrary, but the two
parameters entering in the linear function must be positive. It must be kept
+

in mind, however, that the O and O contributions are expected to be small

s

because they are of order (3(2 with respect to the one-photon contribution to

the cross-section.

We now take into account the 1+ amplitude. Because of the interferences
117 and 1707, formula (22) is no longer valid and we must take expansion (19),

which, using (18), may be written as

- g {:; 5 r“ ; 2 — A - )

(’i— = (Lf \ E):)(p‘v) {",;,-,,‘9;_(, @( (..“) . C(J\Z _)J‘-Qn é: \/ 4+ é 2 CJL o "30/2- \ (24-)
. ' b

dQM 4Q, . 4 -

Though formula (24) loocks different from (22), one can approximate the
bracket by a linear function of tan2 g in the range tan2 g > 2. A deviation
from linearity of dl;/d 66 will only appear at small angles. Since deviations
to the Rosenbluth formula are expected for large momentum transfer only, this
necessitates a very high initial energy. However, the existence of the C term
can be detected by teking into account the requirement that the cross-section

should be positive at all angles.

3568
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™
a5 d
: s 2 - -2
L @/ W=
X

[ 2 4 6 5 10 tan2 o
2
Fig, 2
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We now apply this analysis to the experimental results of the Cornell

-2 12). For smaller values of q2 there is no obvious

group at q2 = 37 fermi
deviation from the ordinary Rosenbluth formula, On Fig. 2 we see that though
a linear fit of di%/dczo is possible it must be rejected because the cross-—
section would become negative at small angles, and we tried to estimate the
required values of the coefficient of formula (24). The interference term C
has to be negative and larger in absolute magnitude than a certain lower limit;

taking for C this value, we get :

B1 = 0.42 BO = 1.94 C = -1.80

However, one could increase the absolute magnitude of C without altering the

agreement with experiment.

V. APPLICATION TO NEUTRINO INDUCED REACTIONS

The structure of the cross-sections for lepton production by neutrinos has
4),13),14)

been extensively studied by various authors under the hypothesis of a
point structure of the lepton current. Nevertheless, the present approach can
give a more elementary derivation of the general formula, independent of the spin
of the target, and, as will appear later, exhibits a simpler structure of the
cross—-sections for production of unpolarized massive leptons. We replace the
hypothesis of point structure for lepton current with V-A interaction by the
slightly more general assumption that the only angular momentum exchanged between

the leptons and the target is J = 1.

We first consider the reactions

U+ A 5 B4 D7 (252)

—_ , ¥
JiB s A+ L
3568
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where Q 's stand for the electron or muon. A and B are two particles of
arbitrary spin, such that charge and baryonic number are conserved in the reaction.
We cen think of 2 and Y as unpolarized four-component neutrinos, the
interaction taking care of the fact that only two components play a role. In doing
so we just neglect a trivial statistical factor. According to Theorem 'A' of

of Section II., the differential cross-—section for the production of unpolarized

/8— is given by :

de (iA»wal) A
o\a"‘ ) Rl

| |

’&(qr)ﬁ» {l(qz) Cmﬁ+ﬂ<q2)cg§¢] (26)

with the following definitions (Fig. 3) :

/S - _—(‘YD"’. P/—‘; )Z

U= —¢

b /?ﬁ’?&y

(27)

o
1l

. A 2
—“<T;*'T%53 = =G



3568

19.

kv is the energy of the incident neutrino in the rest system of particle A.

cos¢ is given by formula (9)

Coowp . Els-w) = mZ(N2-M3) |
(=) [ g [ (]

We now compare reactions (25&) and (25b). Assuming CP invariance, one
immediately sees that the same structure functions f 1,f 2,f3 describe the reaction
induced by antineutrinos; more precisely, the bracket in Eq. (26), expressed with
the same invariants (27) and the same angle (28), is unchanged. The only alteration
is the replacement of k;, by k; , energv of the antineutrino in the rest system

of particle B.

In the special case MA = 1‘% =M (for instance single nucleon target), the
expressions of s,u,t in terms of the laboratory energies of the neutrino and
the lepton for the first reaction (25a), are respectively formally identical to
those of Uys8,t in terms of the laboratory energies of the antineutrino and the
antilepton for the second reaction (25b). Hence, the two cross-sections may be

written simultaneously as:

dg<w+9—7?§+9')

g+ >ast (29) -

"‘ P . T, .
z - ( ) ¥ 3 ZM I~ ‘_mi N . Al
‘5‘0(1 {?: [j* 9 22(9 )1_ (ky'} ) eJ + 33@ )[4#t(hy+ £, ) -t )J

with :
kz) = laboratory energy of the (anti)-neutrino.
Ey = laboratory energy of the (anti)-lepton of mass mK .
2
= 2Mk -E ).
q (x, . )
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The structure functions gi are easily connected with the fi's.

Such a simple structure is not obvious on the formulae given by Lee and

Yang in Ref. 14)

in the case m(E # O, because the cross-sections for production
of polarized leptons contain five independent structure functions, assuming only
time reversal invariance. Our result can also be derived after tedious algebraic
manipulations from Lee and Yang's formulae, but does not use the ‘Aﬁ£f =1

rule for the baryon current.
When the lepton is an electron, one can neglect its mass m ¢ and then
the function x used by Lee and Yang is given by the relation
C-ab}é—’i
Cbaﬁ + 4

These considerations apply as well to inelastic reactions. Then, if one

X

observes only the outgoing lepton

Lj?g - 2 ®) -
— = -iz § ,!;‘,1 (q"_,Wz) + i?u %(q’; W'+ f?b !1 ,}<"{2,W‘)\ (30)
dqz aws KoL ' -

where q2 and w2 can be expressed in terms of the lepton laboratory variables
e and & :
4

2 r I > !

Yo

M (k,-Ep) = W -Mi +q?

2 2 2
ith E, =k +
wi ¢ ¢ mi,

reactions and antineutrino reactions.

« In this latter case, there is no relation between neutrino

3568
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VI. APPLICATION TO THREE-BODY DECAYS

We consider decay processes of the type
A—> 1+2+3 .

If the relative anguler momentum of particles 2 and 3 is known, our
formalism furnishes restrictions on the differential spectrum. This happens,
for instance, if particles 2 and 3 are emitted via an intermediate particle.
Then, defining the three scalar invariants

)2

s, —(PA—Pi

with

< 2 2
/5T o)W

— = 2. A0 P (Gsg) (51
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where Jmax is the maximum relative angular momentum of 2 and 3, and cos¢ is
the react.ca angle in the c.m. system of particles 2 and 3 Z;ée Bq. (917. In the
rest frame of the decaying particle, the general structure of the spectrum is
given by
d'l ‘\l 'Z*TMQX Q

——— ) BUE)E, (52)
dE4c!E o

1 2

.‘.
This formula applies to [3 ~ decay, (neglecting Coulomb interaction),

where, due to the V-A interaction, Jma =1, and the CS+ and <3_ decays

X
are described by the same 3 structure functions; in this case E1 is the
nucleon recoil energy and E2 the electron energy. Similarly, we find the

structure of the spectrum of

< —= T +-f£>i+ » " ’€=€)(Jv ‘
In this particular case, assuming the V-A character of the lepton current, we
deduce JTF =7 = 1. However, since the spins of K and A% are zero,
Theorom 'B!' can be applied, and in the expansion (31) we have only two coefficients
AO and AZ' In other words, in expansion (32) only two of the three functions
BO, B1, B2 are linearly independent. In the special case where the leptons are
elecirons, it is legitimate to neglect their mass; then since V-A interaction

conserves helicity, the only non-vanishing reduced matrix element in the crossed

channel is
4
o, 0 - p 1 i
< 2 }T ‘/»:—2’)—5;+2>
so that only one structure function determines the decay spectrum.

Formula (32) can be as well applied to (pd) — K+K+T, when

at rest
K+T or K+T are produced via the resonsnce K* or K¥. Since in formula (32)
an average is made over the direction of emission of the particle, one may
disregard a possible polarization of the (pﬁ) system. Neglecting the inter-

ference between the two possible decay mechanisms, we can fix E1 such that
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particles 2 and 3 be in a resonant state, namely

— AMZ M2 x
E"JJR - 2 - - K _t\lK
4 Mg

We cee that to give a lower limit to the K* spin, it is not necessary to go to

the c.m. of the K¥, It is sufficient to analyse the laboratory spectrum of the

second K for this fixed value E1 =5 If the spectrum is uniform, the x*

spin is likely to be zero., If it is paiibolic, the K¥ spin is at least 1.

One may notice that according to Theorem 'B! if ¥* has spin 1, and if inter-
ference between the two channels can be neglected, only two terms are present in
expansion (31), and this leads to the following relation between 31 and B2 in
expansion (32) :

B ( Eax )

4

2 : 5 .
_ Mersanzond Mg nEnEng)
B, (Ere) 4m, AMp My

tl

We realize that the examples considered in this section have been alreedy

15)

treated by other methods , but it seemed to us interesting to present them in

a unified manner.

SOME APPLICATIONS TO STRONG INTERACTTIONS

We shall now consider the case where a strong interaction between two
particles can be described by the exchange of a limited number of angular momenta.
This category of reactions contains, as a particular case, the single pion

5),16),17),18) 1,

exchange model which has been extensively studied recently
the mcre general model, we are considering here, we shall meet the same type of

difficulties as in the one-pion exchange model.
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Consider a reaction

Our model is valid if only the intermediate states in one of the crossed channels,
for instance A+C —= B+D, are important. So the intermediate states, as well as
the initial and final interactions, in the direct channel, must be negligible aad
one of the crossed channels must predominate with respect to the other one.

This was the case for the examples given in the previous sections, where the
magnitude of the various interactions permitted to retain only one channel, If
the above conditions are fulfilled, the experimental test of the exchange of a
maximum angular momentum Jmax consists in studying the energy dependence of
the differential cross-section for fixed value of the momentum transfer 1
according to formula (10). The same information can be obtained for processes
in which D, for instance, consists of a group of particles, if one observes
only particle C; in the latter case one has to find, for each experimental

situation, arguments to classify the outgoing particles.

One may think of applying these considerations to nucleon-nucleon
scattering. In some region of energy, one may hope that the interaction is
essentially due to exchange of single pions and composite resonant system of
pions. However, there exists a complete symmetry between the two crossed
channels and the only possibility to extract valuable information from this
type of analysis is to restrict oneself to a limited range of momentum transfer
to eliminate one of the two crossed channels. This will be studied later in

detail.

If instead of taeking hydrogen as a target, we use a nucleus, the symmetry
between the two crossed channels is destroyed and, if intermediate states in
channel (I) are not too important, we can try to use our formalism, to analyse

(p,p') experiments :

p+ N — p'+ N

N' may be the initial nucleus or an excited state of this nucleus.
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In the l[)wal =1 *) cacge, one nay have the exchange of a pion
(T = O-) 19) or a f’ particle (J = 1-) between the proton and the nucleus.
If only cne pien is exchanged, the cross-section is described by one structure
function, whilst if alco the f’ particle plays a role, we have only two
structure functions according to corollary 'df.

A

. . . . . 4 L
£ N and X' have both iscgpin 0, for instance in p+He -—% phle’,

I |
only-, A ég} = ig prescnt and the single pion and the E’ particle are
forvidden. The possible candidates are the 49 (J =1) particle, ths ?

aac

+

narticle [(J =0 or 1 ) and the possible low energy s wave inveraciion,

According to the casecs one will g2t one, two or three struchture functions in the

4 1

brother applicaticn to nuclear phycics ie furnished by pick-up reactions

PN, sa+ N,

.

where the capture of a neutron by the incident proton seems to be the dominant

mechanicm CO)f (Fig° 5) :

-~

!
)

Then, if only 2 ncuiron is exchangel, J = Jrqx =+, and acccrdirg to
14 Cl

cornllary 'c', the maximum power in the expansion of the cross-section is

2Jw3x-1 == 03 80 the cross-section has the form

")

This refers to the isospin of the nucleus.
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45 - A Tl
i M+ M )'IH"S—WN‘,'/W)Z]

If, in addition, we take into account the possible exchange of the 3/2
+
3/2 isobar (J = 3/2 ) the cross-section contains two structure functions

(corollary 'd'). Similarly, if reactions
p+1\T1 —_ p+p+N2

are dominated by the exchange of one proton (Fig. 6) :

the differential cross-section may be written

de t Tl we)
dt 4w’ \Z)--(HN/M/)‘][4—(%_./&/()'-} -

Finally, we want to examine another type of applications, where a single

channel seems to dominate :

ptp —> T,
where Y is a hyperon.

3568
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According to preliminary results , the ¥ are generally produced in
the forward direction, which seems to indicate a peripheral mechanism via a K
or a K¥, Analysis of the energy dependence of this reaction, when sufficient
statistics are available, should give an indication on the spin of the exchanged
particle. If fwo structure functions are necessary, this will be an indication
that the KXK' has spin 1 and plays a role in the reaction. If only one
structure function is needed, either K* has zero spin or it plays no role in

the reaction.

We would like to add the following remark. If the events under consider-
ation are rare, instead of considering a fixed value for momentum transfer t,
one can add up all the events in a strip t1<1;<t2 and apply the above

considerations to an averaged expansion of type (10) in powers of s.

CONCLUDING REMARKS

The above analysis shows the importance of performing experiments at
various energies for fixed value of the momentum transfer, in order to know if
the crossed channel partial wave expansion is meaningful for the process under
consideration, and, if it is the case, to determine the angular momenta exchanged
in order to give a basis for further theoretical analysis. An example of this

method has been previously given in Ref. 3).
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