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The present notes are the matter of a series of lectures given at
the Yugoslavia Theoretical Summer School in August 1961. They are mainly
concerned with three applications of the Mandelstam representation:
the photoproduction of pions on pions, the nucleon and pion electromagnetic

form factors, the photoproduction of pions on nucleons.

Photoproduction of pions on pions is interesting as an intermediate
step for the study of more realistic reactions. It is also the more simple
way to understand how one can use the Mandelstam representation in practical
applications. From a pedagogic point of view, the photoproduction of pions
on pions allows to see on an explicit case what kinds of problems are en-

countered in this aspect of theoretical physics.

The study of nucleon electromagnetic form factors from a theoretical
point of view has not been very satisfactory. By using dispersion techniques
one can hope to clarify the situation. By taking into account the pions
contributions one can reproduce the general features of experiments. Never-—

theless, a complete and unambiguous theory does not yet exist and the problem

is still open.

The photoproduction of pions on nucleons has been extensively studied
by experimentalists. The theory elaborated with the help of dispersion re-
lations techniques is in qualitative agreement with experiments. & completely

covariant treatment by using Mandelstam representation is discussed in these

notes.

Other problem involving photons, as Compton scattering on pions or
on mucleons are not considered here for lack of time but the same techniques

can be applied and the general structure is the following
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PART T

PHOTOPRODUCTION OF PIONS ON PIONS
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I. Introduction ‘

Examina tion of the processes involving photons, such as pion pro-
duction on nucleons or Compton scattering on nucleons shows that a necessary
intermediate step to apply the Mandelstam technique to these reactions is the

preliminary calculation of the process« >6 + T —> Y+

The interest of this reaction also lies in its simplicity due to the

limitation of possible states by conservation laws and symmetry properties.

In Section II, we study the kinematics and the multipole expansion
of the reaction amplitude;‘expression of unitarity condition is given for
each multipole amplitude by retaining only a two-pion intermediate state. The
Mandelstam representation is used in Section III, follcwing the simplified
version proposed by Cini and Fubini»j),*to obtain for the magnetic dipole
amplitude a Mushkelishvili-Omnés integral equation. Section IV is concerned
with the reduction of this singular equation into a Fredholm equation con-
taining an arbitrary multiplicative constant in the inhomogeneous term. = In
Section V, we find approximate solutions of the equaticn under the assumption
of a sharp pion-pion resonance in the state I=J=1. The same results can be
directly obtained by a crude model where the T — T resonance is simulated
by a metastable particle, the bipion, as explained in Section VI. A normaliza-~
tion factor appears in the solution and there is no direct way of determining
this arbitrary factor in this approach because the electromagnetic coupling
constant of pions never appears and since, in this process the isoscalar part
of the photon alone is acting, there is no possibility of using a low energy
limit property. We then must relate the 'Z/+~h-5> W + W process with
measurable processes such as photoproduction of pions on nucleons or Compton
scatterlng on nucleons — with as intermediate step the Compton scattering
on pions -. These relations are explained in Section VII where also the

Chew and Low extrapolation method is applied to the photoproduction of two

pions on nucleons.
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II, Invariance properties of the matrix elements., Kinematics and Unitarity

1. We define 13'1', pz, p3 ‘as the incoming four momenta of the pions
and k = -(pi+p2+p3) as the incident momentum of the photon,

T P

We define channel I by the reaction 1+ Zf-7>“2+3; and so on for other channels,

As usual we introduce the three scalar quantities :

A= = (Repa)

i

/6.21 _(_g?_}_JPZ)?.

§ Py = — ( R+ Ps)”

with, on the energy shell, the relation s1+s2+s3 = Bti2. The S matrix

element is then related to the T transition amplitude by the definition ¢

g#t ,_,-;§H o @"\‘:”Ag;( REp+H Pt ) f T

' 2
. "/'" ( ‘Ro “D'lo ’Pz{‘) Pﬂo)
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2. From Lorentz invariance and gauge invariance, the T matrix

element has the form

} A

-
.= = € : ! A L
4 24 t“w“? CaWZVT%vF%e (ﬁ (Qi>81)53) )

. . . Il
where e, is the photon polarization and ot A 0p the 4th order com-—

pletely antisymmetric tensor, F(s1, Syy 8 ) is a scalar function of the

3

-

three scalar invariants 811 8o 33
3, Application of G invariance shows that only the isbscalar
part of the photon contributes. Since the I =0 threé—pion state is com—

pletely antisymmetric in isospace ;

—

=2 >
ﬁi)m)\lg)

The pions two by two are in a I =1 isospin state and their relative orbital

angular momentum is odd.

4. It follows from the boson character of the pions that the
function F(s1, Soy 33) is completely symmetrical, The problem possesses
only one independent channel and the crossed reactions are exactly the same
in all channels due to the symmetries of F., The isospin dependence of the

T matrix element for the reaction

~ &

?{ + /rrii — TTT(3 + 1

is then given by the 3th order antisymmetrical tensor 1/ o EECXC>K
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5« The scalar invariants can be written in the centre-of-mass

system

i

(Rew Yo 4w,

A, Vl _ QR&H*@(&W (o3 B

i

"

,65 L"? ~2’@w3 _Qieq (05 6

where k is the photon momentum, ¢ the relative momentum of the final
pions and © the reaction angle,
The function F(s1, S5 83) can be considered as a function of q2 and

coé © only
T8 4, Aol (b
\,1,7_,5)-:> KO),CS >
and thg_T matrix element becomes
—_ T — /) R D ' 2
[.g.c:(Jﬁ(@,){?)q/\-/\_(%z)(ose) (2)
with the particular choice of‘gauge y

€= o -. .R-0

6. DBecause of the pseudoscalar character of the T ~ meson and
by parity conservation, only magnetic transitions can occur. By expanding

the T matrix in multipole amplitudes SJ(qZ) we obtain

11 . l /0 —7>,-ET> 2 ‘
o= 12, S (g Sl TP (Ge)
YT(Tey AT

J
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The operator i -/—_-?—:::.—) is a projector operator for the magnetic multipole
\JI(T+H1 )

and acts on the Legendre polynomials in the following manner -

We then obtain for the transition matrix

]~

J hc\ A VI .Id

T Cé) & EUL D*.,(j_) LI+ _ﬂi_f ?i (i(@f,_(%)

By comparison with formula (2), ‘the multroole expansmn for the scalar

amplitude A(qz)cos 8) can be written as .

/_\ 'ﬂ Cos@> > B (Oﬁ /j \CO&@) (3)

where

B /O\) AL E LR

4 Vo Kk q

One can invert the relation ( 3) by using the orthogonality properties of the

Legendre polynomials; after some elementary menipulations one obtain
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RN : 1 : - ,
? a?) _ f_z_,_q-f_i A A{;z . - 2 ’ . i~
Aﬁjj(ﬂ ) = ey / Algtxy (1-x )YJ () dac (4)

or the equivalent form

+1

EJ— (Cf-) :(T‘f"é‘ ) { B j/f\_ (q,?,oc ) \//_\ “;Cl 1);(1) d X ' (5)

Y3

-

where P}(Cﬁ) is the Legendre associated function. The V1-ﬁt2 = éiﬁl [

term is a spherical harmonics of order 1 describing the photon spin.

7. Cross-sections. In the centre-of-mass system, the density

of final states is simply

and the flux of incident particles

(b:i-k_ki:.@(ﬁﬁ
Wy Wy

The total cross-seotion averaged over the photon polarizations takes the

following form

QS- (ql) = _%fii— Zéj @K:Egi) \’TS (ﬂz)lz' (6)
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8. Unitarity of the S mairix., Let us define as | n > a complete

gset of intermediate states, The unitarity of the S matrix corresponds to

the following expression

PN Y ><\ ' = '
: 2

AT T s 5" l‘((z‘?{ | <f n\@\”ﬁm“
1A

where ‘;Ejpn is the total energy momentum four vector and Nn the norma~

lization coefficient in the intermediate state In':> .

In the energy range between 2&} and 4-@) .the only inter-

mediate state is a two-pion state.

W
e 2
' 1w
- _
Mg, 2

The B%I' state is disregarded because it corresponds to higher order in the

electromagnetic coupling constant.
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The unitarity condition takes the simple form

T 7% JQ{‘T”'“( GO T S
l<ux|T IRRAT @?Zw/ Ry TR > (8)

where the angular integration is performed over the pion angles in the inter-
mediate state. When the energy is larger than 4tk, this relation is no
longer rigorous but we maintain it because there is no way of taking into

account properly the other intermediate states.

A unitarity condition cen be derived‘from (8) for each multipole
2
amplitude BJ(q ). Let us expand the two-pion scattering amplitude in par-

- tial waves

STE| TRy =16m ‘gﬁz‘@m b (@) P (Gsbrqy
3 o

where Opq is the centre-of-mass angle and hJ(qz) = exp [1 g&(qz)l :Sing&(qz)

the partial amplitude for the pion-pion scattering in the state of angular

momentum J and isospin I = 1. |

By using expansions (3) and (9) into relation (8) we obtain the well-known

final state phase theorem: the phase of the multipdle amplitude BJ(qZ) is

the same as the corresponding one for the pion-pion scattering amplitude in

the isospin state I =1

— N »
L By = h (@) B, (q7) (10)
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III. Mandelstam representation ,

1. From G-conjugation, the one-pion intermediate state is missing

s0 that there is no pole in the reaction amplitude.

2. e now assume for the scalar function F(s 41 S50 33) a Mandelstam
representation, containing a single weight function, due to the above sym-—

metry properties :

Tl )= § a0 Oy (k) (11)

where

| -g(’%i.uo_)' / f 6(0[ ).S). do(dp
K\L /:31 A \(,15 )S_z

kl{\ ? ’iy 3

The questions of convergence of the integrals and consequently of possible

subtractions are disregarded for the moment.

Actually, the two variables o and \Q) cannot reach simultaneously
their 1ower llmlt corresponding to the two—plon state, the three-pion state
being forbidden. MNore precisely, if (2 («) < o < (4[4) , the minimum

value of (’5 is then (4 t« 2
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Fig. 3

The Cini~Fubini method of reduction can be applied, Instead of equation (11)

we can write :

\4 ("%ﬁ 'g?ﬂ/gs ) = %(’81::‘21>+ 3(‘("2:2&) + ?</%3’25) (12)

where zi is the cosine of the centre-of-mass angle in the channel i.

The function g(s,z) has a strong dependence on the energy variable s

and a weak dependence on the angular variable z; it is an even function of
z because F is completely symmetrical with respect to s1, 82, 83. We

can expand g(s,z) in Legendre polynomials of 2z -

g(@,%) . Z: @y a (s P (=)

L cven

with for the one variable functions aL(s) the spectral representation :
‘ A (o)
QL(/S) = — j" dd
a - A
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- 3+ We now neglect the z-Czpendence; the error is of the order 22.
It can be easily seen that this procedure is equivalent to retain only the
magnetic dipole contribution in the amplitude A(q2, cos Q), If it turned out

that the octupole transitions are important this would not be permissible,

Then, equation (12) becomes °,

-3 o9
SNE A PR B IO P NN (I U I ) SRR CF)
T %A a | ol -4, T o4,

4., In order to apply the unitarity condition (10), we have to

2
extract the dipole pert of A(g”, cos @), Equation (4) gives -

5(&(‘): %/H (qz,oé)@—vc{) dz

) 2
and we obtain the following representation for B(q ) :
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The denominators of the second and third integrals in. thée r.h.s. can never
vanish in the physical region for channel I, The only contribution to the

imaginary part of . B(qz) comes from the first term

IWL ’B(C\Z):—. €<4q7‘+ 4 v“‘)

and the unitarity condition gives the spectral function e in terms

*)

of the amplitude B
Plaqear) = 1) B () '
With the follow‘ing change of variable
9= - AWy

we deduce for B(Y) an integral equation of the Muskhelishvili type

depending on the J=I=1 pion-pion scattering amplitude

0 " -

* \ ) N
Be)= 4 m)dy + 2 [(-2t)d= )G x

T Y-oy-i & LR
-1 fo)
'y v 3

y Y+ oVt 4 2 dv’ (15)

! 1].-\.3. 2___ v Y > k3

Al C R Dk

where the pion mass tx has been taken to be unity.

%) The angular momentum index J = 1 1is suppressed in the following
because one amplitude only occurse
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5, We now consider the subtraction problem. Equation (15) is a
pomogeneous linear equation that possesses the trivial solution B.(») = O.
Moreover, we have no Born term and no coupling constant can occur in this
way, 1f we consider a perturbafion approach 6f this problem, we can use a

Hamiltonian such as

el e A, (3&5;))0, 53 Dﬁ—ﬁ)

1
B% 3 Apw e

where ]\_ is a dimension less coupling constant.

A manner to introduce this constant in the dispersion relation approach is to
write the integral representation'with a subtraction and to fix, a priori,
the value of the transition amplitude at the subtraction point. For the
present case this procedure appears naturally by considering the solutions
of the homogeneous truncated integral equation of B(V ) wheré channél I

and III are not considered. We come back to this point later.
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17. Reductlon of the integral éqﬁéfibn'té a Fredholm tv‘pe equation

1% We want to putiequation (15) in the form -
/B(U):J— h ('\J')B(V‘)d‘x)’_,_ ') (34 (16)
, T yLy-1g = < %%

& - V-3
~20

Then it is straightforward to transform equation (16) inte a Fredholm equation.
'The problem is to determine the left hand cut and the discontinuity across
this cut of the fuction B(Y ).  The main difficulty of this transformetion

is due to kinematical complications coming from the. presence of unequal

7 masses,

2. Let us study the kernel K(?., ') defined as the integral with
respect.to cos® in the second term of the right hand side of (15)

4

K(V,V')._. 6 [ (a-2) (»+1) ( m-?pw% ) da

T

/A 2 , 2 2
o (._))H)<)J+2v'+%>-),(p+%>’x

A direct calculation gives :

% e+ 9 'iv<u+32(v\ '+ 4y

Kow)= & Q02 d) | 5oy 20020 200 ) ()
Tope2Hy g b(w—%)z

(Log OV 0n2ivE)+ 0 2)
(v_:_l)'i (vro's 3y (v 2y
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The analytical structure of K(D, V') with respect to the variable
is difficult to analyze on the explicit form (17). Detailed calculations
are without Hahy physical interest and we report here only the results by

referring to the original work.

The kernel K(V,¥') cen be written as:

) -4
<(l))vt) - i}\/ M -/ }d A~())’>%) (18)
I J__ an é ))..é

where the function A( ))',%) is simply :

./AL()’\’%): iQ(\"-}-!)[é-dM(v‘)](%'dm(”')J féii )72, . (19)
PSS B

O(M( v') and ¢ m( y') are the roots in X of the second order

equation

)?.

(e (v 2% 29°- pr 2y -0

From these expressions one immediately getsequation (15) in the form (16)

by putting in evidence the discontinuity across the left hand cut

Yy (3)
C(%): — e,..(5+ %) A (p{%) h?{(p')’b(v‘) a4’ (20)

O

the upper limit of integration is related to Y ! by

SO RS E D)
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Domain of integration in the ()}',z) plene .

% Let us define the function G(u) related to the pion-pion phase
shift by the definition : |

o0

' G(u’)\: ; (u+\>/ S(») 4 (21)

(:X-») (1)

with the arbitrary normalization 6 (-1) =0.

2)‘

A particular solution of equation (16) can be written as

NG

Bls) « HO) + expLetrnSio L [ or L] bl A 4
g w/ dv

»lov-g

(22)

where H( V) represents the second integral in the r.h.s. of equation (16).
Integration over ))‘ can be performéd by using the contour of inteé'ration

as indicated in Fig. 5 =
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Fige 5

Contour of integration in the complex 2% plane

The solution (22) takes then the following form

-1
BO) = exp e+ b 4 [ expl-ee CBb) 4, (25)
5 — 3
o0 d
In order to find the general solution of equation (16) we must add to
solution (23) the general solution of the associated homogeneous integral

equation

BJM=1/%mmaww%,« o

™ Y-y 1€

The possible solutions of (24) are :

B, (- 2" expleerrde]

where m is an algebraic integer.
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If one agsumes for the pion-pion J=I=1 phase shift the resonant behaviour
g(o) =0 (0) = W and that % (V)-9T  goes to zero fast enough
as )J) goes to infinity, one sees that exp ﬂ E’(S#)J behaves like 1/v

at infinity and the only acceptable solution of equation (24) is
BH (»)= A exp [G(»)A— L g(”)l (25)

Finally, equation (16) is transformed into the following Fredholm equation

(26)

s (»)- exP[P(v)Arig(v)]z(’/\ ":/N(\),y‘) \'L%(V‘) B d)"3

where

|

LT - D/m(w)

Q}M(v‘) =

]dé exb-p(3] AG)3) (27)
-

The constaﬁt ’) ig an arbitrary parameter which enters as a multiplying fac-—

N(v,v‘)=

' tor in the final solution.

4. The particular form of equation (26) suggests to define a new

real function ¢(y) by !
IEIOE €/X‘P [G(V)—H%Y")l ¢(u)
then

D(v) = N+ /N(UN,) éxgo]-_e(y’)] ,/ging(p')gi(u')olp’
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This equation is easier to solve, because of more rapid convergence of the

integral in a subtracted form

~>

c,b(») = Pre)+ ][N(v,v')—N(vo.»’)] QX(JI?(»')]XM%()}') D(v') 3 (29)

*The unknown parameter “X is eliminated but one introduces another constant,
the value of the function at the point of subtraction. It becomes clear

that these two constants play an equivalent role.

»
By using the auxiliary function F(¥) =§__..( 1)/ we put equation
-
(29) into the form - o

T (»)- f(;) + /M (2759%) exp [en) AaS(») F(»?) d'

(30)

where the kernel M defined by

M vy vy 22 [ N = N )]

P-Yo

has the integral representation '

' - QLGf) -! ~
M Gorvtm) - (R L/ _ ]dé e -p@) A (13)
“de o, () @—g )(% ~¥o) (31)
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5. The position of ))O is a priori arbitrary. Considerations of
symmetry in equation (13) lead us to choose the point s =is2‘= séA= 1
which corresponds to ))O = —%. It follows that the function @(%) depends

on an arbitrary constant @(- %).

For practical applications, it is more convenient to normalize the
function B at the point s=0 corresponding to L) = -1 and we shall
define the coupling constant -/\ by the relation

,:._,e_t{ﬁ{ = B(1)= h(-4)

6. Finally, the T amplitude turns out to be

_ Eu g = 5= = '.:”: A=Y
f. = ] \g- e.-v A
£ \EE R (e )Fz,q) expl p(»)+ ,(y)] S a0

and the total can be written as !
G()- & N RY oxp s 1
(1= 2 1 S enp L2000] (@éf_ﬂ
t @ (1)
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V. Approximate solutions

1e We are interested in this section, by the resolution of the
Fredholm equation (30), The kernel of this equation depends strongly on
the pion-pion interaction and we must calculate the function G (V) for

physical and unphysical values of L .

v There is at present some experimental evidence for a direct pion-
pion interaction egsentially in the S and P gstate, By analyzing the
experimental results on the isoscalar part of the nucleon electromagnetic
form factors, the S wave amplitude for 1 -meson-nucleon scattering, the
multiple i meson production, one can predict the existence of a sharp
resonance for the Ti = 11 gcattering in the state I=J=1, which.is of interest
for the actual problem of photoproduction, The position of this resonance

seems to be at present 3 750 MeV and the total width 150 - 200 MeV,

—~

We make the following assumptions for the . - 1t

g())) in the J=1 state:

phase shift

a) g@%): ;LT i(o)= @) g(®©)=rl7

Then the function Q (V) is sach that °

./&yn [P(J)) + )_Oj D] - Ctﬂ

Y —> o
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and the quantity :
J(,%) 4 | exP L e(»m] gm,%(v) dy

can be evaluated using the contour of integration C given in Fig. 5. The

result, if 2z is inside C 1is

—

J3) = exp [ e(3)] 22)
fhis formula will be useful latef.

2, Ahs a first crude model, corresponding to a zero width approxi-
mation, one can use a step function for the resonant pion-pion scattering
phase shift: % (p) =T e(¥Y- \_)R). With such a form, exp [P(z)]

for negative values of 2z 1is then given by

exple@l= xanl (53)

\)R—t-é

In the cases of non zero width, it can be checked, on explicit models that

this very simple form can be used on the left hand cut.

3., Approximation 'cos ©" = 0. If we go back to equation (15)

and look the second integral in the right hand side, we see that a weighting
factor 1-X2 = sin29 in froht of the whole integrand strongly favours

x° = 0032 © = 0. Such an approximation can be directly checked on the
explicit form (17) of the kernel | (), ') and appears sufficiently good
for the present purpose. ‘
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Equation (15) becomes *

~N
~3 D .

S \ \ , %.\" 1. }
B G- z_t/h_(_.@_ud 4 [ Koot ) ()
i

»ey-ie &/ Iv'vue @

[+] O Ly

and it is easily transformed into the Fredholm equation derived from

equation (30) -

r‘e‘ ' ~ - )’"% .
6. £E0) 2 R dusty) SOLECC0D)

: ) 9. 9
V+Z | o ‘ Zv+>)+/_‘

(35)

If we first make the approximation that the width of the resonance is

extremely small, equation (35) can be put in a form which has an exact solution;

3 N . ¢ e ,-
T (o). LLa) 2 oexp 1-0(*3’%«*%)y P, 6) 8 O exppton]

L4 BZ » lvl < \')l?+p 4 %

o

Making use of the relation (32), we readily get the solution

Fa(p)’ ¢(~?’.>{ . ?’. QXP[P(’—E)-P(_QpR;é%)]} |

1
Yy 3 ))+2yﬁ+% ) (36)

and if exp [ P (z)) is given by the simple form (33), the solution @(v )

~ becomes -

- Sy, — Ly
D= cpy-2 ) >t (37)
9 +%us + 4y
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4. Possibilitv of more refined calculations. We go back to

equation (30) and using the same arguments as in the precedent section, we

can replace equation (30) by an approximate equation :

_ 3 ~ _
b () = B( “_) + M, /?(b‘))bmf(y') expp(»y] dy

,,J A |
P2 o (38)

This equation has the exact solution |

P - gé( * P-M(%Pm-%)

Y+ 2

where the constant i is given by .

=20

‘ /4“«%(5) exp U—‘(v)jg 95( “) P M(y),pe;-ii‘ﬂ)dv .

&) )—H'—
By using formula (32) and the integral representation (31) for the kernel
M, the constant [" turns out to be independent of 1)R

TLT s epiec )

and finally our solution can be written as
Bl) = B2

{4+ T eplee IO+ by, -2 )

NPV
LNI:Q

et
[,\-

(39)
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We now caleulate M(7V, Ve ~7) by means of the form'{(33) for

exp [e (Z) } . Making use of the identity

VR;-C@) R L)R"»‘:)‘)H

v-oy o v-y

it is easy to relate the kernel N(VY, V') to the kernel K(p,p') "

N(V)“’)‘): jaie K(V,D‘)i» 6 __l_._-

T

Yo+ Vi + |
and the funotion (Y, i =) to K(V, )
Y+ 3
3 Z -
M(\J,VR)‘Z): R_=2 _(w _L)\\ (v}pﬂ)__fl}
(3 ) (k1)

9D<u>.,¢-z_) T KOy @

It is easy to verify that solution (40) reduces to (37) in the approximation

"COS g" = Oo
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VI. Bipion model approach . -

1. In the case of a very sharp resonance, the results given in

formula (37) can be derived from a simple model in perturbation theory.

We first assume, for the pion-pion scattering amplitude, in the state

I=J=1, a Breit-Wigner form

iy Y a?
PI/ )2 624#£‘m§f = <%
(9 ) = ’AR-$ “"qu

where ?( ig directly related to the width of the resonance and
Sp = 4(1)Rf1) the square of the total resonant energy in the centre-of-mass

system of the two pions.

We now simulate this resonance by a metastable particle, the bipion
of spin 1 and isospin 1. The mass of the bipion is given by MB = \/gé and
the lifetime easily related to 2{ .

2. In the bipion model, the photoproduction of pions is given as the

sum of the three following graphs :

channel T channel TII channel ITT
Fig, 6
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- In order to compute these diagrams we must know ;

a) the bipion propagator |
b) ‘the pion-pion-bipion coupling S

¢) the photon-pion-bipion coupling .

%e The bipion propagator is given by the vector boson field theory.
Let us call B z (DC) the isospin component o of the vector boson field
describing the bipion, In order to conserve only three independent components,
we add a supplementary condition Z%fBb(if) = 0., The bipion propagator is
then

o
. o _ -
T AN
= L) (41)
B8 o \ e e " - 4
3 KoMy
where MB is the bipion mass and K the energy momentum four vector.
N

4, The pion-pion-bipion interaction must be a scalar with respect

to the Lorentz group and to the isospin group :

H

4 =

fol

3 : oy PRIy
N, Evpo ) (m)(} P (=) Bd&ﬁ)
\ﬁ a ¢ 1 f*

o .
where QT (Cf) is the isospin component o of the pseudoscalar pion field
4 .

and _/\1 a dimension less coupling constant.
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We are now interested in the matrix element or the bipion current between

two pions and the vacuum in the Born approximation ,

aw

///
ar -~ 'thq)
Fige 7
o~ o~

The "W ~|i=B vertex

With the notations of Fig, 7 we immediately obtain .

ol
\/t - ‘/\"«_ Eiﬁ’b (/‘Pz-?—)& (42)

A
2 “} \2

5. The photon-pion-bipion interaction, by Lorentz invariance and

gauge invariance has the following form {

_t e /\2 1 o , ( d o
where F (OC) is the electromagnetic tensor and Jp\z a dimensionless

‘A
coupling constant,
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The matrix element for the bipion current is then given by .

\/?z'e_/izig, e\?pg—~ (13)
f e 2 owe e S

with the notations given in Fig., 8

X (h»,e) :

)

Fig. 8
5 J-B  vertex
6., We are now able to compute the Born approximation for the

photoproduction. The T matrix element for the diagram represented in Fig. 9

is given by :

"l"’(l) L ( ) e R Do /‘ Eq ¥
il Eorme €2 Fe P (Bt ML A, ’\7%
y |
(h.e)
&Y
o
Fig, 9

1786



;’()
- U -
P

Conservation of energy momentum leads to the more convenient form:

T A

_ e | T [ . . : e

- . ,5" EAVDQGAHV(BU)I%’P E___.dfw -—-L
k‘ "t VZ Mr:-—/gﬁ

After comperison with formula (1) and by using the crossing symmetry, we

obtain for the scalar function F(sq, Sy 33) the explicit form :

2

o A, T oA A
7 = . ) —
Vo(s,8,,8,)- el A A & (44)
17 ¢ N2 45
oLMIa, Mg M
In the bipion model, the function exp [f’(»’)+i§;())) ] is simply
represented by
2
Yo+ | _ Ma
l)(s\ -y M pj —,,rgd
. and we can interpret equation (24) into
_—'E) B . h
- - M ¢
\_‘ /"g)i'gngs) - e‘—-/\ll\..l’ ‘Q—XP g\p(’v)ﬂ‘ lg(’}—))_)g 4 + "\r’b = + M5~/$‘ }
; LM h | MY g 1) (45)
( © EYE P Ma-4s -
3—51
7. Approximation "cos © = Q". In this approximation s2+33= 5=
= - ”g’) and the solution (45) reduces immediately to the form (37) as
expected
B

~ 4
Fa(‘é"g*’gbﬁ @X?{e(mﬁ(v;] b ,% 3+ 8y 4y

R SRRV

with

D(-1) = Sl
i
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VII, Determination of the coupling constant

1, One has no direct way to measure the coupling constant /\ .
We must consider other processes, where the reaction.‘xﬂ+3714> TRy
can play a role and try to deduce, from experiments, the importance of this

reaction and an order of magnitude for the A

One can also use the Chew and Low extrapolation method and then
directly measure the total cross-section for the photoproduction of pions

on pions.

o~ T~
2, Three measurable processes where the reaction ]§+—TF-4>\\4 f

enters are the photoproduction of pions on nucleons, the Compton scattering

on nucleons and the QT ° lifetime.

The corresponding diagram for the first process is given in Fig. 10

Fig, 10

_.and will be studied in a next lecture.

In the annihilation channel for Compton scattering we have the q? °
state, considered by Jacob and Matthews 4) and the two-pion state, always

neglected, In order to take into account this state, we must know the ampli-
tude for Compton scattering on pions in the annihilation channel. This problem
has been solved by Gourdin and Martin 5) in terms of the 65 @ -1 scattering

phase shifts and of the J+® — T+T total cross-section.
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. o : :
Intermediate (1 = Il gtate in Compton scattering on nucleons

¥ B i
L\\L\\"\( ! | JH//J
RS - i

1 = el
. aRlt
‘l. 1(
Fig, 12

Amplitude K+‘T\\ — W+ T in Compton scattering on pions

Preliminary calculations by Desai 6) show that the two pion term can be

important in Compton scattering on nucleons and that in Compton scattering

on pions the contributions due to the Kﬂ- T = amplitude are

not dominant, in other terms, the f \. ‘coupling constant is mnot very large.

‘For the M © lifetime, the Y+ T —>TN+W  amplitude enters

ifi-the: follwoing manner °

“0 _-~----"r"‘@~_‘:n+

.

n: o @/vvvw X
Fig, 13

o e~

Contribution from the b/+(\'\— > " + 1t amplitude to W © lifetime .
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"HeS. Wong 7) has estimated an upper limit of jAL in this manner, but it
appears very difficult to deduce any valuable result, because of the-uncertainty

0of the experimental value of the /R~ ° lifetime,

3. The Chew and Low 8> extrapolation method can be applied to two

casess:

a) Production of a pion by a pion in the Coulomb field of a heavy nucleus

—~
.
- "

-
-

-

v~ .
\\\ -
- .
~‘@5 _________ s
B v o R TATL A AV W P WA NS T VW U
Fig, 14

A possible way of avoiding a difficult extrapolation consists in using

various targets and putting in evidence a 22 effect in the cross-section.

b) Photoproduction of two pions on a nucleon

Kb\’\/\f\«/ (3‘ "

Fige 15

Photoproduction of two pions on a nucleon
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To illustrate the Chew and Low method, we treat completely the photoproduction

L sages  With the notations indicated in Fig. 15 for the energy momentum four

vectors, the T matrix element for the diagram indicated in Fig. 15 is given by

_2“ \1 | Mo ad | C} “‘"><'P\0L |$>
4 ( )%(R*‘A % %1 (lqwa 2’?{ (P"F )7- /_\1 (

O! .
where - is the pion current and Z_\ = p'=-p the energy momentum trans-

fert for the nucleon.

The total T matrix for the photoproduction of two pions on nucleons

has the form T = T,+T, where .T2 corresponds to all other possible dia-

1
grams. But, only T, has a pole in [} 2 for D 2 = -Vz.

1

The differential cross-section. due to T ] only is then given by

ds, . A s iko<rigin CME i dhge kb fingoq
e (B bR A D B

Let us go to the photoproduction of pions on pions. With the same

notations, the T matrix element is simply .

L

T 2 <; ’
o= 0y, (Rebegiqu /=) — 9.4, | 4
\Z\"}wt\w) V2R, TR

and the differential cross—section -

eI DR TN I FCR T S o A Y
@LQ“ k. A q. Q. L‘< o QZ)
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Because the simple isospin dependeace of To , we can easily relate o\gl

to dGo

4t - de. M [WEL T [kb] dap!
(200 (D) [9RE P

or by using the variable A 2 end Y/ 2

No—(hpyt WL (red)e —(drg,)"

do ge ME LU ool IRAT g Ayt
W) (A (DR)

The Gy =N vertex can be calculated in Born approximation using a Ps(Ps)

coupling., After sommation over the nucleon spin we obtain .

r

L “2': __8..1 AZ.(QQ'
RSAE AL SN

For neutral pion (Cd 2 = 1 and for charged pions ‘(\_‘,&2 = 2,

We now consider the complete cross—section = for photoproduction
of two pions on nucleons, experimentally measured. Let us define as F(A Z,Wl}

the following function ;

Plewe) . Ve (AR gy (pRyr
q[)lf)\/VL AL \)(/1"(/\1 %L

2 2
At the extrapolation point ,ﬁ = -'(\ , only the amplitude T ’ contributes

and we simply obtain

N T o) - G, (wW*)

N =0
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PART 1II

ELECTROMAGNETIC FORM FACTORS
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I. General consideration on electromagnetic nucleon form factors ,

1)

shows a strong deviation from the Mott crossfsection formula calculated in

1+ Analysis of experimental data on electro-proton scattering

the Born approximation for relativistic electrons

v @
dn. ot 23 |
d 4 hz}f)m[‘@- \ + ‘Q_B‘ngz-q

'%Qo is the incident electron energy and 9 the scattering angle in the

laboratory system.

We wan$ now to describe these deviations from Coulomb scattering by

assuning for the nucleon an internal electromagnetic structure

AN
e AN %
\\ .
\\\\ K
\,OWW\N\/MV‘@
-, ‘?
/
/
e l// ) . /V
Fig, 1

Electron-nucleon scattering

As it will be seen later, general considerations allow us to define

2 2
for the proton structure two electromagnetic form factors Fﬁ(q ) and Fg(q ).
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Mott's formula can be converted into Rosenbluth's formula:

db

d

R G S R
N T SR A

where (?1 is the anomalous magnetic moment for the proton. For q2=O

the two formulae are identical and we have the normalization
—b ,__E
Vf‘_ (O)= i—'l(o)’- /1__

Experimental data at low momentum . transfer can be fitted by the empirical

form

where a =~ 0.8 fermi,

Such a result is no longer valid for q2 > 5 vg and there is a splitting
of F? and Fg consistent with the low energy data 2 . By analyzing two
measurements of 3§a’ at the same q value but at different angles and
incident energy one can easily exhibit the different behaviour of F? and
Fg at high momentum trensfer., At each measurement corresponds an ellipse

in the F?, Fg plane and one finds fogr possible intersections of ellipses

which determine a F?, Fg pairs 'one‘chooses the more physically reasonable

set.

2. The only direct results one can obtain on neutron electromagnetic

3)

form factors are deduced from neutron scattering experiments by atomic electrons 7.

; *
One finds for the neutron root mean square radius ) a value consistent with

zero .

*) The r.m.s. radius is defined as

F(q)-Tlo)- 2‘24 >+ O)
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-3¢
<P|?a_q,> - .003 r .c0o3 |0 cm?

One has to use indirect measurements to obtain information about neutron

structure at higher momentum transfer.

In an impulse approximation treatment, one can relate the deuteron
electromagnetic form factors to the nucleon electromagnetic form factors.
Elastic electron-deuteron scattering experimenté give information on the iso-

scalar_combination of the nucleon form factors (deuteron isospin is zero):

Go- g(FHE) L e(nTen®)

Unfortunately, the experimental cross—-sections are very small

(’:10-_32cm at. q_2 ~ 2f"2)

4)

the deuteron structure .

and we have some theoretical uncertainties due to

By using impulse approximation, one can evaluate the neutron form
factors from the value, at the quasi elastic peak, of the cross-sections for
electrodisintegration of the deuteron. Actual determinations neglect the two
micleon final state interaction, the interference between neutron and proton
contributions, the D part of the deuteron wave function one treats in a non-

5)

relativistic approach ~7,

Another approach to know the neutron structure is the study of the
electroproduction of pions from protons 6). One can define two inelastic
form factors, functions of q2 and W - the total ™ =N energy in the
c.m, system — 7) related to the mucleon form factors. By looking ot the final

electron with kinematical conditions corresponding to the 3/2 3/2 resonance,
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one can see that the dominant contribution is due to the magnetic dipole in-
v
volving the isovector part of the magnetic form factor G2

3 V' — b = -V — —a
G- s(FI) QA (TR

3. The use of dispersion relations seems to be the more feasonable
approach for the theoretical problem of the hucleon electromagnetic structure.
In this spirit, we must solve the preliminary problem of pion electromagnetic
structure in Section II, The invariance properties for nucleon electromagnetic
form factors are given in Section III. Section IV is concerned with the
dispersion relation approach of the problem. The isovector part of nucleon

Wy

form factors are given in terms of pion form factor and ! scattering

amplitudes. ‘A model is given in Section V, corresponding to the bipipn
metastable particle and tripion bound state which agrees with eiperimental

result.
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II., Pion electromagnetic structure ,

1., We are first interested by the vertex reproduced in TFig, 2

w
@1!d2 //

Fige 2

Pion electromagnetic vertex

Let us put:
£ - a’ s~ (hrnt

Using parity éonservation and charge conjugation invariance, we conclude
that the two pion system has the following quantum numbers: I=J=1 and,

of course, 13=O.

In other terms, the vertex function must be a vector in Lorentz space and the

third component of an isovector.

From gauge invariance, the only vector one can construct is (p,l--pz)J
and the general form of the pion electromagnetic vertex, for two pions on the

mass-shell is the following:
%

fom S S en), B ()
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*)

where the pion form factor Ehit) is normalized as ’:

P (e)=4 | E (2)

2. It has been shown, by a study of Feynman diagrams that a vertex
function of one variable satisfy a dispersion relation. The function En(t)
ig analytic in the 1t complex plane except a cut on the real axis from

2
(2¢)

The function En(t) satisfies the representation:

to + 00, If we first disregard the problem of possible subtractions.

d’ P
(‘1:) i IW\ ’rﬁ(t‘)
Ty T

dt' (3)

|

=

t

We use the unitarity condition to calculate the weight function in integral (3).
2 2
For 4\f (\t»(i 16 e , only the two pion intermediate state contributes and

we have:

I&anar(E):‘?;(E)L1X<E)' n

where h(t) is the previously introduced pion-pion scattering amplitude in

the state I=J=1, but considered here as a function of 1t = 4(V4—V2).

We extend this relation for the values t f} 16@.2 by'negleéting
inelastic W = v scattering  and other higher contributions as KK pairs,

N-I pairs.

%) This result is immediately obtained by using the Born approximation of

the pion electromagnetic vertex.
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Under this assumption, equation (3) becomes a Mushkelishvili-Omnés homo-

geneous equation:

one can transform with a subtraction by using condition (2) into :

D0
—_— L2 v
F(. 4+ B[ O L,y
4 L'(E-t-rz)

S

(6)

Resolution of equation (6) is straightforward and gives :

: )
E:(t)z exp | e(E e 2(e)] .

where the function @ (t) is identical to the previous one (? (») defined

in equation (21), Part I.

- o0
g(t‘) At’
! Tﬂ E(E-E)

Q(Q;

21a

_ 3 Solution 7 is dominated by the " - ir P resonance., In the
physical region for electron~ Nl meson (or e+—'ﬁ) scattering, we have t £ 0

and we retain only for qu(t) the simple form giﬁen ih equation(BB), Part Is
i
T
\rﬁ(t): _E.R_..- t(o
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‘The effect of the pion electromagnetic structure is then to reduce the cross—

section calculated without pion structure by a factor:

L 5
by t.

—

(do-t) [4a + 2KG-G0)

where k and cos © are the c.m. variables for e-Tr scattering.

4, In the electron-positron annihilation in two pions, however,

the cross-section is greatly enhanced by the pion structure. If we use the

"approximate form:

R T
(q) ER~E—1'XO\3

for W =N scattering amplitude, the corresponding one for Fﬁi(t) can be

written:

ko - b -89

This resonant factor will produce a maximum of the annihilation cross—section

for t near t this maximum becomes sharper as the width of the resonance

RY
directly related to X decreases.,
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III. Invariance properties for nucleon electromagnetic form factors

Let us consider the graph drawn in Fig. 3

KYQAGQ)

{\’?‘1 &)

Nucleon electromagnetic vertex

With nucleons on the mass shell, one can define only one scaler invariant

t = —q2.

We are interested in the matrix element of the electromagnetic current between

the vacuum and a nucleon-antinucleon state,

PT-;‘ - <<i/tﬁtg;l}131(5ﬁ ]E}_v ‘ C)‘:> (8)

1. Lorentz inveriance allows us to write :

1-2Go T, (%) Hi Gk U, () (9)

- ' : . o
where Gci(t) are scalar functions at t only and the H must be
constructed from the sixteen matrices of the Dirac algebra and the energy

momenta four vectors (q = p1+p2). Because of parity conservation and time
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. . s - o o
reversal invariance,one cen form only two invariant expressions for H ¢
if one takesinto account the mucleon spin constraints due to the Dirac

equation, It is usual to choose

4 2 _
l-\tz i\&(L Ht“ —‘itlﬂm\&q]

Equation (9) becomes:

(. - ( 8 —
I u@mz\fv G, (&+ L 1Y, (-9)] GQ—(H?B Ug (1) (10)
The invariant functionsv‘G;<t) and Gé(t) are.the nucleon electromagnetic
form factors. A ‘

This result cah be e351ly transformed into:

T G ) Y16 021G ) + (hy, Cate

¢ = Bz(TL)z( (ALGJ E)+ - 2(')]+(?9‘-/P1 ‘Q(E§UG(1)I (11)

2. The nucleon-antinucleon state can have isospin O or 1, The
T . amplitude cen be divided into two parts: .
‘__r‘ T_‘g rt r\_|\/
= +
® SRS ¢
The first one corresponds to the isoscalar part of the electromagnetic current

and the second one to the isovector part. The same decomposition is of course

very useful for the form factorss:

CT' (&) - G S‘(E\ +*T§ G—V(t)
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With those definitions, the proton and neutron form factors are given by

C;rt’<l:> = GS(t ) + Gv(l:>
Gn (b (;S (e) - G (t) (12)

i

For a real photon t = 0. The Born approximation of the photon-nucleon
vertex, calculated with the Dirac and Pauli coupling, allows us to normalize

the nucleon form factors as:

S v
(31 (O) = (;i<o):= g
| .C‘j (o) = € (Kt K,)=

an (13)
v 13
C;% (O) < (KE'-K~§ '

B\
Ao
=™

O

o

~
=
{!
AQ
2 |
oo
<

where e is the electric charge and KP, KN the anomalous‘parts of the

proton and neutron magnetic moments in units e/2M.

It is also convenient to define form factors F(t) normalized to

unity:

_3wW

r \E > Asv I (
., (E) G, (0. € Jaw ) (U

M

e "'\)7\1 ,‘?ln - P!h
/ - N e c F
G, (o-efl, [ G, - & o T ()

o0
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3, Making use of centre-of-mass variables for the nucleon—anti-

nucleon system:

P (CTE) Re(FhE)  EeAGFRY-4T

we obtain for e, T, the simple expression:

¢t
Q‘T = K, g.E- [G,+3aMG, )5+ EG,-G,) (& F)(E?® ix_ (14)
[ z M L 4 + ,v :] L ._-———--——-—~M(L+M) 5 7

where the gauge is chosen so as e4 = 0.

1786



- 50~

- IV, Dispersion relation approach for nucleon electromagnetic form factors ,

1 It can be shown by general considerations that the vertex:functions
G1(t) and Gz(t) satisfy dispersion relations. If we first disregard the

subtraction problem, we can write the spectral representation:
. (t‘) ‘
G(E)- 4 [ 92 4
a& £-t

where g(t) may be determined from the unitarity condition.

2 The quantum numbers associated to the nucleon-antinucleon state
are J=1, W = -1 and the only possible combination corresponds to a

381 + 3D1 state.

By using the G invariance,udne can immediately see that only even-
pion inpeymediate states contribute to the isovector part and only o@d—pion
states £6 fhe isoscalar part. We neglect; in the present treatmént,léfher
possible intermediate states as for example KK states, NN states,

YT states with an arbitrary number of pions.

3. Let us now consider the isovector part. Ifthere are no bound
states with quantum numbers I=J=1, W = -1, the functions Gv(t) are analytic
in the t complex plane except a cut from (2(( 2 to + 00,

For (2&1) <f t'< (4&*) y the only possible intermediate state is a two—plon

. I=J=1 state:
[\
W
K'mu\/\ﬁJNA,@{::ili::::'/
w
N
Fig, 4
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and the spectral functlon g (t) 1s glven in terms of the plon electro-
" hagnetic form factor F (t) " and of the T +‘N’-—}N+N transition amplitude

- in the state - I=J=1.- We assume this result valid for other values of t.

4o The amplitude T + W—> N+¥ can be determined in the' general

framework of T =N scattering 9).

Fige 5
The (H\+(H\ - N+N reaction

By using charge independence, the T matrix element can be written as a

2%2 matrix in the nucleon isospin space:

PR

l&‘s= .

F‘_I/K;H — )

+ -i— [({},,Td]

(=)

For a NN system of isospin I=1, only the T  ° amplitude occurs..

By Lorentz invariance, the T»i amplitudes have the general form

+ = (i)
rP . UGL(?z)[‘ﬂ S,)t 6(% ) 7 °) (/s 3, kﬂu (P) (15)
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where

Az —(9,-
/32. = ‘(9\"?7.>L
G T

with on the mass shell s 1+32+t = 2M2+2V2'

In the centre-of-mass system, by using the following variables:

Q- (FEY  GQu=(-FE) P: (-FE) P-(FE

equation (15) reduces simply to:

T

- ‘X: ( SF A _ G7 (3 CUB ’5’ Bl x_ | (16)

E
™M M(M+E ) M

5. We now apply the unitarity condition to the electromagnetic
vertex; the general formula for the case of a two-pion intermediate state
has been previously given:

CLNR|TITIES .2 a3 O\Q1<NE\T |0t <’ Ty S
| t

2
(@) € <

Summation over pion isospin gives the isovector dependence 2 E; and we

obtain:

1786



- 53 —

@R)EF) T [26G-G] =

]E e Im ‘g G :/. QMGV .
™M - L " J] C M(E+M)
=2 e AT 40, 27) G_? > ERIED ¢, E 5y B
(y € 7 T ) M(gtM) "M 1 §

In order to perform the angular integration we expand the scalar functions
— =

A and B in Legendre polynomials of the c.m. angle peq = pg =
f=y , - - .
= /-;
%_PL (t,’ac); %« (‘Hii)—'é\-sét) —PJ(I)
. = —— ) 7~ E .
% (tl'x) = _%: <J-+-2L 5 BJ (t) _‘_.P—J ()‘v)

and we finally obtain :
(17)

RNCENGY

rn‘_Q

9. (\:) = 1Im G (E). ¢ :

(=) (=)

-1
where \ (t) are two convenient linear combinations of A ’

B(—):
l—;_ (&). 4 ( M ‘A‘d 1 ,Br: ~ ELEM? Bi)z
¢n 19 3 32 (
. L LA M I
d "G | QPQ * +2f§l B, § (18)
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6. It is easy to verify that the partial amplitudes -'r'i(t) do not
have kinematical singularities at p=0 (t = 4M2) or"v’q~='=0“(t = 4t\2).
They are analytic in the t complex plane excepted two cuts

a) a right hand cut from (2 W )2 to + 0o corresponding to

the annihilation process ;

4
b) a left hand cut from - o to O = 4&2 - -%— describing

the scattering process. i

and we can write the spe»ctral representation:
0 o/
s | ¥ M
N [ TR, T L) g
HORK g e L[ Tl g

T E-t-ie Al -t

Qt()l, S

(19)

. where the unitarify cohdition:

T T8y R¥ey T0CE)

corresponding to a two-pion I=J=1 intermediate state
: N

has been applied in the entire physical range 1t > 4&2. The spectral functions
il

on the left hand cut, Im ‘ i(z), are given in terms of the W -N scattering

amplitudes. They contain, in particular, contributions due to the Born terms

and the 3/2 3/2 resonance.
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~ Bquation (19) can be solved by the Omnés method and we obtain the

formal solutions. .

o

- . Ten | T-
(k) e'xrte(t)ﬂ%(tﬂ%/' (%; jw:L 03] 0‘5

-
By putting

M by Te) J, ()

" we transform equation (17) into:

Tn Gy (8- 29" [ (o) Tl
< E

(20)

with

| k) D4 .d J:m;vri( ) - e(q)
JL(L;.‘:/ ) e [ @] 4 .

/o 5k

7. TFollowing Bowcock, Cottingham and Iurié 9), we assume for the

MN-1TY scattering amplitude in the state I=J=1 a resonant form:

hy._Ya
be-bo (g
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The pion electromagnetic form factor can then be written as:

The integrals Ji(t) are smooth functions of t with respect to Ew (t).

We can take Ji(t)as a constant given by the W -N scattering:
d l. ‘.
Equation (20) becomes:

T C}:lfb>'= giéls kz“ -8
2E (1) Ty

(22)

In the case of a narrow resonance,one can perform the following substitution:

~D
(e {? e " > )

and equation (22) takes the more practical form:

- \ ¥ (?‘(6 )~
() _ € R Vt—l:
Lm GL()— Z Ey o (te- ) . (23)
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We ﬁow consider the spectral ‘represehtatiori for the forrh factors
ey (t) and Gg(t) in the subtracted form. We consider the constants of

subtraction as describing higher energies contributions and we adjust these

at t=0

. |
Gt (b @%nJ LG (g,
A oN T o L (ék{)"' E(L E - \e)

By using expression (24) for the spectral functions GZ(t) we obtain the

isovector nucleon form factors in the simple form:

GJGM %(4L+ at )

1

te-t (25)
Gy, ear ok
_Tz< © (/i+ + -l:>

where the constants a and b are given by :

Co (ke-%) b M G (K-D) (26)

O.-:- . L .
Ee ¥ ts Jr EL Y kg

The same approach is very difficult to use for the isoscala:
J=1, W= -1,

8,
If they are no bound states with quantum numbers I=0,

part,
are analytic in the t complex plane, except a cut from

the functions G (t)
(3 t )2 to + 00,
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For (3(?)2.< t ((5 “)2, the only possible intermediate state is a
three-pion I=0 J=1 state |

Fig. 7

and the spectral function gs(t) is given in terms of fche b/ - 361 :

7 verfex and of the U +rﬁ'+ (TR N+N  transition amplitude. Unfortunately,
nothing is known about this last amplitude and it‘appears as very difficult
to tréat‘the isosclar form factors in a similar way as the isovector form

factors and the problem is still open,
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Ve A model for the nucleon eléétromaghefic form factors

1. Experimental data exhibit a rapid variation of the electromagnetic
nucleon form factor G(t) with the momentum transfer +t 10)» If we assume

a spectral representation:
C\(t )
CTZM' T / dt
1

we easily deduce that the weight‘funétion g(t') must be dominated by the
little values of 1t',

If there is no Strong correlatibn between the intérmediate-pions, ‘g(t) is

" related to the statistical weight of the many particle state and will be a
éﬁodth function of ', Only strong correlations between the pions, as for
eXample a fesonance, can 1éad to a more satisfactory undefstanding of experi-

mental data 11).

2. The low momentum transfer data can be filled by a model proposed

three years ago by Clementel and Villi 12)

)d (‘—)"—T ((:>n\" (l:)ﬁ-.-?ﬁ-

- %w (27)
—_—T
Py (k)2
Bergia, Stanghellini, Fubini and Villi 3) suggest to extend this form for
the isovector form factorss
2 Qv
v (BY= A-a) + .
A - /éw
(28)
—_
() < by e O
E
/ey
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and to interpret the pole occuring in equation (28) on the basis of a re-
sonant two-pion state: tv = tR. o

We can remark that the form (28) is identical to the result of equation (25)
obtained by Bowcock, Cottingham and Lurié on the basis of a dispersion re-
lation treatment under the assumption of a narrow two-pion resonance, The

bipion, of course, gives immediately the same result.

3, The isoscalar electric form factor F?(t) must be of the same

order of magnitude of F:(t) at low momentum transfer in order to give, for
the neutron, a vanishing r.m.s. radius. We have then to expect also a weight

function g°(t') dominated by little values of t'.

At high momentum transfers, it is impossible to fit the experimental
data on electron—proton scattering with a form of type (27) where one pole

only occurs. The deviations of Ff(t) from a Clementel and Villi form are

due to the isoscalar form factor F?(t).

As a result of this interpretation of experimental data Bergia,
Stanghellini, Fubini and Villi deduce'that F?(t) must be formed of a large

constant part and a part which vanishes much faster than FY(t):

T_j('t} S A-ag) 4 4()1 (29
A - %,
with »
% = %— for <%0
as < a, t.o< 4,

It follows that the neutron charge form factor F?(t) will be positive at

larger values of t.
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4, Little is known about the isoscalar magnetic form factor F;(t)

and we assume for it a form analogous te (29) -

(30)

3 , b

Tl = (4-hy)+ 22

A%

The pole t=tS can be interpreted as a resonance (or bound state if ts<i 9&L2)
in the I=0, J=1 +three-pion state simulated by a™tripion" p?rticle. For-

14

.mulae (29) and (30) are given by Gourdin, Lurié and Martin as an illustra-

tion of the "tripion model" introduced in the photoproduction of pions on

nucleons.

Such a bound state can be an .explanation of the peak experimentally
observed in the He3. momentum distribution for the reaction p+d ==v'HeB+ QJO

and corresponding to a ts value of & 6L2'i15).

5. Numerical computations, on the basis of formulae (28), (29),
and (30) were performed by Bergia and Stanghellini 16 . It abpears that the
model is not contradictory with experiments, but the existing dataAéfé not
sufficient to allow a unique determination of the parameters asbstg;.avbvtv°
It is possible, in particular, to find a set of parameters compatible with
the experimental information on the two and three- pion resonances
(tR ~n 28 %2; tgn 5 52). Experimental information, particularly at
low momentum transfers, are needed with greater accuracy in order to select
the most convenient solutions, On the other hand, deduction of neutron data
from deuteron cross—sections requires some progress in the theoretical analysis
of the phenomena., The problem of understanding electromagnetic nucleon struc—
ture is not yet resolved but we may hope with suqh a model to clarify the

present situation.
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PHOTOPRODUCTION OF PIONS ON NUCLEONS
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I, Introduction

The present lectures are concerned with the effect of the pion-pion
I=J=1 resonance on pion photoproduction on nucleons., It is hoped, further-
more, that the existing discrepancies between the experimental data for this
process and the theoretical prediction of Chew, Low, Goldberger and Nambu 1)
could be adequately explained by taking the pion-pion interaction, and

particularly the I=J=1 resonance, into account.

In Section II we study the kinematics and write down the fundamental
invariant forms as given by CGLN. Section III is concerned with the multi-
ple expansion in the photoproduction channel of the T reaction matrix: the
complete connection between the invariant CGLN amplitudes and the multipole
amplitudes is given and a reflection property in the total energy variable
established, The unitarity condition for the isosclar amplitude is examined
in Section IV; it is shown that in channel III for the reaction J/+-ﬁf—>>N+ﬁ,
the imagninary part of these amplitudes can be expressed in terms of the
VJF!E‘-Sy N'+-A7 amplitude and the imaginary parts of the isovector nucleon
form factors. In Section V, the expressions for the isoscalar amplitudes
resulting from the Cini-Fubini 2) form of the Mandelstam representation
combined with unitarity in channel III are written down under the assumption
that the I=F pion-nucleon phase shifts may be neglected; possible corrections
to this last assumption are indicated. In Section VI it is shown that a simple
model involving a I=J=1 intermediate particle or bipion is able to reproduce
the main features of the dispersion treatment of the preceding section. An
analogous model, involving a J=1, I=0 intermediate particle or "tripion'",
is applied in Section VII to the isovector amplitudes and ordinary dispersion

relations are written down in this case.
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II. Invariance properties of the matrix elements

1. It is convenient to define the three scalar invariants °

A,

~ ()t
- - (Rip )"
= — (Pt ha)”

where the notations are indicated on Fig. 1

Sa
. x
! t

W
// ’

Fig. 1

Conservation of energy momentuin: k:-i—q+p1+p2 =0 leads, on the mass shell,
to: s, +s.+t =

tsy M+ (4, where M is the nucleon mass and 4Qf the pion mass,

The S matrix elements for the processes described by diagram 1
are given by

(1)

£§ = <; t'(ﬁ" AS; P " qﬂ
gr= e, v Ty (PR g -l
| : - )2@0@0%0%)4 ‘

2. Because of the non-conservation of isospin in electromagnetic
reactions, we must introduce three invariant quantities for the photoproduction
of one pion with isospin

— (%)

(-} o - (9)
"LJ=§;M Id‘fl,?:L(d)'Cs] ‘L =
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The first two correspond to the icovector part of the electromagnetic
current and the latter to the isoscalar part,

We then can write

T T(ﬂ l(: . F‘(‘:(-) T(‘) N T (G)T(“‘) <2)

[ Sl -

3. The causal amplitudes T will be functions of
. . . 2 2
a) the scalar invariants Syt Sy t with s1+sz+t =2M"+ S 5
b) the energy momenta four vectors Dyr Py k, g with p1+p2+k+q =0 ;

. ¢) the spin parameters of the micleons & 1 G'2

d) the photon polaization 6( .

Lorentz invariance, a2llows to wriltec amplitude T in the form *

< 5 \ | (3)
T . %‘ _/\(\r(/ﬁi 85, F) _/VB&.\/@,?MM;6‘,'51;@)

and our aim is to construct an independent set of scalar functions M I ’
Lorentz invariant, gauge invariant and, T, C, P invariant. The scalar
functions A (s 41 Sy t), indevendent of spin and polarization, will be given

¢

by cqmpl.icated integral equetions as it would be seen later.

The calculation is performed at the lowest order in the electro-
magnetic coupling constant and the M + must be linear and homogeneous in

e + M =€ MH ® By gauge invariance, we have k IVIP =0 and we are

e (2 koo
interested only in the case e, k, = 0.

¢
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’The nucleon spin dependence of M ' can be written as:
A —
™M Ay \
- “.r} - 6;}_\ ?2) FO\ L’{G\ (T’:)
where L\,G (ﬁ?) is a free Dirac spinor normalized in a Lorentz in-

variant way, solution of the Dirac equation.,

Sunmarizing these results, one obtains;

| — _ 8 (4)
T 2L A mal) e U G H U )

Q.

and we now construct the H from the sixteen irreducible matrices of the
Dirac algebra and the energy momenta four vectors. Because of the pseudo-

scalar character of the pion, the only Dirac matrices which can enter are:

iXB, X5 K(A ,i?fs 6\‘2{‘).
With the nucleon spin constraint:

4

(1 ?3.@ + M)“e;("h) -0 - (Lgl(;m(g J. p-M)

~

o . ¢
one can form six invariant forms for H

Wern et g,

Hy =G0p, A=Y ewn,  He- EREN

K

The gauge condition k M =0 leads to relatiqns'between-the scalar functions

A :

d
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| \Pa. IQ‘) “A'L +k//P02' ‘?)_AS ‘-_—_- Q | (5)

If we now introduce the CGLN gauge invariant independent forms !

ML (i) e H: (6)

o N[ Rl o) (e bl - (B pg M- (rp ey
| Me = Y5 AOICINLE Rt e} () = 6 (G
i M . - X‘s [@'E)('Pi-l?b) k ( k)(?t(’») ,e] _IM (/}A . @_?t) & €. H:l_% (H;‘_ H;) - & H

we can expand the T amplitude in the following way

(7)

T = JG (sz.) SLJA‘ MA + B Mr—s +C MC.‘LD Mozg U &) (dp‘)

L

with the correspondence between the A and the new functionsdeduced from

the gauge condition (5):

,,__A_= \\/\<JA§L‘—AAS>+J[\€

B.ofe A (8)
{q'?i P
C._ furhs
)
0. A, Ay
N 2
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4, Tt can be shown by using general arguments due to Hearn 3) that
the set of amplitudes A (S1, Soy t) is free from kinematical singularities.
Equations (8) exhibit a singularity for the B amplitude as it was pointed
out first by Ball 4) and it is a general fact, due to the gauge condition in
the processes involving an odd number of photons. However, it is possible to
write, for this B amplitude a subtracted dispersion relation with the

correct properties of analyticity.

5. The complete photoproduction amplitude is then described by

12 scalar functions. The Tfi matrix is invariant under the exchange of the

two nucleons and we deduce, for the scalar functions the following crossing

A(+’o), B(+’O), C(—) D(+’O) are even under the transformation

(<) 5() g0) ()

s, é—-—>sz, t&-=t, whereas A* ', B* 7, C

propertiess
are odd.
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III. Multipole expansion in the photoproduction channel

1. We use the following notations in c.m. gystem of channel I

Re(RR) RLRE)  q=(Tw) P (@g)
W - R+ B, . Wy, Ry kg8

where

LW 2W
2
'{12,_; w—Ml W ~\/ a4 0 W"M%fa
=g
LW oW
The scalar quantities 811 Sy t Dbecome:
A W
Ao M2k B, —2kq (a6
E = QL-- Qh (/L)al '\-—?kq G&)‘@
The gauge is chosen as: e4=O ok = 0.
'2. We can reduce the quantities LL (-pz)l‘fl W(p1) - with = A, B,

Cy D - to the form '7(¥Nd f(j_ where :(i. and ’)(f are two component Pauli
spinors describing the initial and final nucleon spin in the c.m. system

and N 6 a 2x2 matrix in the nucleon spin space.

¢
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It is convenient to introduce the following independent set of

matrices

-1

A

_N My EaM
9M

N, VEam e
2 M

B R

t\T \/(F HM)(Ex 1) I

1786

D{ vﬂfﬂ(tﬁm))ﬂv M)T B

&,

2 M &

M(W M), -

‘J((W M)(qh ‘ *\“C
(wm(bw ’

[(W-my-q. kJi

(1) +

{(wemy: qR] (W- M)I q(W M

(WM E,+M)

(9)

q(W-M) 7 1
EM )

A (W) T

E' 4+ M

}



-T2 -

The differential cross-section has then the following form

de A | < ¥cp 1 .\ ¥ (10)
dQ Hi—"?@ Jgiaﬁx\

where the scalar functions \y: are linear combinations of A, B, C, D:

Q-

§ (Jﬁ _ Whﬂ’(gl A

|
=
‘r-‘
- =
Vi
T
=
~—
&<

wc\s
2
Py
—
-—
p

W/) {(W MY + ¢ - '):)

|

= W Ox(‘g—?) [ (WiM)B + (- 3}

.
~ Ty
-
<<
|
=
~

%« The selection rules for the transitions from a multipole P, to

a " —nucleon states (J\ ’ /pn ) are given by conservation laws of total
‘angular momentum é and parity (W .

For a given value of /E , we have four transitions

P

by
(}: p’r-'i wW-(=H | magnetic MT

¢
b . -
an\: P, () - P _,Ll (L)__é() * magnetic /\/\2
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Q — .
0o I T B 10 ey electric !
/pn:PH dnh-’— =Y } £
P veete B
’p(“ :P-l (j = e_i (k) =‘.\—\\;) ) e ectri ( o

In order to expand the T matrix in multipole amplitudes, we use projection
operators corresponding to the four possible states

—_ >
a) magnetic transition

VY B(0+t)

— 5
b) electric transition ( e’) E\)>?k )
RY p(p+1)
c) (le—N: state 4 = Pn -

T PRI
A

26+l
a) A -N state ’13 = Qr‘ 4 Y _ 4 s

Q0.+
We then obtains

T T8 L i) @71 - (1R M, -
_“é (é?q’)(f-kl-(-gl q))(é—)'ﬁ”-p;)‘ E-Q-— . g—%qv)(p_«et R{)(\;'§:@>)E;4§?e(da)(12)
a ‘ A1 o‘ R il

*) See for example R. Stora, Seminar given in the Istituto di Fisica
dell'Universitd, Bologna (1960)
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. =
The pseudoscalar operator )DT_.C) introduced for electric transition

describes the change of orbital parity ’corresponding to 427 = Z + e

> >
We now write explicitly the action of the operators /77 and /?2

on the Legendre polynomials I:,i (00s @Pq) and obtain immediately a multipolar

expansion for the general amplitudes E}T‘ .
a

(F&wh_dhé)M “E, Pb va(@p)

=
»oivJ

@;zj«‘g(ﬂ)i\lré’(\ (39
24

P .3 =1
- fia_Mp_).fM v E LR (Ge)

14

(\.7 o <) + - — —_— (L
~ J;:g‘gm—me-t;_t [ 2oGe)

(13)

4. Relations (13) cen be inverted by using orthogonality properties

of the projection operators. From (12) one deduces:

M(h:'-i'"“"' —th? y 7R ), =2 P '—_]_
[ - fa Lty es ’*(C*e)/é“g)(hwa@) el

M;v 4 ‘\’(.’,,), U
T % RlwEre-ah) Taq

E R A Sh / J‘T —_> =3 o (Z‘l
‘ i B (B Ze?'e [ (6 4 ( RR) (-5 e q) -
-

= o
\ LJ?H = m) % /P &49)@' RT )/J(HQ@ 5)51, dQ
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By writing T in the form: T = 50 %};71 one can reduce the inversion

problem to an integral over -cos G.

;‘)\/}'-} = i gC}:/.P GJ:; :P _ ij "‘\*’" ~T€+l ] de
ey JL TR R e T ey
p1£ = A fﬁle %-§1§t? ;}: :}«'"71H ? d%
20 A i YISO o (14)
=+ ﬂu—- o o
\:?—I - o f j\‘y‘ ’Py, (J;?e +(P—t)c\)—-’; By T LS .’j’l,,r,} dx
20 Yo o
+ |
£ 4 [\57 g »
NPT () 1 d “’f’ﬂ 2 \0 Jz@i) ’;?f:z Ly (Pg *Qée PH} doe
2\ "

5., Reflection properties with respect to W can be established for

the QSE:(LV') amplitudes from equations (11)
(~w) = &, (W)
P (-wy = L (W)
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This induces on the multipole amplitudes the following relations:

’M:(-w)-f_;_t oty )+ 3 ()] |

Me .(-W) - LP! w) - [: (W) ] B

[M{ (W) = (+-)E, w)J

IR ORI
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Iv. Unitafif&fcgndifidﬁ fdr the isoscalar amplitude

1, In the photoproduction channel, it is well-known thgt the phases
of the multipole amplitudes are given by the pion-nucleon scatfering phase
shifts in the corresponding quantum states, For a given eigenstate of iso-

spin I, we simply have

Twm M, M e /SHS
Tw B, =' -‘ /8“43:

(16)

+

where gg is the pion-nucleon phase shift (ﬂ = ej-_ J»z).

[ -
2, We now consider the reaction ‘/+" —> N, Introducing the

centre-of-mass variables

R-(F26) q:=(Rw) Pe(FE) P

where

g

sd K™+ Hl

e

S —
and setting €y = 0 e+K=0 by a suiteble choice of gauge we can first

reduce the quantities u«(-pz)Mi LL(p1) to a 2x2 matrix in the nucleon

spin space:

F UM UL BF SEER) L @) FEF)
=+ M
a My U = . e LKE? )
M
U MQ W = Q.kE/"é’ ® >)
I MU 2B e Ry 2E ..
) ’ M(\:+M)<- OE )
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The T matrix element is algo a matoix in the nucleon spin space:

T 2F K (aee®)e 25 @2 ) C. @amo £+

A (17)

: M<E+M>@?))<é)'?’?)(ﬁ' +1ED)

where the index (0) hag,gsen dropped. A, B, C and D are functions of

t = 4E° and co _Lp
= an cos (f = _K§ .

3. The unitarity condition may be written as:

CTTU>= L3 @) S, (5030 )N, <4 (T > <o | T 1y

In the energy region (Ztn)z <t < (2?4)2, this equation is to be under-
stood as an analytic contimation of the unitarity condition from the region
of physical energies. Retaining only the two-pion contributions one can
express the imaginary parts of the scalar functions A, B, C, D in terms of

the K’+‘ﬂ ST+ N0 and T+ T = N reaction amplitudes:

NR[TL T ¥y -4 L4 <RI T s | TIERD

2
(3a) £ |
We note, however, that the same I=J=1 two-pion intermediate state occurs in
the expression of the imaginary part of the isovector nucleOnbfdfm factors.
ks the same FT 7 =3 N+ amplitude appears therefore in both processes, we
can eliminate this amplitude and re-express the imaginary parts of A, B,
¢ and D in terms of the imaginary parts of the isovector nucleon form

factors.
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More precisely, the X ——§N+N vertex function may be written in the

centre of mass of the NN pair:

e R yeloy = Xy 31%%’@‘)[6“.?»4@& ,

where we have used the same notations as for the (+T|‘ — W+N reaction,
The invariant functions G (t) and Gz(t) are the ordinary isovector form

factors for the nucleon. On the other hand, the b/ -0 + “(x vertex and

the \6 + W d-—} H + ’W reaction amplitudes are given respectively by
» d 0 —s =—>

where the pion form factor _F; (t) is normalized as F‘ﬁ (O) = 1) and |

R A S ICE L R
o

where ¢(t) is a real smooth function previously considered and ./\ a

dimensionless coupling constant corresponding to the normalization ¢(O) =1

The formal substitution .
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allows one to establish a correspondence between equations (17) and (18)
and equations (19) and (20) and to write

T AL N E<zs(t)]—m@;(t)
AP
T B._ L D gy TGl (o
4 '
— (21)
mC -0

1A Ton GV (E)
i B Ie G (E

-
3
5
I
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V. Mandelstam representation for the isoscalar amplitudes _

1. We assume for the scalar functions A, B, C, D a Mandelstam

representation of the form:

Born terms + Z. /J'a /da p(G‘S)L l ] +

T J E -4
e 4 i
(22)
/ / d’JC C‘g 6(7 t é )
(W“L L
(M +fc) (wy (v =A)(4-8a)

where the Born terms are those calculated by CGLN and where, as a result of

crossing, & & (x,y) =G(y,x) and & =+1 for A, B, D and & =-1 for C.

It is easily seen that, owing to the isoscalar nature of the photon
current, one may apply the Cini-Fubini arguments and write the representation
(22) in one-dimensional form where the corresponding weight functions are
directly related to the absorptive parts of the amplitudes in the various

channels.

2. As shown by equation (21),furthermore, the absorptive parts of the
amplitudes in the § +T —> I+l chammel are simply functions of t in the
approximation where only the I=J=1 two-pion intermediate state is retal?ec;.

0

These considerations lead us to write the two-pion contribution to the T

amplitude (7) using (21) as follows

G Et

‘ (23)
@/sé(u”rm Gy )]

where possible subtractions have been omitted,

a5 = /' ﬁ-—[ R Jt_ﬁé{_t) m G O’H; bb l ¢(t}lmc (IT)JH
&)’ y
M
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The form of the first integral in equation‘(ZB)vwould seem to suggest that a
subtraction might be effected in the A amplitude so as to cast this integral

into the same form as the second one. If one does this, equation (23)

becomes

!

)t

¢(u n G, (),
e

11

9 = — % [f\_i(w“(wwm)

(24)

a'gl . N |
M C¢5C&f)_Lhﬂ <;d (t‘)cl i
- D ; t

3, At this point, we make the assumption of a sharp pion-pion
resonance. Writing the I=J=1 pion-pion scattering amplitude as previously

in the resonant form

be L8] bk {@\ 5 .
tu~t-“<xﬁ3

we deduce

IQ | 3
Tm =3 )Sm?z /@ng ) (Kq 51
/én*%)q+ que

If the resonance width, proportional to U’ is not too large, we shall make
the approximation of replacing /6inzg- by 0 KC}gSSk&u+ﬁ) With this
approximation, Bowcock, Cottingham and Iurié > have shown that the imaginary

parts of the isovector nucleon form factors are of the form :

LV .
ey 2 ma b St _
Cki ( ) 3 ' g O\ ) (25)
Ean ~ ¥ . o
T G, () = €9r® bk SC-te)
2 M
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where gv is the isovector part of the anomalous gyromagnetic ratio,

The constant a eand vb  are related to 1, to and to new constants,

C, and Cyo descfibihg'ihfthe same approximation the I=J=1 W4T = WX
reaction amplitude

. g Celte-t) bosM G (te-¥)

zf &R‘s/x %V X (:Rwl

Insertion of. (25) into (24) yields the simple form

4. TFor isoscalar amplitude, the isospin in the photopioduction
channel is I =+ . The corresponding M -nucleon phase shift is very small
at low energy (except perhaps the S phase shift S- ). Following CGLN, one
may)at low energy)neglect the imaginary part of A(o B(O) C(o) and D(O)

in the photoproduction channels. The T‘O) amplitude is then simply given
by:

ij (o) fﬂ {0} T (¢) .
o X RORWM * lén “ (27)

At higher energies, of course (above the I#J=3/2 P resonance for example)

such an approximation is no longer valid,

In order to check the validity of formula (27), we can calculate the
modifications due to the I=J=r 3 ‘W -nucleon phase shift S ,+ The only

partial amplitude affected is the electric dipole EZ and we calculate this
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amplitude by resolving a Mushkelishvili-Omnds equation where the. inhomo-

geneous term is the electric dipole part of the Born and bipion terms:

f“

E(w). E 0+ E (W EQQE’Z__WJW' /J&o/twc EMAW.L

A _t{: ) 'Z W( 2 /gL
GUON - Mgt

where the indices (+) and (0) eare dropped. The Born term EB(W) and
E.zn( \/V) can be easﬂy calculated by using formula (14)

the two-pion term
1) and equation (26).

from the total expression given respectively in ref,

One can neglect the crossed term because the W -N scattering

amplitude is small and the crossing corresponds only to a correction of the

present one., With this assumption, we obtain an explicit expression for

E:(W) in terms of the singularities contained in the bipion and Born terms:

E(wy. £ (w) [‘ £ 0, (W]

~

¢ B (w Ii A ()]

where the corrections /'\B and [—\m are given by:

‘_\,

A (w).

exp e,(m+id (W) Ti oxp ’L—Px(wﬂ Araly (w) Ea (W) 3 0

(W} ‘ A zxL P
G ~Wi-g

ﬂ;
o

LQ Wite ZSA(W .)» e*’-‘ﬁ’[-‘?.*('w‘}] ’g‘ﬂgA(W') E&‘(W‘)O\ Wtz
0 e

A (W) -
i ( : m
: -

Explicit calculations performed by Warburton 6) show that the cor-

rections are small wup to 300 MeV,
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VI, Bipion model approach for isoscalar amplitudes

1o The bipion model was introduced in the first part of these
lectures where in particular the boson propagator and the photon-pion-bipion

interactions are studied,

In the photoproduction problem, we are interested in the diagram

indicated in Fig. 2

Y
o (ke e
s
B
Fig, 2

and we must know the nucleon-nucleon-bipion coupling to compute this

diagram.

2. By using arguments very similar to those of electrodynamics one can

introduce two forms of coupling:

(28)

—

o n = ;’ ! \-’7d N [ 3 ( = { ( «
He - 1G4 @0 Ly 0B 6,6 TE L6, By

where (JfN(Cﬁ) is the spinor nucleon field and Cé%, Cé% two coupling
constants analogous to the electric charge and the magnetic moment. The
matrix element of the bipion current between two nucleons can easily be com~

puted in first Born approximation.
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Vi

T

Fig, 3

With the notations of Fig. 3 we obtain immediately: -
;o - ‘ | .
e -y e | 29
\/l‘ T UG T - S (b, LU (1) (29)

Making use of the Dirac equation formula (29) becomes:

S (30)

¢ - — 'i ; "H 7 a |
V, - SORTEES (CgLQMCfgL)Xv+¢C61<-P,¢l)b} U (%)

3, The matrix element for the bipion contribution to photoproduction

is then given by

(o)
™

A, o y
© o e,‘:l eweamqhu(—m)t(%zw@z)%l%Q(T,-mu@i)

After some algebraic manupulations to introduce the CGLN invariant form,

1)

|

e\

the final result can be written as

‘-\—‘(O) be ~ s 7 ‘
- t%‘ M, - @G, (EMy=M,)] (51)

(‘D| rmv*
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Inspection of equations (26) and (31) shows that they are of the same

*).

form if one takes :

L

(,..@ N C 5
The constant AO, which enters in formula (26) can be interpreted as high
energy contributions corresponding to other intermediate statess this para-
meter cannot appear in formula (31) where only one diagram is retained.
Formula (31) has independently been given bty de Tollis, Ferrari, Munczek 7).

They use the simple relation

oy g,
G, "

which corresponds for the nucleon form factors to F1 F2 (normalized to

1 for t=0) and introduce an arbitrary constant Ao in numerical com—

putations.
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VII. Isovector amplitudes

1, If one now considers the Mandelstam‘representatiqn/fdr the
isovector amplitudes Aﬁi), B(i), C(I) and D(i),aéne find§'£hét owing to
¢ invariance one cannot directly carry through the Cini—Fubini_re@uction.
Indeed, one sees that for the graph drawn in Fig, 4a the variables 8, and
t may both reach their lower limits of integration in the Mandelstam inte-
grals. The same situation holds for the variables s, and S5 if one con-
sidersthe graph drawn in Fig. 4b.

, ' C-_—“—'—

' vt l‘

(‘T; T\‘:'\? Q@ 8
Vi !
] N )

O———~0O —ar—0
N Iy N
A
N (ay N N (b o

2. Under those circumstances we shall consider a very naive model in
which the three pion intermediate state is replaced by a "tripion% pérficle.
It has been shown by Chew 8) that in a I=0, J=1 three-pion state all three
pairs of pions may be in an I=J=1 state. Conversely, if one fequires that
all three pairs of pions be in an I=J=1 state, it can be shown that then

" total isospin and total angular momentum will be I=0 and J=1.

The existence of a strong pion-pion resonance leads us to retain

only the three-pion state characterized by these quantum numbers. A4s a

(+)’ (+)

result, the three-pion state will affect only the amplitudes A

(+)

o) o ),

’
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3, As we are again dealing with a vector boson, we may write in

complete analogy with Section VI

§ ' - ' '
(—\1) _ AL LééiMOMCQ'l‘(t‘V}R‘MB)]

Jrﬁ(:«on —}3_ L (32)

where TK % is related to the coupling constant corresponding to the photon-
pion-tripion vertex and where ({Z% and C%Zé are the coupling constants of
the tripionuwith the nucleon;ts is the square of the tripion mass. It is
easy to show that these constants are closely related to the parameters
appearing in the calculation of the isoscalar nucleon form factors with a

gimilar model. :

4. It is clear that one cannot simply add on the tripion contribution

(+)

to the solution obtained by CGLN for T * owing to the presence of the

I=J=3/2 pion nucleon final state interactions in the isovector amplitudes.

If we now make the tripion approxiamtion, the cut in the complex
plane is replaced by a pole‘-t:ts so that only the cuts in s1 and 52

. . C +
remain. The amplitude T may then be written:

_l ™

e &) - T D . .
T T 7%, TmM 4 GO ady

- RoRY TR o & T+ ——
o T ‘ (e 1)(3"37)

(At ()

Teking a fixed value of t we can reduce the double integral to a sum of

two one-dimensional integrals .

\Q) w 6 "M__ M :

Ao A bl (Ot b Inhayf L 2 )

g RORN TRAPlew W 2T“S-“"£ T""’!*t‘imih‘j
(Mepy?
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(+) (+)

Similar representations satisfying crossing symmetry hold for B" °,.C* 7,
e
?

S

D(_) satisfy representations of the same form with the exception that the

It may easily be seen that the amplitudes A(_), , C and
tripion terms will be absent; these are simply the equations written down

by CGLN.

5. The unitarity condition in the photoproduction channel has the
form given in equation (16) for aneigenstate of isospin I, Representation
(33) leads to a system of coupled Mushkelishvili-Omnés equations in the
miltipole amplitudes, involving as a result of crossing both the (+) and
(—) amplitudes. By well-known techniques as explained in the first part
this system may be transformed into a system of Fredholm type integral

equations,
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VIII.. Comparison with experiments

1, The amplitudes for photoproduction of mesons with definite

(+) =) o)

charge are linear combinations of T' 7, given by equation (2)

?('{‘ ‘tﬁ =S Y14 T\‘# \;i’;( (T(‘)- T (o) )
\6'4"? => jwr’\?b T4>+T(°)

fra =s paT N2 (TO-TY)

4 o
2{-}-\(‘[ =D n+rﬁ0 T )-—T()

The amplitudes forvphotoproduction of charged pions are mainly affected by
the bipion term and the CGLN terms; the contribution from the tripion, occuring
by crossing will be less important., For T © photoproduction, however,

we have bipion, tripion contributions as well as CGLN terms.

The energy dependence of the experimentally measured ratio

dg=_ \T-T7R

Qz d6+ B (Tév+ Tm‘l

at various angles is in disagreement with the theoretical predictions based

(=)

tude is strongly affected by the 3/2 3/2 resonance in the range of vali-

on CGLN calculations. It should be pointed out that, since the T ampli-
dity of the present theory, whereas T<O) is not, the ratio €> will be
relatively insensitive to small corrections on T(—)

example tripion contributions. On the other hand, (? depends strongly on the

amplitudes as for
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two constants AO and J\_ introduced in formula (26) and these circumstances
are rather fortunate insofar as the comparison of this aspect of our theory
with experiment is concerned, Preliminary calculations were performed by
Ferrari 9). It appears as very difficult to find a unique set of values

for AO ‘and .\ that fits the experimental data at various angleé.'

3, Another way of comparison with. experiments is the study.of the
a * photoproduction. No definite answer can be given for the actual

problem,

o)
The same situation holds for the TC photoproduction where it is

very difficult to analyze experimental results because of fhe presence of

various unknown contributions.
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