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1. Introduction

The lowest nucleon isobar N? is identified with the well-known I=3/2,

J=3/2 pion-nucleon resonance and lies at an excitation energy 1) E(NT)—mN£&2.1E>LL
( and my are the pion and nucleon masses respectively) with a total width

f{f;f)C:O,QO *). The excitation ehergy is small compared to the nucleon rest
mass and we say that NT |

N* already lies at a sufficiently high excitation energy E(NZ) - mN49:3.§E/x¢

is a low lying nucleon isobar. The next nucleon isobar

2

that the term "low-lying" can hardly be applied to it. For the purpose of this
discussion we shall only consider NT. The physics underlying this limitation
may perhaps be expressed by saying that the properties of NT

chiefly by the strong p-wave pion-nucleon interaction whereas this need not be

arc determined

true of N; and higher nucleon isobars (wherc the kaon-baryoﬁ interaction may

play a role, ete. ).

The other known baryons, A , 2?7 and =» may also exist in low lying
isobaric levels and indeed there is now rather conclusive experimental evidence
for a low lying /\ isobar, /\T, having an excitation energy E(/\T)-m/\= 1.?§/bk
and a total width f—’(/\T) = O.4?/AL. Further, if some form of global symmetry
holds, low lying 3, and =, isobars (:ZT and :ELT should also cxist.
Whether therc are additional "low-lying" hyperon isobars (i.e. having excitation
energies small compared to the hyperon rest masses) is an open question and will
depend on the complicated interplay of piop and kaon couplings. However, if a
universally strong p~wave pion-baryon dominates the situation for the lowest
lying hyperon isobars, it should be possible to establish some (necessarily
approximate) relations among the enefgies and half-widths of NT, /\? and Eif
by treating the mass differenccs of the baryons as small perturbations. We note
that the neglect of the kaon interaction for the J=3/2 isobar states may be
reasonable since the p-wave kaon-nucleon interaction appears to be small in the

low energy region. However, for the study of J=1/2 levels, ¥ may be important.

*)

This value has been estimated from the data given by S.J. Lindenbaum and
L.C.L. Yuan, Phys.Rev. 111, 1380 (1958). The Chew-Low theory secms to
predict a higher value [ 5:»1.49/LL, if we use their formula (sce
G.F. Chew, 7th Rochestcr Confcrence).
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2.

The essential results of this note are already contained in the papers of

3) 4)

that our approach is physically more perspicuous than the methods given in
3) and 4)

Amati, Vitale and Stanghellini and of Lee and Yang However, we believe

refs. . In section 2, we derive the formulae which connect the energies
of the low lying baryon isobars N*,/v: 2?' and =,* (hereafter we drop the
subscript 1) and compare our results with refs. 3) and 4). In section 3, we

briefly discuss the half widths of the low lying baryon isobars.

2. PEnergies of the low lying baryon isobars

We derive the displacements of the energies of the low lying baryon
isobars (with respect to their global symmetric value) by'treating the mass

differences of the baryons as a small perturbation on the globally symmetric

dinteraction. It is plausible that this method will become increasingly bad for

the higher baryon isobars.
We write for the total Hamiltonian

H=H +H
o 1

where - HO = globally symmetric Hamiltonian (which need not be specified)
Cn ) . . _ _'é Z( .
Hy = [ofx § (mpmm ) (RN F+mg =, ) (22 E) (n

We have omitted terms containing [=, because obviously these terms do

not affcct this calculation.  If we define Y and Z doublets as follows

Y= 27 zeo Larg)

A

o |
Y = JEE ({\——iic,) ) F = 2;'_



H1 is transformed into

3. ¢ Tt Z.2)
Hy = f"'gg— { ,-/’Zfl (M‘/\"’ﬁ’)’}”‘s‘)"W’/".J (i z2l

+ ‘(ﬂm£~m,\)(?z3\(~§733) (1)

Z -
— 71— (m g —my) [ Y (2,-17) 2 T 5(7,+«L7z)\1/] %

* .
We start with the eigenfunctions | Yf) ’ IZ > of Ho’ which have isospin
I=%/2 corresponding to the (3/2,3/2) nucleon isobar N'. We then can calculate
the new eigenvalues of the energy resulting from switching on H,. This is done

1
by using standard degenerate perturbation theory.

Let { Y*,M> , ’Z*,M> be the eigenfunctions of Ho corresponding to
Y*, and Z° with the third component of isospin IZ=M. Hence M takes on the
values 3/2, 1/2, -1/2, -3/2. However, in what follows, it is convenient to

include W=¥5/2 by putting |Y,M=5/2 > = [z, M=t5/2> = 0.

Now, inspection of the perturbation H, shows that the eigenfunctions of

1

(HO+H ) must have the following form

1

A = Y M Bl 2™, (mt1)> (2)

where the constants O(M, /QM are determinedrby

) & n »
LY TR > o+ T MIHIZ M fr= 8 B ol

<X il H Y ol <2 | HIEL M P fu G
with A K"  the energy shift.

If we now use global symmetry, and the isospin invariance of the theory,

we may put
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5| [ (Tye Zad v M> = A

L7 M lfag»j (FY+22) [ Z5HH7 = 4 (42)

4% Ml fdjx(\?@\i/' 25| Y > = M-8

2% v |3 (O(X(\(ks\/ Zo,2) ]2 M= —(HH)B (4v)

!
<Y Ml [ix Yiz-it 2|2, mt>= ERDERLIE B

\ = > = -3 (40)
é?f M+ | (Ax Z(’Z+177)T{Y MY = (£ 3_ ol +Mﬂ ‘

| e B
2. = : v +1 > =0
AL S RS TR O "

c7* L (W Yzt 2 1Y, A7 =¢

where A and B are constants independent of M. If, furthermore, we define

{
a. = Z(’MA +3Wi~47’4/v)ﬂA

(5)
/{ T (7"2-*”’4/\) - B

then Eq. (3) becomes
(a4 H=—2t™) dy — [Z-E+m) A By=o

. ] (6)
—Uz-WE+W ] X+ (a—f () —ar™) fu=0
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The two solutions of Eq. (6) are given by

) :
% 3 (2) : ‘
éE = — —-l ‘J‘“ - ¢ 3 2
e A R €t Sl = Y £ DUV LICN
* .5' u) [ 3 2 , W | & 'zl
AE=a-% £, dy=3l5-n) w=+g [z+r17 (M)
and, hence, the corresponding wave functions by
l , l
-+ - | 5 v = & —-—-! -—§ 7z b
) =L (ST -5 M 2 M (6a)
3 il b S | ~ ?i ~4 >
B g 2 N N —— = . +
/\f;—*(lv\):}l[i""'iﬂ (v, nm +Z£‘L+M] ER (8v)

From Egs. (8a) and (8b), it follows that /EP; has five non-zero components
corresponding to M=3/2, 1/2, -1/2, =3/2, -5/2 and /}_P? has three non-zero
components corresponding to M=l / 2, —1/2, -3/ 2. It is not difficult to check
that if one uses the usual isospin assignments instead of the Y and Z doublet
formalism, then ¥ ;(M) behaves as yEI’iL /2)? and /Y(T(M) as y&L /2)? apart
from a common numerical factor. Hence, /\ZZ(M) corresponds to I=2 with
1=l /2 and /ET(M) to I=t with I =M /2 in the usual isospin notation.

We identify states represented by the &‘; and /EP f wave functions with the

%* . .
Z and /\* isobars respectively, namely

127 I, = F(1,-1)

: (9)
[N, Te> = /EF,%( To--%)

. . . . . 3) and 4)
We believe that this notation is more consistent than that given in refs.
where Y and Z° are taken as the baryon isobars. The quantities AE"
given by Egs. (7a) and (7b) then represent B(Z¥) - E(X¥) amd E(A") - B(1")

respectively.



Up to this point, the results contained in Egs. (7a) and (7b) are correct
for the relativistic theory. However, the quantities A and B (entering into
Egs. (7a) and (7b) through the definitions (4a) and (4b)) are very difficult to
compute in geﬁeral and it is necessary to make certain approximations. (We shall
attempt to justify these approximations below by repeating our perturbation
calculation for the ground states, i e. rest masses of the /\ and Z: IQWperons).
If we suppose that baryon pairs do not make an appreciable contribution to the
positions of the low lying nucleon isobars (the static theory is the limiting case
of this approximation), then we may replace the expression (YY+7z) by (Y+Y+Z+Z)

in Eq. (4a) and we obtain

A M| fofji (Y 22) Y M> = 1 o)

Eq. (10) follows, since ’gdig(YﬁY+Z+Z) is the baryon number operator.

In order to evaluate B, we not only neglect the contribution of the
baryon pairs but we also neglect the pion contribution to the third component of
the total isospin. More explicitly, the neglect of the baryon pair contribution

permits us to rewrite Eq. (4b) as follows

MoB e Loay™ ) [ (Yo —2 2, 2) YT m>
3 am + * (11)
ad M| foi X (Y + 2T 2 I, 1>

The second step in Bq. (11) is already permissible if we neglect the Z baryon
loops (a condition less stringent than the complete neglect of baryon pair

contributions) since then

ev* ) ot 2T [yt Ms = o
(12)
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Purthermore, the third component of-the total -isospin operator is given by

T,=3 fﬂf?_ﬁ (YosY+2722) +4 faé (¢t nt— 7. a) -

where 525 is.the pion field operator and 7T is the canonically conjugate
operator of ;75 If we now neglect the pion contribution to (13), we obtain from

Bg. (11) that

Bt (14)

Thus, neglecting the contribution of baryon pairs and the pion contribution

to the third component of the total isospin, Eqs. (7a) and (7b) reduce %o

QE*(I=2) = E'Cf*)—-E'(/\/‘*) == (m, -, ) +—i3('m£ MY (152)

-t —

LHE (131) = E(/\#) —‘E(/V ) = (’w\/\,.. ‘h\/‘/) '—ij (/Mi—.fm/\) (15b)
which are precisely the formulae given in refs. 3) and 4). It is easy to show
further that in our approximation

. .
E(27 )= E(w™) &~ m=z -m, (15¢)

The advantage of our derivation has been its straightforwardness and the clear

identification of the approximations which must be made to lead to the siﬁple

result ( 15). In the derivation of ref. 3) the features of the Chew-Low approxi-

mation responsible for the final result are not too transparent (particularly
with regard to the pion contribution to the third component of the isospin)

4)

while in ref. , Zﬁq (22)7,, an assumption must be made which is not easily

Justified.
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In assessing the validity of the approximations which led to. Egs. (15a)
and (15b) we would add the following remarks. It seems rather plausible that the
relative positions of the low lying baryon isobars will only be slightly affected
by the baryon pair (or loop) contributions. However, at first sight, it would
anpear that the neglect of the pion contribution to the third component of total
isospin Z;f. Eq. (1317 would be a poor approximation even for the low lying
baryon isobars. We justify this approximation essentially "ad hoc™” by computing
the "ground states" of the \ and 3, hyperons by means of the identical
perturbation procedure which we have employed for computing the first excited

states (i.e. A~ and 5 ¥). We find, in analogy to Egs. (8a) and (8b) :

il
B = [E+mIF > — [ M) T )7, M (162)

4( 3 1=
SE (M) = (Lo BN MYy (-] M

L

(16D)

where /9?1(M) has three non-zero components M=1/2, -1/2, -3/2 and ’EEO(M)

one non-zero component M=-1/2. The analogue of Eq. (9) becomes

|12, Te>= 7% (T,-4)
(17)
A, T,> = A (Tg-2)

and, finally, Egs. (72) and (7v) are converted into

SET=N= E(s)~E () = a+ <o (18a)

‘_ég(j:“) = E(A) —EW) = a——zg-f
(18pb)
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where a and b are defined by Eq. (5), as before, and A and B are, in turn,
defined by Eq. (4a) and (4b) with Y and Z replacing Y* and 7" respectively.
The approximations of neglecting the baryon pair (or 1oop) contributions and the
pion contribution to the third component of the isospin permit us to sct again

A~~t, BZ=1. With thesc values of A and B, Egs. (182) and (18b) reduce to

E(Z)— EWN) 2= mMe_my, ' (19a)

E:(/\) ‘—'E(/V) =M — My . (19b)

which are exactly correct. The same approximations lead to

E(=Z)—E(N) & Mz =2, _ (19¢)
It should be pointed out that B can be calculated in the static limit.
Miyazawa 5) obtains the valuec B 2+0.37 whereas Fubini and Thirring6) get B=0.28.

This is small compared to 1 so that /\ and ¥ masses come out quite incorrect,

since in the same static limit A ~1.

The fact that Egs. (19&) and (19b) arce cxact encourages us to believe
that the same values A 2~1 and B ~1 leading to Egs. (153) and (15b) may not
be too bad.

The above comments are based on the usual view that the mass differences
anong the baryons are due to the kaon-baryon couplings Thus as far as the
pure kaon interactions are concerned, My 15 and M e in our original

P

Hamiltonian can be regarded as the renormalised masses instead of the bare ones.
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‘However,:we are still not teking account of the renormalisation effects of the
combined pion and kaon interactions, so that the baryon masses are still not the
observed renormalised masses, unless these combined renormalisation effects are
negligible. One way out of this difficulty is to suppose that the quantities

A and B, which may be different from unity (thus representing the combined
pion-kaon renormalisation effects) are the same respectively for the Y, Z

doublets and the low lying Y*, 7¥ doublets. It would follow then that the
formulae Eqs. (19a), (19b), (19¢c) and Egs. (15a), (15b) are still true provided
that we replace the masses m, s s and My by their corresponding renormalised
values. Roughly speaking, this assumption corresponds to the idea that the pion
clouds in the low lying Y% and Z* doublets do not affect so much the properties

of the cores represented by the Y and Z doublets.

It is interesting to note th t this statement is equivalent to the
ésswnption that o' =0ol, 'ﬁ' = \8, Y = ’b/..in the formula’cion of Lee
and Yang Z;f. Egs. (19) and (20) of their paper 4;7: Indeed, we can easily
write down the following empirical formulae for the "ground states" and

7)

Mivst excited'sfates" of the baryons H

Eo=atfTir)+cS+o¢” (WA g =)
- > (202)

, 2 : + &
== af*_y,gj({j-l—l)-—fcg-fm'g (/\/”sé /\”‘. s .=
b (20b)

with the same b, c, d. In Egs. (20a) and (20b), I = isospin, S = strangcness

number and

1240
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1.

|
A= g (Mo _wm ) (21)
C= z(" (m=—m,y) —'Z(””A—M/v)"';("’“g“”‘/l)
3
O(ﬁzi(mi-mﬂ) — (_‘M/\—-—’W\/V) _'?(’”‘5—’”/\)

4)

Egs. (ZOa) and (20b) can be translated into Egs. (19) and (20) of ref.
we choosc  of '= ol €'=€’ Y'=7

provided

Finally, we remark that once we know the wave functions for the low lying
baryon isobars [a_s given for cxample by Egs. (8) and (9ﬂ-, we can readily calculate

the weight factors for the various partial transitions, namely

@)™ et 1
(R = A+ T 2/3
NS 1/6
(R =5+ 1/6
COMES- 1
(A= 1

These weight factors are indcpendent of the values of A and B (i.e. the
approximations of neglecting baryon pairs and the pion contribution to the third

component of the total isospin) and dcpend only on the structure of I—I1
Z_Zf . Eq. (1_27 . It is interesting that they are identical with the weight factors

obtained by Lee and Yang 4)

on the basis of group theorectic considerations and,
while not at all surprising, perhaps the physical basis of their results is now

more clear.
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3. Widths of low lying baryon isobars

In this section, we discuss briefly the half-widths of the "first excited
states" of the baryons. The intention is to spell out in an intuitive fashion
the essential parameters which contribute to this width and thereby to make some
crude estimates of the relative widths of the low lying baryon isobars. For this
purpose, we have recourse to a simple formula for the width of a metastable level

8)

of a baryon isobar B* derived on the basis of classical strong coupling theory 7,

namely ¢
| ~ %
o = G A 75* S . (22)
CE(B*)—m;]
where ag is the baryon "source size'. Py is the momentum of the pion in the

rest system of B*, [TE(B*)—mB:} is the excitation energy of B*, and C1 is
a constant depending on the quantum numbers of B* (i.e. 1,Jd, etc.) which must
be assigned in accordance with the "correspondence principle". Eq. (22) follows
in classical strong coupling theory for a strong p-wave pion-baryon interaction,
provided that aé/ﬂ4<3f1, i.e., the "source size" is small. compared to the pion
Compton wavelength. Eq. (22) can also be derived quantum mechanically in the
strong coupling application 9) and the only difference is a slight change in the
constant C1 (vhich cancels out when the relative widths are compared). Indeed,
Eq. (22) maintains its essential form in the Chew-Low theory 10)

the "source size" 25 with the inverse of the cut-off energy ’bbrmax of Chew

and Low [;f. their equations (52) - (53i7; the "natural® choice of the baryon

if one identifics

Compton wave length for ag also leads tc good quantitative accord with the

Chew-Low thecory. This simple physical picture yields the crude estimatc that
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The strong coupling theory also makes a prediction concerning the excitation

cnergy of the baryon isobar, namcly ;

E(B ) —my =, 28 | (25)
i3

where C2 is a constant like C1 and fg is the renormalised coupling constant
for the p~wavc pion-baryon intcraction. The Chew-Low theory again yields a
similer equation to (23) if a

Eqs. (22) and (23), we obtain

B is replaced 1) by 44?;;V(B). Combining

2 3
gk = C Sy 1 (24)

From BEq. (24), it is evident that global symmetry (fg = constant for all baryons)

implies that

3
e~ P (25)

vhich is essentially the p-wave phase space factor used by Lee and Yang 4)
Z;f. their Eq. (1817. By the same token, it is understandable from Eq. (23)

(since a /u1/ﬁB) that the heavier baryons will have somewhat smaller excitation

energies ?or their low lying isobars. When this is combined with the subtractive
term in Eq. (15b), it is easy to explain a reduction by a factor 2 in the half-
width of A\ * compared to that of N°. On the other hand, the additive term in
Eq. (15a) [E%en when one measures E(zi*) with respect to n{z‘;7 leads to the
expectation that the half-width of 37 " will be as large, or even larger, than

that of N . Similar qualitative arguments predict that the half-width of EEL‘%

will again be comparable to (perhaps smaller than) that of N%. These statements

4)

are roughly in accord with the numbers given in Table IIT of ref. .

1217
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In conclusion, it should be emphasized that the purposc of this note was

to obtain a more intuitive understanding of the relative energies and widths of
the low lying baryon isobar within the framework of global symmetry. We find,

. . and . . . .
in agreement with refs. 3) 4)9 that the observations concerning the excitation

energy and half-widths of ,\  can readily be understood on this basis. If it

turns out that the observed low lying /\ isobar does not have the quantun

numbers 12) J=3/2 the globally symmetric starting point for our calculations
Zgé well as those of refs. 3) and 427-would then become doubtful because opposite

parity of A and Z. would be likely 2)’12).
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