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Rapidity distributions of strange particles in Pb-Pb at 158 A GeV/c 
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Abstract. The production at central rapidity of 0
SK , Λ, Ξ  and Ω particles in Pb–Pb collisions at 

158 A GeV/c has been measured by the NA57 experiment over a centrality range corresponding 

to the most central 53% of the inelastic Pb–Pb cross section. We present the rapidity distribution 

of each particle in the central rapidity unit. The distributions are analysed based on hydro-

dynamical models of the collisions. 

1. Introduction 

Lattice quantum chromodynamic calculations predict a new state of matter of deconfined quark 

and gluons (quark gluon plasma, QGP) at an energy density exceeding ∼ 1 GeV fm-3 [12]. 

Nuclear matter at high energy density has been extensively studied through ultra-relativistic 

heavy ion collisions (for recent developments, see [16]). 

Within the experimental programme with heavy-ion beams at CERN SPS, NA57 is a dedicated 

experiment for the study of the production of strange and multi-strange particles in Pb–Pb 

collisions at mid-rapidity [10]. 

The measurement of strange particle production provides a fundamental tool to study the 

dynamics of the reaction. In particular, an enhanced production of strange particles in nucleus–

nucleus collisions with respect to proton-induced reactions was suggested long ago as a possible 

signature of the phase transition from colour confined hadronic matter to a QGP [15]. The 

enhancement is expected to increase with the strangeness content of the hyperon. These features 

were first observed by the WA97 experiment [1] and subsequently confirmed and studied in more 
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detail by the NA57 experiment [7]. Other insights into the reaction dynamics have been obtained 

by NA57 from the study of the pT distributions of strange particles: the results of the transverse 

expansion of the collision and the pT dependence of the nuclear modification factors have been 

presented, respectively, in [2] and [3]. 

Rapidity distributions provide a tool to study the longitudinal dynamics; for instance differences 

between protons and anti-protons have been interpreted as a consequence of the nuclear stopping 

[9]. If hyperons, like protons, keep a ‘memory’ of the initial baryon density, then the relative 

pattern for the rapidity distribution of hyperons and anti-hyperons should resemble that of 

protons and anti-protons [5]. 

Hydrodynamical properties of the expanding matter created in heavy ion reactions have been 

discussed by Landau [13] and Bjorken [6] in theoretical pictures using different initial conditions. 

In both scenarios, thermal equilibrium is quickly achieved and the subsequent isentropic 

expansion is governed by hydrodynamics.  

The complete results on the analysis of the rapidity distributions of strange particles can be found 

in [4]; in this contribution to the Quark Matter 2005 Conference proceedings we discuss mainly 

the longitudinal dynamics. 

2. Data sample and analysis 

The results presented here are based on the analysis of the full data sample collected in Pb–Pb 

collisions at 158 A GeV/c, consisting of 460 M events. The sample of events corresponds to the 

most central 53% of the inelastic Pb–Pb cross section. The data sample has been divided into five 

centrality classes (0, 1, 2, 3 and 4, class 4 being the most central) according to the value of the 

charged particle multiplicity around central rapidity measured by a silicon microstrip multiplicity 

detector. The procedure for the measurement of the multiplicity distribution and the 

determination of the collision centrality for each class is described in [11]. The fractions of the 
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inelastic cross section for the five classes, calculated assuming a total cross section of 7.26 barn, 

are given in table 1. A detailed description of the particle selection procedure, as well as of the 

corrections for geometrical acceptance and for detector and reconstruction inefficiencies, can be 

found in [2,3,4,7]. All the selected Ξ and Ω hyperon candidates have been individually weighted 

for acceptance and inefficiency losses; for the much more abundant 0
sK  and Λ species, the 

selected particles have been sampled uniformly over the whole data taking period; the sizes of 

those sub-samples were chosen in order to reach a statistical accuracy better than the limits 

imposed by the systematic errors. The experimental procedure for the determination of the  

rapidity distributions is described in [4]. 

3. Strange particle rapidity distributions 

The measured rapidity distributions are shown in fig.1 with closed symbols. For all hyperons the 

rapidity distributions are found to be symmetric with respect to the rapidity of the centre of mass 

(‘mid-rapidity’) within the statistical errors as expected for a symmetric collision system. A 

similar conclusion cannot be drawn for 0
sK  since our acceptance coverage does not extend to 

backward rapidity. The symmetry of the Pb–Pb colliding system allows us to reflect the rapidity 

distributions around mid-rapidity (open symbols in fig.1). The rapidity distributions of Λ, −Ξ , 

+
Ξ  and Ω are compatible, within the error bars, with being flat within the NA57 acceptance 

window.  

For the 0
sK  and Λ  spectra, on the other hand, we observe a rapidity dependence. The rapidity 

distributions for these particles are well described by Gaussians centred at mid-rapidity. For both 

particles, the width of the rapidity distributions is constant within the errors in the five centrality 

classes (i.e. from 40–53% to 0-4.5%, see table 1).  
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In all the centrality classes, the rapidity distribution of the Λ hyperon is consistent with being flat 

over the considered range. In the same rapidity range, the Λ  distribution varies by about 40% 

(class 4). It is likely that the Λ hyperon rapidity distribution reflects the overall net baryon 

number distribution. The same behaviour was observed for the y distribution of protons in central 

Pb–Pb collisions at the same energy by the NA49 experiment [5]. 

4. Longitudinal dynamics 

The transverse dynamics of the collisions have been studied in [2,8] from the analysis of the 

transverse momentum distributions of strange particles in the framework of the blast-wave model 

[17]. The rapidity distributions can be used to extract information about the longitudinal 

dynamics. We use an approach outlined in [17] (i.e. the same blast-wave model used for the study 

of the transverse dynamics) and [14], where, respectively, Bjorken and Landau hydrodynamics 

[6, 13] are folded with a thermal distribution of the particle velocity in the fluid elements.  

In fig.2 the observed rapidity distributions are compared with the expectation for a stationary 

thermal source and with a longitudinally boost-invariant superposition of multiple isotropic, 

locally-thermalized sources (i.e. Bjorken hydrodynamics). Each locally thermalized source is 

modelled by an mT-integrated Maxwell–Boltzmann with  the rapidity dependence of the energy, 

E = mT cosh(η),  explicitly included  
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where Tf is the freeze-out temperature, 22 mpm TT += and ηis the rapidity of the individual 

fluid element. The distributions are integrated over source element rapidity to extract the 

maximum longitudinal flow, ηmax,  
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where Lβ  is the maximum longitudinal velocity in units of c. The average longitudinal flow 

velocity is evaluated as )2/tanh( maxηβ =L . A simultaneous fit of the function defined by 

equation (2) to the rapidity distributions of the strange particles gives Lβ =0.42±0.03 with 

ndf/2χ =28.2/32. The freeze-out temperature has been fixed to the value Tf=144 MeV obtained, 

for the most central 53% of the inelastic Pb–Pb collisions, from the analysis of the transverse 

mass spectra of the same group of particles [2]. In the same analysis the average transverse flow 

velocity has been determined to be ⊥β =0.38±0.02, i.e. only slightly less than the longitudinal 

velocity determined in this analysis; this indicates substantial stopping of the incoming nuclei as 

a consequence of the collision. 

In principle, also the freeze-out temperature can be fitted from the rapidity distributions along 

with the longitudinal velocity. However, the sensitivity to the freeze-out temperature is very 

limited. For instance, changing Tf from 144 to 120 MeV results in only a 2% increase of Lβ . 

Within our uncertainties, we do not observe any particle to deviate from the common description 

given by a collective longitudinal flow superimposed to the thermal motion. A combined fit 

performed only to the 0
SK  and Λ  rapidity distributions yields a smaller value of the flow, i.e. 

Lβ =0.36±0.03. It is worth noting that the flattening of the rapidity spectra with increasing 

particle mass, which is also observed in the data, is due in the model to the collective dynamics: 

all particles are driven by the flow with the same velocity independently of their masses. 

In Landau hydrodynamics, the amount of entropy (dS) contained within a (fluid) rapidity dη is 

given by [13] 
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where 222 ηω sf cq −= , ( )0/ln TTff =ω , sc  is the speed of sound in the medium, T0 is the initial 

temperature, η  is the rapidity, R is the radius of the nuclei, 2l is the initial length, s0 is the initial 

entropy density, ( ) 22 /12 ss cc−=β  and I0, I1 are Bessel functions. The quantity 0
2lsRπ  is used to 

normalize the spectra at mid-rapidity. The particle rapidity distribution is obtained, as for the 

Bjorken case, as a superposition of the multiplicity density in rapidity space (dN/dη ∝  dS/dη) 

with a thermal distribution of the fluid elements, 

∫ −= ηη
ηη

dy
d

dN
d
dN

dy
dN th )(                      (4). 

In the Landau model the width of the rapidity distribution is sensitive to the speed of sound and 

to the ratio of the freeze-out temperature to the initial temperature. While integrating over η in 

equation (2), the range of η is treated as a parameter in the case of Bjorken hydrodynamics; 

moreover in the Bjorken case (equation (2)) the factor dN/dη, which appears in equation (4), has 

been included in the overall normalization factor A since the entropy density dS/dη is 

independent of the rapidity, in accordance with the assumption of boost invariance along the 

longitudinal direction [6]. In the case of Landau hydrodynamics, the integration limit2 is fixed by 

( ) sf cTT //ln 0minmax =−= ηη and the multiplicity density in η space (dN/dη) is written explicitly 

in the η integration (equation (4)). Landau hydrodynamics can also reproduce simultaneously the 

distributions for all the strange particles considered (χ2/ndf ≅ 28/32), but we are not able to put 

stringent constraints on both the speed of sound and the ratio Tf/T0. The confidence level contours 

                                                 
2 In [18] a modification has been developed (Srivastava) where the integration limit for rapidity is infinite, but this 
case has not been considered in the present analysis. 
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in the 2
sc  versus Tf/T0 parameter space are shown in fig.3. For instance, the hypothesis of a 

perfect gas (i.e. 2
sc  = 1/3) would result (at the 3σ confidence level) in either Tf/T0 ≈ 0 or 

Tf/T0 ≈0.6. In fact, two physical regions are constrained at the 3σ confidence level, the first 

located at small values of Tf/T0 and the second between 0.5 and 0.8; on the other hand, the region 

at 2
sc  > 1/3 is unphysical. Both physical regions span over the full range 0< 2

sc <1/3. 

5. Conclusions 

We have measured the dN/dy distributions of high purity samples of 0
SK ,Λ, Ξ and Ω particles 

produced at central rapidity in Pb–Pb collisions at 158 A GeV/c over a wide centrality range of 

collision (i.e. the most central 53% of the Pb–Pb inelastic cross section). In the unit of rapidity 

around mid-rapidity covered by NA57, we have performed fits to the dN/dy distributions of 0
SK  

and Λ  using a Gaussian parameterization: the resulting widths are compatible with each other 

and constant as a function of centrality. Contrary to Λ , the Λ spectra are flat to good accuracy in 

the range of rapidity and centrality considered; this would indicate that the Λ hyperon conserves 

‘memory’ of the initial baryon density. 

The rapidity distributions of the Ω particle are found to be flat within the errors in one unit of 

rapidity for central (0–11%) and peripheral (23–53%) collisions. 

Boost-invariant Bjorken hydrodynamics can describe simultaneously the rapidity spectra of all 

the strange particles under study with χ2/ndf ≈ 1, yielding an average longitudinal flow velocity 

Lβ =0.42±0.03, slightly larger than the measured transverse flow. An almost isotropic 

collective expansion of the system suggests large nuclear stopping.  
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A fairly good description is also provided by Landau hydrodynamics, which allows us to put 

constraints in the parameter space of the speed of sound in the medium and the ratio of the 

freeze-out temperature to the initial temperature.  
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List of figures. 

1. Rapidity distributions of strange particles in the most central 53% of Pb–Pb interactions at 158 

A GeV/c. Closed symbols are measured data and open symbols are measured points reflected 

around mid-rapidity. The Λ  and 
+

Ξ  results have been scaled by factors 4 and 2, respectively, for 

display purposes. The superimposed boxes show the yields measured in one unit of rapidity (as 

published in [2]) with the dashed and full lines indicating the statistical and systematic errors, 

respectively. 

 

2. Rapidity distributions of strange particles for the centrality range corresponding to the most 

central 53% of the inelastic Pb–Pb cross section as compared to the thermal model calculation of 

equation (1) (dotted lines, in red) and a thermal model with longitudinal flow (full lines, in 

black).  

 

3. The square of the speed of sound in the medium (in unit of c2) versus the ratio of the freeze-out 

temperature to the initial temperature. The 1σ (full curves) and the 3σ (dashed curves) confidence 

contours are shown. The dotted line at 2
sc = 1/3 shows the ideal gas limit.
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Table 1. Centrality ranges for the five classes. 

Class  0  1 2  3 4 

σ/σinel (%) 40–53 23–40 11–23 4.5–11 0–4.5 
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Figure 1 
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Figure 2 
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Figure 3 


