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Abstract

This paper generalizes to the totally real case the previous work of
Bertolini and Darmon [BD3] on Anticyclotomic Iwasawa’s Main Con-
jecture for modular forms over Q with coefficients in Z,. It contains
the definition of anticyclotomic p-adic L-functions attached to Hilbert
modular forms and the generalization of the main result of [BD3] to
this context. The main feature of the totally real case is the possi-
bility of defining several p-adic L functions (each in several variables)
corresponding to different divisors p of p: the paper also explores the
relations between these different p-adic L-functions.
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Introduction

Let F/Q be totally real of degree d := [F' : Q] and let K/F be quadratic
imaginary. Fix a rational prime p and assume that p does not ramify in K/Q.
Let fo € Sa(ng) be a Hilbert modular form for the I'g(ng) level structure
(where ng C Op is an integral ideal of the ring of integers of F'), with trivial
central character and parallel weight 2. Suppose that fj verifies the following
condition:

Assumption 1. 1. The ideal ng is prime to the discriminant 0g /g of

K/Q.

2. fo is an eigenform for the Hecke algebra T, acting faithfully on Ss(ng).
Denote by Oy, the ring of integers of the finite extension of Q containing
the eigenvalues of the action of the Hecke operators on fy and, for any
prime q € Op, denote by aq the eigenvalue of the Hecke operator T

for qfng or Uy for q | ng;
3. There exists a square-free divisor n~ of ng such that:

(a) 0~ is prime to p;
(b) fo arises from a newform of level divisible by n™;
(¢) The number prime ideals ¢ € Op dwiding w~ and d = [F : Q]
have the same parity;
(d) Any prime ideal ¢ C Op dividing n~ is inert in K/F.
4. There is a prime ideal 1 C Oy, dividing p such that fy is m-ordinary at

p, that is, for any prime p C Of dividing p, there ewists a unit root o,
of X? — a, X + |p|, where |p| is the norm of p.



Fix an ideal (prime or not) p C Op which divides p. To such a modular
form fy is possible to associate a p-stabilized modular form, that is, a modular
form f € Sy(n) where n :=ng ], m, 9 such that Uy(f) = o f for o | p
and, of course, Tqf = aqf for q f n, Uyf = aqf for q | (n/p). Using the
notion of Gross points it is then possible to associate to f a p-adic L-function
Ly(f, K) relative to the prime p. This is an element of Ay 1= O [Gpe],
where Oy, is the completion of Oy, at 7 (note that the eigenvalues of the
action of T, on f are contained in this ring because «, are unit roots) and
Gype = Gal(Kyo /K) =~ Z5%®) is the Galois group of the anticyclotomic
Z,-extension associated to p (as defined in Section 2.1).

On the other hand, there is a notion of Selmer group attached to f.
Denote by p; = psr : Gp — GL2(Oy,) the m-adic Galois representation
attached to f and by T the associated G p-module. Let V; := Ty ®z, Q, and
Ay = (Vi/Ty)[r]. To define the Selmer group it is convenient to assume
that the modular form f satisfies the following condition:

Assumption 2. Let G, C G be a decomposition group at q. For any prime
q C Op dividing n exactly and not dividing p, there is an exact sequence of
Gr,-modules: 0 — Agcqi — Ap — Agcli — 0 such that GF, acts on the one-

dimensional Oy /(7)-vector space A;qi as multiplication by € or —e, where
€ : Gp — Z, 1s the cyclotomic character.

The Selmer group is then defined in the usual way by requiring suitable
local conditions to global cohomology classes. This lead to a notion of a
compact Selmer group Sely o (Kpx) € H'(Kp=, Tt ), which is naturally a
module over the Iwasawa algebra Ap~. The theory of Ap~-modules implies
that the Pontryagin dual Self (K )" of this Selmer group admits a char-
acteristic power series Charye (f, K) € Apeo.

Anticyclotomic Iwasawa’s Main Conjecture. The equality L,(f,k) =
uChary(f, K) holds in Ay, where u € Ay is a unit.

To state the main result of this paper, suppose that the following condi-
tions on f are verified:

Assumption 3. 1. py is is residually irreducible.

2. Let k := Oy /(7) and define my . to be kernel of the natural morphism
T, — k associated to f. The completion Ty of T\ at my . is isomorphic
to O¢ . If this condition holds, say that f is m-isolated.

Theorem. Under the above Assumptions 1, 2 and 3, the characteristic power
series Chary(f, K) divides the p-adic L-function Ly(f, K).
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Remark. While Assumptions 1 and 3 are fundamental for the arguments,
Assumption 2 could, in principle, be replaced by any Selmer-type condition
at the primes dividing n and not dividing p.

The proof of this result is a generalization [BD3|, where the case of F = Q
and Of . = Z, is considered. In Section 4 the main steps of the proof are
recalled and the necessary adaptations are performed.

The main new feature of the totally real case is that it is possible to
define a p-adic L-function for all divisors p | p. In particular, suppose that
p1 | p2 | p, with py # po ideals of Op. Then there are two p-adic L-functions
Ly, (f, K) and Ly, (f, K) and a natural restriction map Ap,/p, : Apge — Apee.
It is then possible to investigate the relationship between L., (f, K) and
Apo/pr (Lps (f, K)). The result is that they are equal up to an explicit fac-
tor which depends on the eigenvalues oy, =[] olp: Qo for i = 1,2 and on the
behavior of the primes p dividing ps/p; in the extension K/F (see Corollary
2.7). In particular, if some of these primes are split in K/F then it may be
possible that this factor relating Ly, (f, K) and Ay, /p, (Ly, (f, K)) is zero (see
Corollary 2.7 and the Example after it). It is then conjectured that the same
relation holds between the characteristic power series A, /p, (Chary, (f, K))
and Chary, (f, K).

Notations. The following notations will be used throughout the paper:

e [ is a fixed totally real number field, with ring of integers Op, and p a
fixed prime ideal of Z. The letters p, p1, po2, p’ and p, will denote integral
ideals, not necessarily prime, of Or which divide p, while the letter p will
denote a prime ideal of Op which divides p.

e For F a number field, denote by Op its ring of integers; for any place v of
E denote by FE, the completion of E' at v and, if v is finite, denote by Og,
the completion of O at v. The letter q will denote prime ideals in Og. If g s
such an ideal, denote by |q| its norm. If D is a Og-algebra and q C O is a
prime ideal, define Dy := D ®0,, Op 4, while, if v | 0o, define D,, := D ®@p E,,.

e For any field E, let G = Gal(E/E) be the absolute Galois group, where
FE is an algebraic closure of E. For any Gg-module M, denote by H"(E, M)
the continuous cohomology groups H" (G g, M). For any extension E'/E, de-
note by H"(E'/E, M) the continuous cohomology groups H"(Gal(E'/E), M).
If £ is a number field, ¢ C Op a prime ideal and E’/E an extension, define
H"(Eq, M) == @q|qH" (Ey, M), where the direct sum is taken over all prime
ideals q' C Op dividing q.



e For any Z-algebra F, denote by E=F Rz Hq Z4 the profinite completion
of E, where q ranges over the set of prime ideals of Z.

Acknowledgements. It is a pleasure to thank Professor N. Schappacher
for suggesting me the problem of considering different p-adic L-functions and
for many helpful suggestions and discussions on this subject.

2 p-adic L-functions

2.1 Anticyclotomic Z,-extensions

Let F/Q be totally real of degree d over Q and K/F quadratic imaginary.
Fix a rational prime p, prime to the discriminant 0x /g of K over Q. For any
integral ideal f € Op, let O; := Op + fOk be the order of conductor § in
K and let RCF(f)/K be the ring class field of K of conductor f, that is, the
Galois extension so that Gal(RCF(f)/K) ~ Pic(0Oy) ~ IA(X/(@;KX), where
Pic(Oy) is the Picard group of O;. By the formula of Dedekind:

bl TTy (1= () la™)
B 05 07 |

hy == #Pic(Oy) 1)
where <%> = 1 (respectively, —1,0) if q is split (respectively, inert, ramified)
in K/F. For any m, any ideal (prime or not) p C O dividing p and any
ideal ¢ C Op prime to p, define via class field theory the extension Km /K
contained in RCF(¢p™) by requiring that

Gal(Kgm /K) ~ K* /(05,05 K*) ~ Pic(Ogm) /Pic(OF),

where Pic(Op) ~ F\X/(@\;szis the Picard group of Op. Note that Km C
Km for any p | p and that Km is unramified outside the places dividing
cp. Define Ko 1= lim_,,;, K¢ym. Then:

Gpo 1= Gal(Kgpe | K) = K> /(][ O F*K). (2)
atp
There is a non-canonical isomorphism

Gal(K oo / K) =~ deg(p) X Apoo,

where Ay is the finite torsion subgroups of Gal(K. oo/ K) and, if g is prime,

deg(p) = [F, : Q], while if p = [[p1...ps with p;, j = 1,...5 < d
(different) primes, deg(p) := > 7_, deg(p;) (so that, since p is unramified in

K/F, p®8®) = |p|). In particular, note that Gal(K e /K) =~ 228 X Agyee.
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Definition 2.1. The p-anticyclotomic Z-extension Ky /K is defined to be
the subfield of Ky so that

Gpeo = Gal(Kpe /K) Zzeg(p).

The extension Ky /K does not depend on the choice of ¢, is Galois over
F and the quotient Gal(K/F) acts by conjugation on the normal subgroup
Gal(Kp=/K) by the formula ¢ — 707 = o', where 7 is the choice of a
complex conjugation raising the non trivial automorphism of Gal(K/F'). For
any integer m > 1, define the extension Kym/K by requiring that Gym =
Gal(Kyn /K) =~ (Z/p™Z)e®).

2.2 Modular forms

For any integral ideal v, denote by Sy(t) the C-vector space of Hilbert modular
forms of parallel weight 2 and trivial central character with respect to the
[o(t)-level structure and by T, the Hecke algebra acting faithfully on Ss(t)
(see [Zh1, Section 3.1] for precise definitions). For any quaternion algebra
D/F of discriminant 0 which is ramified at all archimedean places, any ideal
s C Op prime to 0 and any ring C, denote by S (s,C) the C-module of
functions: A
O*F*\D*/D* — C,

where O C D is an Eichler order of level s. There is an action of Hecke algebra
Ts on SP(s,C) defined as in [Sh] via double cosets. If 0 is square-free, the
Jacquet-Langlands correspondence [JL] yields a T sp-equivariant isomorphism
between SP(s,C) and the C-module of forms in S5(s0) which are new at 0
and whose Fourier coefficients belong (after a suitable normalization) to C.

Let fo € Sa(ng) be a Hilbert modular form. As in the Introduction fix
an ideal (prime or not) p C Of dividing p and assume that f, satisfies the
conditions in Assumption 1 (where K is the field in Section 2.1). From now
on use the same notations as in Assumption 1. Define as in the Introduction
ne=1no [, pm @ and n* :=n/n".

Let B/ F be the quaternion algebra of discriminant n~ which is ramified at
all archimedean places. Fix an Eichler order R C B of level n*. Since f; is 7r-
ordinary at p by Assumption 1, the Jacquet-Langlands correspondence can be
used as in [BD3, Propositions 1.3, 1.4] to show that there exists an unique (up
to multiplication by a number in OF ) modular form f = f, € SB(nT, 0t x),
where Oy := Oy, ~, such that:

b f%WSQB(n+70f,7T)§

o T,f = aqf for all prime ideals ¢ C Op with q { n;

6



o U,f = aqf for all prime ideals ¢ C Op with q | (n/p);
o U,f = a,f for all prime ideals p C Op with p | p.

In fact, f is viewed via strong approximation ([Vi, Chapitre III]) as a func-

tion: .
Fo(QI €/ x {1, t} — Ofr

plp

where ?p is the set of oriented edges of the Bruhat-Tits tree 7, associated
to PGLQ(Fp),

Ty =B n([[R I B/ EFE n ][0k, ] F) € [[PCL2A(F,)

atp elp afp plp plp

H
is a discrete subgroup (acting on [],, £ via conjugation of Eichler orders

of level p) and ¢ satisfies B* = (F™ [[, Ry I1,, By B*) x {1,...,t}. Set up
the following notations:

o 0y : Ty — Oy : the morphism associated to f; for any integer n > 1,
let ¢, @ Ty — Op./(n") the composition of 6y with the canonical
projection;

o pr: Gp — GLy(Oyr): the m-adic representation associated to f; for
any integer n > 1, let ps,, : Gp — GL2(Oyf./(7")) the composition of
py with the canonical projection.

2.3 p-adic L-functions
2.3.1 Pairings

Same notations as in Section 2.2. Let K/F be as in Section 2.1. Since
Assumption 1 is verified, all prime ideals dividing n~ (respectively, n*) are
inert (respectively, are not ramified) in K/F. Define ¢ = ¢, C Op by the
following condition: for any prime q, q" | ¢ < q” | n™/p and q is inert in K/F
(that is, ¢ is the maximal factor of n™/p which is divisible only by primes
which are inert in K/F). (Note that ¢ = 1 in [BD3].) By [Vi], under this
assumption there exists an optimal embedding of O [1/p] == K N []., Ocq
into R[1/p] :== BN]]

atp

ot R, that is, there is an embedding

U:K — B satisfying U(OJ1/p]) = U(K) N R[1/p].



By passing to the adelization, there is a map:

= ([[ Ok )F\E*/K* — (][ R} )F*\B* /B,

atp atp

where écpoo is defined in (2). By strong approximation again, there is an
isomorphism:

n: [[ R F\B*/B* ~ (][ PGLa(F,) /T, x {1,...,t}.

atp plp

The natural action of PGLy(F,,) on ?p by isometries induces an action of
(ITppp PGL2(F,)) /Ty x {1,...,t} on ([, ?p)/lﬂp x{1,...,t} which can be
described as follows. Fix (é,1) € (I, ?p)/f‘p x {1,...,t} and let (w,j) €
(ITppp PGL2(F,)) /Ty x {1,...,t}; then (w, j)(€,7) = (w(e),j - 1) where:

e If e = (ep)op € [ ?p is a representative of e (mod I'y) and w =
(wp)elp € Tl PGL2(F},) is a representative of w (mod I'y), a repre-
sentative of w(e€) is (wy(ep))elp;

o If {g1,...., 1} C B* is a set of representatives for the double quotient
space (£ [1q, By [1,p By)\B*/B*, then j - i is defined by requiring
that g;.; is a representative of g;g;.

The modular form f yields a Oy -valued pairing [,], between the Galois
~ —
group G and ([[,, €¢)/Ty x {1,...,t} — Oy by the rule:

~

lg, (e, )]y = F((n¥(g)(e, 7).

2.3.2 Gross points and measures

By [Vi], under the above assumptions, there exists an optimal embedding
Uy : K — B of O, into Ry, that is, ¥(O,) = V(K) N Ry, where Ry 2 R
is an Eichler order of level n™ /p Define the set Gr( ) of Gross points of
conductor ¢ to be the image of O F*\K*/K* into R} F*\B*/B* via the
adelization \Ifg of Uy (note that, since \IJO is an optimal embedding, \Ifo is
injective). By strong approximation, R(TF “\B*/B* can be identified with
(ITppp Vo) /Tp x {1, ..., t}, where V,, is the set of vertices of the Bruhat-Tits
tree 7, so a point P € Gr(c) can be identified with a pair (7, ) (obvious
notations). Furthermore, for any m > 0, there are optimal embeddings
U, : K — B of Oyn into R, that is, as above, U,,,(Om) = RNV, (K).
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Define the set Gr(cp™) of Gross pomts of conductor ¢p™ to be the image
of Ocme \KX/KX into RXFX\BX/BX via the adelization U,, of W,, (as

above, U, is injective). So, a Gross point P € Gr(cp™) is a pair (€gm, J).
Denote by v — © (respectively, e — €) the canonical projection [] oo Vo —

(ITopp Vo) /Tp (respectlvely, H@IP — (ILp ?p)/l“p). Moreover, for any

e = (eg)plp € HKJHJ Ep, denote by s and t the source and target of e, so
that e = (s(e),t(e)) = (s(ep),t(ey))plp- Gross points enjoy the following
properties:
e For any ey €[], ?p so that, for some j, Py := (€, J) € Gr(cp),
there exists vc € [] |,V with % := (0, j) € Gr(c) and s(egn) = ve. In
this case, say that P, and P, are compatible.

ﬁ
olp & p so that, for some j, Pym+1 1=

H
(Eqpmt1,5) € Gr(ep™!), there exists eqm € [] ), &€y With Pym :=
Eepm, J) € Gr(cp™) and s(eqym+1) = t(eqm ). In this case say that P, 1
p p p +
and P, are compatible.

e For any m > 1 and any eqm+1 € ]

Definition 2.2. Define the set Gr(cp™) of Gross points of conductor ¢p> to
be the set of sequences Pepoo = (Peym )m>0 where for every m, Pym € Gr(cp™)
and Peym 1s compatible with Peym-1.

For any m > 2, define Ugym := Ker(G e — Gepm). Choose a Gross point
Pipoe = (Pepm)m>0 € Gr(cp™) such that, for m > 2, Stabg,__ (Pam) = Ugrn.
Since oy =[],
Oy »-valued measure 7, on Gy by the rule:

7p(U) = w[%ﬂpm}p

Qp

g, is a unit in O, the pairing [, ], can be used to define a

for all compact open sets U = gUcm for some g € écpoo. Note that, since
N O = O and the index of OF in O is finite because K/F' is quadratic
imaginary and F' is totally real, the relation [OF : cpm] [OF : OF] holds
for m sufficiently large. The distribution relation on 7, can be obtained by

observing that f is an eigenform for U, := [] olp U, with eigenvalue ay and

the Galois group Gal(K m+1/Km), whose order is |p|/] g Ofmia], acts
on Gr(cp™*!) by permutation of the points which are compatible with Peym.
2.3.3 p-adic L-functions

Define /~\cpoo to be the completed group ring;:
Acp“’ = Of,w[[écpw]] = E% Ot [écpm]a



where the inverse limit is taken with respect to the canonical restriction maps.
Recall the (non canonical) isomorphism Gepe o Gal(Gyoo /K) X Ageo, with
Gal(Gye /K) ~ Z3%® and the finite layers Gal(Kyn /K) ~ (Z/p™Z)%e®).
Define the Iwasawa algebra Ay~ to be completed group ring

Ap°° = Of,7r [[Gp"o]] = El;rnl Ofﬂr[GPm} =~ Of,ﬂ' [[Th cee Tdeg(P)]]a

where T7,...Tyeg(y) are variables. Write also Agm (respectively, Apm) for
O; |G ] (vespectively, O [Gym]). Note that Aym and Ay are independent
of ¢.

Define for m > 2:

Ef,cnm = Z Vp(gUqpm) - g € Ofm[écpm]-
geé’cpm

The distribution relation satisfied by 7, ensures that there exists an element:

Lfepe 1=l Ly e € Agpoe.

Define Ly e to be the canonical image (via restriction) of ﬁcpoo in the Iwa-
sawa algebra Ap~. Denote by £ +— L* the canonical involution of Ay defined
to be the extension by O ,-linearity of the involution g — g~ of Gy~. Note
that a different choice of Py satisfying Stabécpoo (Uepm) = Pepm has the effect
of multiplying Lee (respectively, L) by an element of Gy (respectively,
Gy ). So, the element f}cpoo(f, K) = Ef’cpooE?CpOO € Acpoo is well defined and
the following definition is well-posed.

Definition 2.3. The anticyclotomic p-adic Rankin L-function attached to f,
p and K is the element Ly(f, K) € Ap defined to be the image of Ly(f, K)
in Aepoo.

It follows immediately from Definition 2.3 that:
Lo(f, K) = Ly e L oo

Remark. Of course, the definition of L,(f, K') depends on c¢; but since ¢ itself
depends only on f, p and K, and the Iwasawa algebra Ay~ does not depend
on ¢, the subscript ¢ has been dropped from the notation of Ly(f, K).

Fix a finite order character x : écpoo — @, and extend it by O ,-linearity
to Ay — @, (this is possible because x has finite order). Then the following
interpolation formula holds (see [Zh2, Section 1.3]):

X(icpw<f7 K)) = LK(f7X> 1)7
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where Lk (f,x,1) is the L-function Lk (f,s) twisted by the character x, =
means that the above equality holds up to an explicitly non-zero computable

term and the values of y are viewed as complex numbers by fixing an em-
bedding Q, — C.

2.4 Relations between different p-adic L-functions

Assume that p; C O and ps C Op are two divisors of p. Then there are
two different p-adic L-functions Ly, (fp,, K) € Apee and Ly, (fp,, K) € Aeypse,
where f,, and ¢; depend on p; (recall that f,, is obtained by raising f; at some
primes dividing p;). Suppose that p; | po and assume that f,, = f,, = f
(that is, the primes p C O dividing po/p; are also divisors of ng, the level
of fy). Since p; | po, it follows that ¢; = cop, where p := lepz,p’ml,(gkfl ©

(recall the notations in Equation (1): p is the product of the primes g | po,
© 1 p1 which are inert in K/F). It follows that K ym C K for all m > 1.
So, there are canonical maps:

A : /Lngm — ]\qp’f form>1, and A%, : ACZPQ — /~\qpc1>o

m
p2/p1 p2/p1

induced by restriction maps.

Introduce these more general notations: For any ideal v C Op define the
extension K, C RCF(t) by requiring that Gal(K./K) ~ Pic(O,)/Pic(Op).
Furthermore, for any ideal v C OF so that there exists an optimal embedding
U.: K — B of O, into R, denote by Gr(t) the image of OF F*\ K*/K* into
ﬁxﬁX\EX/BX via the adelization of W.. By definition:

< _ O - Ofpm] .
P2/P1<‘CC2P§”) - Z T;Q Z (g0, Pcngn]pz "9

~ O{p2 ~ ~
ISIEN pm UEGa](Kcngz/Kclp'in)

1P]
where ¢ is any element of écw;" whose reduction is g. Write p, := E—j; note
that p | p.. Since f is an eigenform for U, = []

' ' olie U, with eigenvalue
Qp, 1= HMP* oy, the inner sum is equal to:

> 3 5. T Papgls | =

PEGal(Kczp{in—l/Kcl"iﬂ) TeGal(chpQ"/KCvalnpin—l)
(0%
B ps 5(m=1) ;
- Z O - OX ][g Pr Pyt
m—1 -+ Q’Jg’b

I r m
PECAU(K_ i m—1/Kepm) ~ C2PTPE

pitp
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m-1 whose reduction coincide with g

here §™~Y is any element of écgp?‘p*

and P jnm-1 € Gr(copTp?""). (Note that, if Poyn = ((égn))p,j), then
PCQpr;rtnfl is represented by the product of edges (Hp\m éfpm) lep* égn_l),j),

where, for o | p,, the target of e is equal to the source of e{™.) Define
p’ = pa/(p1p) = p./p. A recursive argument combined with the equality
¢1 = ¢op shows that the inner sum equals:

am—l
§ P 5(1) .
[ X - OF ][g >PC1P{”P’]1327 (3)
Gal(K, K cpy'p’ T eapyt
oeGal( clp{”p// clpgn)

~(1 . = . . .
here g is an element of Gepry whose reduction is g and Pymy is a

Gross point of Gr(c;p{"p’) which can be described by (I, ég’"‘) | J IS ég),j),
(

where, for o | p’p, the distance between the target of 6@1) and the source of
eé,m) is m — 2. Note that:

UP’ (PCHJ{”)

P _ B 6@(PC1P{")
OLpry = [ X - OX ] [ X - O ]7
~ ~ T . T 4o/ moo. TV saf
UeGal(Kclpi’lp’/Kclp{") c1py aprp oly c1py apyp

where 0, is a suitable element in éclp’lﬂ- (Recall that, by definition, if p | p’,
then p is split in K/F, so #Gal(f(qunp//f(clpin(p//p)) = |p|—1 and deg(U,,) =
|p|; see also the analogous formula in [BD2, page 433, second case of p divides
NJ). Combining this formula with (3) yields the following expression for

5‘P2/P1(£C2P§”>:

A oy [0 OF ]
Px p C: C pm
Z am—22 —— [97 PC1P’1"]¥31 9=
geéqun p2
am 0% : 0% ]
P c cp
- Z 0/2_2 = [g(swpcllﬁ{”]m 9.
gEGclPT P2
Then:
m ~ ap,a [OF 1 OF] ~ ap, [0 1 O] 0 5
P2/P1(£‘2p§") =— = > Lepp — Z E— lﬁqpln' (4)

Qpy Qpy

ol

The elements d,, are independent of m (indeed, they depends only on the
choice of P,p) and they belong to the torsion subgroup A pe C G peo
(this is because they act only on the p-component of P, pe).
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Lemma 2.4. Let ny := #{p | p'}. Then:

Qpy [chl

Qpy

- - (’)é] 2 -
/\Pz/P1(LC2PS°(f7 K)) = lpz/P1LC1pf°(f7 K)’

where Ly, jp, 7= o — ay 300 (8 + 057 ) + 1y + 30 i 000, s an element

of Ofﬂr[AcmT"]‘
Proof. Combine equation (4) with the identity (59_1[;1,3?»)* = 5p£~c1p‘f°' O
Define
Apsfpr  Apge — Ao
to be the natural map deduced by restriction on Galois groups.
Proposition 2.5. Notations as in Lemma 2.4. Then

Qp,y [chl

Qp,

0%\ )
Apa/pn (L (f, K)) = (= 1y )" Ly, (f, K).
Proof. For any § € A p~, the image of (5Z~}clp?o(f, K) in Ay is the same as
the image of L, p(f, K). The statement follows then from Lemma 2.4. [

Corollary 2.6. Notations as in Lemma 2.4. If p = (1) (that is, all primes
dividing po but not dividing py are split in K/F) then ny is the number of
primes dividing po/p1 and:

O‘%g (O‘pz — Ny Oy, )2

4
apl

Apz/m(Lm(fa K)) = Lpl(f’ K)~

On the other hand, if p = pa/p1 (that is, all primes dividing po but not
dwiding py are inert in K/F) then ny =0 and:

)‘92/91 (Lpz(f7 K)) = (aPQ/QP1)4LP1 <f7 K)

Proof. Follows from Proposition 2.5. O

Fix an isomorphism ]\clp‘fo ~ Of[Ti,..., Taeg(pr)]- Then there is an
isomorphism Acpse ~ Of2[T1, ..., Taeg(py)> Tdeg(pr)+1s - - - » Tdeg(ps)] such that
the kernel of the restriction map Ap,/p, is the ideal (Tueg(pi)+1s- - -5 Ldeg(ps))-
Fix also such an isomorphism. Then the above results simply assert that
L, (f,K) is the special value of Ly,(f, K). More precisely: write T}, (re-
spectively, T},) for the set of variables T1,. .., Tueg(p,) (respectively, for the
set of variables Tieg(p,)+1,---,1p,). Then Ly (f, K) = Ly, (f, K)(T,,) and

Lpz(fv K) = Lpz(f, K)(TPI7TP2)'

13



Corollary 2.7. Notations as in Lemma 2.4. Then

Cpy [chl

Qp,y

Lon(F. K)(T,,0) = ( : Oé]) (0 — 1y Ln (K (Th ).

Proof. The isomorphism between an Iwasawa algebra Z,[G] (where G ~ Z,
is the Galois group of a Z,-extension) and the formal power series ring Z,[X]
is defined by sending a topological generator v of G to 1 — X. The result
follows. O

Ezample. Assume that F//Q is real quadratic, that p = g1 with p; C Op
prime ideals, @1 # 9. Define p; = @1 and py = p = p1p9. If o is inert in
2

F/K then p' = (1) and L,(f, K)(T,,,0) = (au,[0F : OF])" Lo, (f, K)(T},).
On the other hand, if g is split in K/F, then p = (1) and L,(f, K)(1,,,0) =
%Lm(ﬂ K)(T,,). If o, = «, that is, a,, = 1, then the above
formula implies that L,(f, K)(T,0) = 0. This phenomenon can be regarded
as a sort of extra-zero of the restriction of L,(f, K) to the first variable.

3 Iwasawa’s Main Conjecture

3.1 Selmer groups attached to modular forms

Notations as in the above sections. Let Ty = T, be the Gp-module, free
of rank 2 over Oy, associated to the representation p¢; define Vy = Vy . 1=
Tf ®ZP Qp and Af = Afﬂr = Vf/Tf (hence, Af ~ (Kf,w/of,w)2 as Ofﬂr—
modules). Moreover, define Ty, = Ty/7"T; and A;, = Af[n"], so that
there both Ty, and Ay, are Oy, /(7")-modules free of rank 2 and there is
an isomorphism of Gp-modules Ty, ~ Ay,. Furthermore, Ay ~ lim_,, Ay,
with respect to the inclusion maps and Ty ~ lim.,, T}, with respect to the
multiplication by 7 maps. Taking the direct (respectively, inverse) limit as
m — oo of the groups H'(Kym, As,) with respect to the restriction (respec-
tively, corestriction maps) yields the groups:

HY (Ko, Agy) i=lim H' (Kym, Aj ),

HY (Koo, Ty ) = lim H(Kym, Tj.0),

where the notations are the same as in Section 2.1 and 2.2 (in particular,
Gal(Kye | K) ~ Z3%5®)),

Denote by € : Gr — Z,; the cyclotomic character giving the action of
Gr on the p-power roots of unity p,~. Assume that the representation py -
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satisfies Assumption 2 so that for any prime ideal q¢ C O dividing exactly
n and not dividing p there is an exact sequence of G,-modules: 0 — Agfqi —

Apq — AS}% — 0 such that G, acts on the one-dimensional Oy . /(7)-vector

space A;q% as multiplication by € or —e. Recall that, by Assumption 1, fj is

assumed to be w-ordinary at p. This condition implies that for any n > 1
and any g | p there is an exact sequence of I,-modules: 0 — A;‘f) 1) — Apn —

AE}ZL — 0 where I, acts on the free of rank one Oy, /(7")-module AS{@L by €

while it acts trivially on the quotient AE}T)Z (which is also free of rank one over
O/ (7).

Define the following finite/singular and finite/ordinary structure, where
M = Aﬁn or M = Tf’ni

Let ¢ € Op be a prime ideal such that q { np. Denote by I, the di-
rect sum of the inertia subgroups Iy C Gy, where q’ ranges over the set
of primes of (’)Kpm dividing q and Gy € G Kym 18 the choice of a decompo-
sition subgroup. The singular part of H'(Kym q, M) is Hg,,(Kynq, M) :=
H' (I, M) G i g/ Koma) - — qu/|qH1([qf,M)Gal(Ks’r;{,q’/K"m*q’). The kernel of
the residue map Oq : H'(Kyn g, M) — Hy, (Kym q, M) is the finite part of
H'(Kym g, M) and is denoted by Hg, (Kym q, M). Taking direct limits for
m — oo yields:

Hflin(Kpoo,qa Af,n) = li}% H§n<KPm,q7 Afn’b)a

HY  (Kpo gy Afp) = lim H

sing sing

(Kpm7q, Af,?’b))
while taking inverse limits yields:

Hén<Kpooaq7 van) = Elgnl HéII(Kpmaq’ va”)’

ag!
Hsing

(Kye.q, Tp) = lim H

sing

(Kpm7q7 Tf’n)
The groups H}, (Kp~q, Afpn) and I:Isling(Kpoo’q,Tfﬁn) are annihilators of each
other under the local Tate pairing (,)4. Moreover, as in [BD3, Lemma 2.4
and Lemma 2.5]:

o If q is split in K/F, H} (Kye.q, Asn) =0 and HL

sing

(Kpooﬂ, Tf:”) - O
o If q is inert in K/F, HY (Kyeq Tpn) = HLo(Kg Thn) ® Ape and
Hg, (Ko g, Afn) ~ Hom(HS,, (Kq, Trn) © Ay, Qp/7Z,) (notations for
the Iwasawa algebra Ay~ as in Section 2.3).

15



Let ¢ C Op be a prime ideal such that q | n exactly and the residue
characteristic of ¢ is not p. Recall the module Agcqf)l defined by the above
exact sequence for Ay, at q. The ordinary part of H*(Kym 4, Ay,,) is defined
as HY ((Kyn g, Asn) = HY (Kpn g, Agcqzl) Taking direct limits:

O

Horg (Ko, Afn) 1= 1}7% Heorg (Kpn.q Afon)-
Use the isomorphism Ay, ~ T}, to define Tﬁz o~ Agf'zl and Hy(Kym g, Tf.0)

= H'(Kym g, TJEUQL) Taking inverse limits:

Hérd<pr,q7 Tf,n) = (11172 Hérd<KP7"7q7 Tf,n)-

The groups HL  (Kye.q, Apn) and H.  (Kye q, Tyn) are annihilators of each
other under the local Tate pairing (, ).
Let ¢ C Op be a prime ideal such that g | p. Recall the module

A;ﬁz defined by the above exact sequence for A, at p. The ordinary
part of H' (Kym o, Agy) 18 Hyy(Kym g, Aprn) = res;l(Hl(Ig,,A%)L)), where

ord
the following notations are used: I, is the (as above) sum of the iner-
tia subgroups I, C G, where @' ranges over the set of primes of Ok,
dividing p and G C Gk, is the choice of a decomposition subgroup;
res, : H'(Kym o, Apn) — H'(I,, Ayy) is the restriction map. Taking direct
limits:

g

ord

(Kpm,pv Af,n)-

ord

(Kpoo o, Afp) = lim H!

Again, use the isomorphism Ay, ~ T}, to define T}ffl) and Hl  (Kyn o, Tt)
= res, (H' (I, T}p))). Taking inverse limits:

,n

ag!
Hord

(Kpoo7p7 Tf,'I’L) = ]il;Inl H(}I‘d(Kpmag97 Tf)n)

The groups H' (K~ o, Asp) and H
other under the local Tate pairing (, ).
For any prime ideal ¢ C O, let resq : H'(Kp, Af,) — H' (Kpoo gy Af )
be the restriction map. Furthermore, for a prime q¢ C Op not dividing np
let 9, denote (by an abuse of notations) the maps 9y : H'(Kp=, As,) —
HY (Ko g, Apn) and 0y @ HY (Koo, Tf) — H o (K g, Ty Tesulting by
composing res, with the residue maps H' (Koo q, Agn) — Hipy(Kpo g, Afn)
and H' (K g, T0) — f]sling(Kpoo,q,Tf,n). Moreover, if y(k) = 0, denote by
vq(k) the image of resy(x) in the kernel of the residue maps.
Definition 3.1. The Selmer group Sely, (Kp~) attached to f,n and Ky is
the group of elements s € H'(Kyp, Ap,) satisfying:

(Ko o, Tt ) are annihilators of each
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e For primes q C Op which do not divide np, 04(s) = 0.

e For primes q C O dividing n~ ezactly, resy(s) € HL 4(Kpe gy Afn).
o For primes p C Op dividing p, resq(s) € Hyy(Kpo.q, Apn)-

e For primes q C Op dwiding w" and not dividing p, resq(s) = 0.

Definition 3.2. Let s C Or be a square free ideal prime to n. The com-
pactified Selmer group H}(Ky~,Tt,) attached to f,n and Ky~ is the groups
of elements k € H' (Kyo,T},) satisfying:

e For primes q C Op which do not divide nsp, 0q(s) = 0.

o For primes q C O dividing n~ ezactly, resy(s) € HL 4(Kpe gy Afn).

e For primes p C Op dividing p, resq(s) € Hyy(Kpo.q, Apn)-

e For primes q C Op dividing w*s and not dividing p, resq(s) is arbitrary.

The global reciprocity law of class field theory implies that for any s €
Sels,(Ky=) and any k € HY (Kpe, T} .,):

> (94(r), vq(s))q = 0. ()

qls

Define Sely oo (Kpe) 1= lim_,, Sely,(Kp) (direct limits with respect to
the inclusion maps). The Selmer group Sely o (Kp~) has a natural structure
of Apee-module. For any Ap~-module M, denote by MV its Pontryagin dual.
Then Self o (Kpe<)" has a characteristic power series which will be denoted
by Char,(f, K). Recall the map A, /p, of Section 2.4, where p; | ps | p. The
following conjecture is motivated by Corollary 2.7.

Conjecture 3.3. The following relation holds:
Apa/pr (Chary, (f, K)) = u[O] 02]2(%’ - np/)ZCharm(f, K),
where u € A;To.

Remark. Of course, this conjecture is implied by Corollary 2.7 and Iwasawa’s
Main Conjecture. Note also that this conjecture does not really imply directly
a relation between the Selmer groups Self oo (K ) and Sely oo (Kpze). Indeed,
Char,(f, K) carries only a part of the information on Sely o (Kp), since it
does not view its submodules and quotients whose support contains primes
of height greatest that 2.
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3.2 Iwasawa’s Main Conjecture

The main result which will by proved in Section 4 is the following:

Theorem 3.4. Assume that fo satisfies Assumption 1 and f satisfies As-
sumptions 2 and 3. The characteristic power series Char,(f, K) of the Pon-
tryagin dual Self oo (Kp )" divides the p-adic L-function Ly(f, K).

The proof of this result is based on a generalization of the argument in
[BD3|, which carries over, mutatis mutandis, in the totally real case. So,
it will be presented in Section 4 only the sketch of the argument where the
necessary adaptations to the totally real case will be pointed out.

3.3 Modular abelian varieties

Let A/F be an abelian variety of GLo-type, that is, [Endg(A) : Q] = dim(A),
where Endg(A) := End(A) ®z Q. Set E := Endg(A) and assume moreover
that End(A) ~ Og. For any prime ideal 7 C Op, denote by A[r"| the 7"~
torsion in A and by T (A) its m-adic Tate module. Denote by pa. : Gp —
Aut(T;(A)) ~ GLy(Opg) the associated representation. Finally, denote by
ng C Op the arithmetic conductor of A/F.

Definition 3.5. Say that A/F is modular if there exists fo as in Section 2.2
such that E' = Ky, and there exists a prime m C Oy, such that par ~ ps.x,
where py, » is the m-adic representation associated to fo.

Say that a modular abelian variety A/F is w-ordinary at p if the same
is true for fy. This is equivalent to require that A has ordinary reduction at
any prime ideal p C Op above p.

Let A/F be modular (denote always by 7 the prime attached to A in
Definition 3.5) and p-ordinary. The Selmer group Sely ,, (K~ ) defined by the
exact sequence

0 — Selyp(Kye) — H' (Kpe, Aln"])— [ [ Sa(A(Kp,0) /(7))

where d4 is the local Kummer map and q C O ranges over all prime ideals.
Define Sely o (Kp) := lim_,,, Sely ,, (Ko ) (direct limits with respect to the
inclusion maps). Then Sely o (Kp~) acquires a structure of Aye-module.
Moreover, Sely o (K ) contains Sels o (K po) with finite index, so that there
is a pseudo-isomorphism of Ap~-modules:

SelA,oo (Kpoo) ~ Self,oo(Kpoo ) .

In particular, the characteristic power series of their Pontriagin duals are the
same. Define L,(A, K) := L,(f, K). Then:
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Corollary 3.6. Same hypotheses as in Theorem 3.4. The characteristic
power series of Sela oo(Kye)Y divides the p-adic L-function Ly(A, K).

Remark. Suppose that the same conditions as above hold for all prime ideals
m C Op = Oy, dividing p. Since T,(A) ~ @, ,Tx(A), then there is a similar
statement as in Corollary 3.6 for the Selmer group attached to the p-torsion
of the abelian variety A.

4 The proof

4.1 Admissible primes and rigid pairs

A prime ideal ¢ C O is said to be n-admissible if:
1. ¢ does not divide np;
2. (is inert in K/F;
3. m does not divide |¢]* — 1;
4. 7" divides || + 1+ 0¢(Ty) or [¢] +1 — 0¢(Ty).

As in [BD3, Lemma 2.6, 2.7], it is possible to show that Hg,, (K¢, T},) and

H{ (K, Typ) are both isomorphic to Of./(7") and that HL (K~ Trn)

sing

and HY (K, Trn) are both free of rank one over Ay /7" Ayee.

Proposition 4.1. Let s € H' (K, Ay1) be a non-zero element. Then there
exist infinitely many admissible primes  such that 0y(s) = 0 and v,(s) # 0.

Proof. Easy generalization of [BD3, Theorem 3.2]. O

Denote by ad?c the k := Oy, /(m)-vector space of trace-zero endomor-
phisms in Hom(Ay;, Afq). Let Gp acts on ad(} by conjugation of endomor-
phisms.

Recall the notations of Section 3.1. For all prime ideals p C Op di-
viding p, define ad(}(p) to be the k-space of trace zero endomorphisms in

Hom(A%i,ASf?l) ) and denote by H!

of those classes whose restriction to H*(I,, ad}) belongs to H 1([p,aud?c(p)),
where I, C Gp, is the inertia subgroup. Moreover, if ¢ € Op is a prime
ideal dividing n exactly of residual characteristic different from p, then de-
fine ad(}(q) to be the k-space of trace zero endomorphisms in Hom(Agclg7 Agcqi)

and set H. ,(Fy, ad(}) = H'(F,, ad?c(q)). Finally, if £ is a 1-admissible prime,

(Fy,,ad}) the k-vector space consisting
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denote by ad?c(g) the unique one dimensional k-vector subspace of ad?c on
which Frobg(¢) acts with eigenvalue |¢| (the existence and uniqueness of ad(])c
follows because |¢|* # 1 in k). Then define H!,(Fy,ad}) := Hl(Fg,adC}(@),

ord
For any prime ideal q { np define H{, (Fy, ad}) := HY(F™/Fy, ad}). Then if ¢
is 1-admissible, there is a decomposition in one-dimensional k-vector spaces:
H'(F,,ad}) = H}, (Fy,ad}) © H,, (Fy,ady).

Let s be a square-free product of 1-admissible primes. Define the s-Selmer
group Sely(F, ad?c) attached to ad?c to be the k-vector space consisting of those

classes ¢ € H'(F, ad?c) such that:

1. For q1 pns, resq(§) € HE, (Fy, ad});

2. For q | nsp exactly, resq(§) € H}

ord

(Fcla ad?‘);
3. For g? | n of residual characteristic different from p, the image of res,(€)
in H'(I,, ad?) is trivial (where Iy C G, is the inertia subgroup).
Define a pair (¢4, ¢5) of n-admissible primes a rigid pair if Sely, e, (F, ad(}) = 0.

Proposition 4.2. Assume that f is m-isolated. Let {1 be an n-admissible
prime and s € H'(K, As1) be a non-zero class. Then there exists infinitely
many admissible primes lo such that:

1. Op,(s) =0 and vy, (s) # 0;

2. Either ({1,05) is a rigid pair or Sely,(F,ad}) is one dimensional over
k.

Moreover, if Sely, (F, ad?c) is one-dimensional over k, then there are infinitely
many n-admissible primes such that:

1. 04,(s) = 0 and vy, (s) # 0,
2. (01,03) is a rigid pair.
Proof. This is a generalization of [BD3, Theorems 3.10 and 3.11]. It can be

easily performed by replacing:

e The result of Wiles [W2] on universal deformation rings and Hecke alge-
bras with the following result: Denote by R the universal deformation ring
attached to deformation of p of the representation Gr — Aut(Ay;) satisfy-
ing:

20



1. The determinant of p is the cyclotomic character e describing the action
of G on the p-power roots of unity;

2. p is unramified outside np;

3. The restriction of p to the inertia I, € G, for primes @ | p is of the

€ *
form(o 1>7

4. For q | n exactly, the restriction of p to a decomposition group at q is
€ *
of the form 01 )
0
Let mf, := Ker(Ty, =25 k) and denote (as in Assumption 3) by T; the
completion of T, at my . Then R is isomorphic to T;. This result has been
obtained in an unpublished work of Fujwara [Fu]. For precise references and
a proof when [F': Q] is even, see [JM].

e The computations on Selmer groups in [DDT, Section 2] (when F' = Q)
with the analogous computations which can be found, for example, in [SW]
or [JM]. O

4.2 Congruences between modular forms and the Eu-
ler system

Fix an n-admissible prime ¢. By [W1], [Ta] and [Ra], it is known that there
exists an Hilbert modular form f, € Sy(nf) which is new at ¢ and such that:

e For primes q 1 nl, Ty(fr) = 0;(Ty) fe (mod 7");
e For primes q | n, Uy(fy) = 60;(Uy) fr (mod 7™);
o Ui(fe) = efe (mod "), where ™ divides [¢| + 1 — €f(T).

Denote by X the Shimura curve (defined over F') whose complex points
are given by X(¥(C) = ﬁXﬁX\Hi X EX/BX, where H* := C — R, B/F is
a quaternion algebra of discriminant n~¢ which is ramified in exactly one of
the archimedean places and R C B is an Eichler order of level n*. Let J® be
the jacobian variety (defined over F') associated to X¥. Denote by T,,(J®)
the p-adic Tate module of J and by ®, the group of connected components
of the fiber at ¢ of the Néron model of J over Ok. Denote by Z;, the
kernel of the map Tn — Oy /(7") associated to the modular form f,. The
results contained in [L.2, Theorem 4.13] when f has rational coefficients can
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be easily extended to this general case (see [L1, Section 4.8]) proving that
there exists a canonical submodule D, C T,(J®)/Z;,, such that D, ~ T},
(as Galois modules); moreover, T),(J®)) decomposes (as Galois module) in a
direct sum D, & D,

For any m > 0 fix an Heegner point P,, € X (Ky~) (see [Zhl, Sec-
tion 2] for the precise definitions: in the notations of [Zhl], P, = (1, 2)
where End(z) >~ O¢m). Since Ty, is not Eisenstein, there is an isomorphism
JO(Kqm) /Ty, — Pic(XO)(Kym)/Ls,; denote again by P, the natural im-

age. For all p, let o, be the unit root of Frob at p; set o, = lep oy, and

P = a, O (’)fpm]é’;. The points P* are norm-compatible. Then their
images under Kummer map followed by projection:

J(£)<[~(CPW>/Ife - Hl(f(cp’”va(J(e))/Ifz) - H1<[~(cnva€) = Hl(chmva,n)

yields a sequence of cohomology classes, K, (¢), which are compatible under
corestriction. So, taking limit defines a class &(¢) € H'(Kepee, T},). Define
the class k(¢) € H'(Ky,T},) to be the corestriction of () from Kge to
Kp.

Choose distinct n-admissible primes ¢; { ¢ and ¢3 1 ¢ so that p™ divides
both |[¢1] + 1 — eyap, (f) and |la] + 1 — €gap, (f), with €1, € equal to +1. Let
Ty, be the Hecke algebra acting on the Shimura curve X1 (notations as
above). Assume that f is p-isolated. The map arising from Kummer theory
composed with the canonical projection as above yields a map:

J(Zl)(Kfz)/Ile - Hl(Kfzv TP(J(EI))/IJ’Q) - Hl(waDfl) = Hl(waTfﬂ)

whose image is equal to Hi, (Ky,, Tt,) because both T,(J)) and Ty, are
unramified at ¢;. For the same reason and the fact that ¢ t p, the map
induced by reduction (mod ¢5): J(el)(KgQ)/If/Zl — J(zl)(]Feg)/Ifél is an iso-
morphism, where Fyz is the residue field of the ring of integers of K,. The
identification H} (K, Tyn) =~ Or./(7") and the inverse of the above map
yield a surjective map:

T (F)/Ts, — O/ (7). (6)

Let Sp, € X “”(]F@) be the set of supersingular points of X 1) in charac-
teristic £ and let Div(Sy,) and Div®(Sy,) be the set of formal divisors and
the set of formal degree zero divisors with Z-coefficients supported on &y,.
Let the Hecke algebra T, act on Div(Sy,) and Div’(Sy,) via Albanese func-
toriality (it makes no difference if the Picard functoriality were chosen: see
the discussion in [BD3, Section 9]). Since Zy, is not Eisenstein, there is an

identification Div(Sy,)/Zy, ~ DiVO(SKQ)/Ifel, so there is a map:
7 Div(Ss) — Ope/ (7).
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Write T for the image of T € Ty, into Te, /Iy, , so that for primes q { nfy,
Ty = 04(Ty) (mod 7"), for primes q | n, Uy = 0;(Uy) (mod 7") and U,, =
€1 (mod 7). An easy generalization of [BD3, Lemma 9.1] shows that, for
x € Div(Sy,) the following relations hold: for q 1 nly, v(Tqx) = Tyy(x); for
q | nly, 7(Ugz) = Ugy(2); ¥(Tp,2) = Tp,y(w); 7(Froby,z) = e7(x).

Proposition 4.3. v is surjective.

Proof. The proof requires slight modification with respect to the proof of
[BD3, Proposition 9.2].

e Instead of considering the subgroup of norm one elements I'“2) contained
in R[1/05]* /{£1} (notations as in [BD3, Proposition 9.2]), consider the prod-

uct ) .= Hé’:l F;ﬁl), where ng) is the group of norm one elements in

R,[1/6:)*/O% (here R C B is the Eichler order of level n* defining X )

1111

representatives of R*\B* /B).

e The Shimura curve X (notations as in [BD3, Proposition 9.2]) can be

defined here in the same way by imposing an extra I'i(p)-level structure

(recall that p | nt). As a consequence, the subgroup I'*?) (notations as in

[BD3, Proposition 9.2]) is defined to be the finite index subgroup of I'*2) :=

Hé’:l Fyl) defined by taking the product of the subgroup of R;[1/(3]* /O

consisting of those elements which are congruent to the standard unipotent
*

matrices (fix isomorphisms R, =~ {( 0 : ) (mod p)} for all p | p and
all j=1,...,1).

e The crucial ingredient in the proof of [BD3, Proposition 9.2] is the ana-
logue in the context of Shimura curves of lhara’s Lemma [Ih|. This result
is provided over Q by [DT, Theorem 2], which establishes that the action of
Gg on a certain module factors through Gal(Q* /Q). The analogue when
F # Q still hold: see [Ja, Section 6.

e The cokernel of the natural map .J (51)(1@5) — J (Kl)(]Fe§> (notations as in
[BD3, Proposition 9.2]) has order dividing p — 1 (hence, prime to p) because
it can be identified with the Cartier dual of ¥ := Ker(J®) — J®)) (see for
example [Co, Section 7]), which is known to have order ¢(p) by [Li]. When
F # Q, the only difference is the analogue of [Li], which can be obtained

as follows. Write X = ]_[F?;\HJr and X = ]_[;Z; [;\H*, where h* is the
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narrow class number of F' and denote by J and J the jacobian varieties of X

and X. There is a canonical injection: 0 — % — @?;Hom(f‘j/f‘j, U) where

U={z € C:|z| = 1}. Consider the injection ¢ : I'; < [T To(p), where

['o(p) is the subgroup of (mod p) upper triangular matrices in GLy(Op,,);
agp by

write (y) = ( co d, )p and define a, := ], ap, by = [, b Then

there is an exact sequence: 0 — I'; — T N (Or/p)* X (Op/p)* where
(7)) = (ap, by). It follows that #X | ¢(p)>. O

Let B’ be the quaternion algebra of discriminant Disc(B’) = Disc(B){1¢3
and let R’ be an Eichler Or[1/p]-order of B’ of level n'.

Proposition 4.4. There exists g € S¥' (n™, 0 /(7)) such that:
o For prime ideals q 1 nl1ly, Tq(g) = 0¢(Ty)g (mod 7");
o For prime ideals q |, Uq(g) = 07(Ug)g (mod 7");
e Uyg=eg (mod ") and Uy,g = €29 (mod 7™).

Furthermore, if ({1,03) is a rigid pair, then g can be lifted to a m-isolated
form in SF'(n*, O ).

Proof. Provided Proposition 4.3 and the results of [Zh2, Section 5] on the
description of the set of supersingular points in terms of double coset spaces,
the proof is the same as [BD3, Theorem 9.3, Corollary 9.3 and Proposition
3.12]. O

4.3 Explicit reciprocity laws

The two following theorems explore the relations between the classes x({)
constructed in Section 4.2 and the p-adic L-functions of Section 2. Assume
from now on that ¢ 1 ¢ (where ¢ is defined as in Section 2.1). Recall the
notations for d, and v, before Definition 3.1.

Theorem 4.5. vy(k(f)) = 0 and the equality
Op(K(l)) = Lo (mod 7")

holds in HL (Koo 0y Tf) = Apoo /T Ayoo up to multiplication by elements in

sing
O;ﬂ and G.
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Proof. Denote by 9, the residue map I:_fl(_f(cpoo,Tf,n) — Ffsling(choo,z,Tf,n),
the cohomology groups being defined in the obvious way. In is enough to
show that 0,(P}) = L . The Cérednik-Drinfeld description of the special
fiber Xéé) at ¢ of the integral model of the Shimura curve X (which is
recalled in [L2, Sections 4.2, 4.3] or [Zh2, Section 5]) combined with the /-adic
description of the image of P, in X y) (see [L2, Section 5.2]) imply that P,
can be identified with a pair (g,z) € R[1/0]*F*\(B* x H,)/B* ~ Xéz)(Cg),
where:

e B/F is, as in Section 2.2, the quaternion algebra which is ramified at
archimedean places and whose discriminant is Disc(B) = n~;

e R C B is, as in Section 2.2, an Eichler order of level n™ and ﬁ[l/@] =
[Lqze Ba % By

o H, := C;— F} is the (-adic upper half plane, where C, is the completion
of an algebraic closure of Fy;

e 2 is one of the two fixed points of W(K*) acting on H,, where ¥ €

Hom(K, B) is deduced by reduction of endomorphisms End(P,,)@Q —

End(P,,) ® Q (recall that P,, can be described in terms of a certain

polarized abelian variety defined over K, by [Zh1, Section 1]; then P,
represents the reduced abelian variety over the residue field of Oky;
moreover, the choice of z can be normalized imposing that the action
of U ®p Fy on the tangent space at P is via the character z — z/7(2),
where 7 € Gal(K,/F}) is the non-trivial automorphism);

e g satisfies End(P,,) ®0, Op[1/f] ~ R,[1/] and R,[1/(] := g R[1/¢)gN
B.

Write Xée)((Cg) ~ [[7_, He/Ts;, where {g1,...,gs} is a set of representatives
of R[1/¢)*F*\B*/B* and T'y; := g;'R[1/{]*g; N B. Note that P,({) :=
(9,2) € X y)(Kg) (this integrality property can be deduced by recalling that,
since ¢ is inert in K /F, then it splits completely in anticyclotomic extensions
of conductor prime to ¢ (see [Iw])). Consider the natural reduction map:
T He — E UV, where & (respectively, Vy) is the set of unoriented edges
(respectively, the set of vertices) of the Bruhat-Tits tree 7, of PGLy(F}). By
the Tate-Honda Theorem, the image of z corresponds to a vertex, say v,
(that is, the reduction of z does not correspond to a singular point in the
special fiber of X ée)). It follows that r,(P,,(¢)) can be identified with a pair
(vm(£), 7) with v, (€) € Vy/T'y. By the strong approximation theorem, there
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is an identification between ([], ?@)/Fp X {1,...,t} 2V /Ty x {1,...,s}
(notations as in Section 2.2 for the first set). Summing up, r¢(P,,(¢)) can be
identified with an edge (em,;j) € (I, E},)/Fp x {1,...,t}. By [L2, Section
5.2], the Galois action of Gy on P, (¢) is compatible with the action of
G on the edges (e,,,7) defined in Section 2.3.1. Fix a prime £, of K
dividing ¢ and set {,, := loo N Km. Let @, (respectively, ®;) be the group
of connected components of the fiber at ¢ (respectively, at [, where [ | £ is
a prime of some K ) of the Néron model of J© over O (respectively,
over O f(cpm). Since ¢ splits completely in K. oo / KK, the choice of (o, yields an
identification:

(I)g’m = @[wq)[ ~ @g[chm].

By [L2, Propositions 4.10, 4.11], the image of P,, is contained in a canonical
component Cy,, € @, /Ty, such that Cp, ~ H} (K, Tf,) corresponds to
the singular part of H'(K;, D;). For o € Gepe, write 0y, (0(P,,)) for the

image of o(P,,) in Cy,, =~ Of /(™). Then 0,,, can be viewed as a map:

([T E€o)/T {1t} — Opa /(7).

elp

By multiplicity one, this map is equal (mod 7") to the modular form f (up to
multiplication by an element of (O /(7™))*). The equality 9;,, (0(P,(£))) =
[0, em]p (mod 7™) holds for a suitable choice of { (note that the different
choices of ¢, are permuted by the multiplication by an element of écpoo, and
the same dependence holds for the definition of £y ). The result now follows
from the definition of P* and Ecpoo. 4

Theorem 4.6. Let g be as in Proposition 4.4. The equality
vy (K(0)) = Lgepoe

holds in HE (Kyeo 0, Trn) = Ao /T Ao up to multiplication by elements in
O;ﬂ and G e .

Proof. Consider the sequence {Pp,},, of Heegner points. Fix (as in the
proof of the above theorem) a prime ¢5 o, of f(cpoo above ¢y and let /5, :=
ly oo N f(cpm. Since /5 is inert in K, the points P,, reduce modulo /5., to
supersingular points P,, € X@)(F,, ), where F, s the reside field of K yn
at g, Identify Fy, =with Feg for all m. Then P,, can be viewed as a point in
Si,, and hence, by strong approximation, as a sequence of consecutive edges
in ?52/1“’ (I'" == R'[1/p]*/Or[1/p]*, R being defined before Proposition
4.4). Reduction modulo /5, of endomorphism yields by extension of scalars
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an embedding ¥ : K — B’, which is independent of m (B’/F is the quater-
nion algebra defined before Proposition 4.4). The natural Galois action of
G e on P, is compatible with the action of G on the e, via W. Write:

Logr =0," Y g(0Py) 0 € Opr /(") Gepnl;

O'Eécpm

the sequence {ﬁg’m} is compatible under norms and defines an element
Ly e € Ofr/(1")[Goo]. Define the cohomology groups

Hf}m(f(tpmlza Tf,ﬂ) = @ZQ,m|€2HéH(chm7€2,m7 Tf,TL)’
ﬁén(chw7£2,w ) Tf,n) = EIT% Hén(KCpmfz,mv Tf,n)

(inverse limit with respect to the corestriction maps). The choice of £
together with the isomorphism H} (K, Trn) ~ O, /(7") yields identifica-
tion: . .
Hgy(Kep gy, Tpn) = Opn/ (7")[G ],
H, (K, Trn) = O /(7" [Gepe].
By the definition of v, the image of P* in H} (K, ¢pm foms L) cOITEsponds
to Ly m (mod 7") and so the image of the compatible sequence { P} cor-
responds to Ly . Define the class £(¢;) to be the image of {P}},, in
H' (Koo, Tyn). Then vy, (R(l1)) € Hi, (Koo, Trn) is equal to the image of

{ P }tm, and hence to Ly e (mod 7). Since (f;) is the corestriction of
R(ly) from Ko to Kpeo, the result follows. O

Corollary 4.7. The equality

v, (K(l2)) = vg,((61))  (mod 7")
holds in Ay /7" Apee up to multiplication by elements in O;W and Gpe.

Proof. Since the definition of ¢ is symmetric in ¢; and /5, this is obvious. [

4.4 The argument

Let A := A[Ty,...,T;] be a ring of formal power series in [ > 1 variables,
where A is a discrete valuation ring. Let X be a finitely generated A-module
and denote by r its A-rank. By [Bo, §4, 4, Théoremes 4, 5], there exists an
exact sequence of A-modules: 0 - A — X — &7_A/(g;) x A" — B — 0,
where A and B are A-torsion modules whose support contains only ideals
whose height is > 2 and g; € A, alli = 1,...s. By definition the characteristic
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power series attached to the A-module X is Charpy(X) =¢:=[[_, 9. f M
is a finitely presented module over a ring R, denote by Fittg(X) its Fitting
ideal over R.

Proposition 4.8. Let X be a finitely generated A-module and L € A. Sup-
pose that (L) belongs to Fitto(X ®, O) for all homomorphisms ¢ : A — O,
where O is a discrete valuation ring. Then L belongs to Char(X).

Proof. 1If X is not A-torsion, then the result follows easily as in [BD3, Propo-
sition 3.1]. So, in the following, assume that X is A-torsion. Note that

() Fitt(X)g = (g)
P

in A, where P ranges over the set of prime ideals of A of height < 1 (see
[HT, page 101]). Since Ag is a discrete valuation ring, by assumption £ €
Fitt(X )y for all ; it follows that g | L. O

The rest of the section is devoted to sketch the proof of Theorem 3.4. Be-
ing p fixed, denote Self o (K ) (respectively, Sely,(Kpe)) simply by Self
(respectively, Sel;,,). By Proposition 4.8, it is enough to show that ¢(L;)?
belongs to Fitto(Sel;,, ®, O) for all ¢ € Hom(A,O) where O is a dis-
crete valuation ring. For this, it is enough to show that p(Lf)? belongs to
Fitto(Sely, ®, O) for all n > 1. Fix O and ¢ as above. Write v for an
uniformizer of O. Set

by = ord, (9(L))
If (L) = 0, then ¢(L)? belongs trivially to Fitto(Sel}, ®,0) for alln > 1,
so assume (L) # 0. Moreover, if Sely  ®, O is trivial, then its Fitting
ideal is equal to O and, again, ¢(L;)? belongs trivially to Fitt@(Selvjn ®, 0)
for all n > 1, so assume that Fitto(Sel}, ®, O) # 0. The theorem is proved
now by induction on t;.

Step I: Construction of x,(f). Let ¢ be any (n + t;)-admissible prime
and enlarge {(} to a (n+ty)-admissible set S: such a set consists of distinct
(n + ty)-admissible primes such that the map

Self,n+tf (K) - @eesﬂén(K& Af,n+tf)

is injective (Proposition 4.1 shows that such a set exists). Denote by s the
square-free product of the primes in S and let x(¢) € H}(Kyo, Tfntt ;) C

ﬁ;(Kpoo,Tmef) be the cohomology class attached to ¢. Let k,(f) be the
natural image of this class in M := ]flsl(Koo, T nit;) ®p O. By Theorem 4.5,

ord, (kg (€)) < ord,(9i(re(€))) = ord,(p(Ly)). (7)
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Choose an element &,(¢) € M so that v'&,(¢) = k,(¢). This element is
well defined modulo the v-torsion subgroup of M; to remove this ambiguity,
denote by #,(¢) the natural image of &, (f) in H)(Ky~, Tyn) ®, O. The
following properties of #/,(£) holds:

L. ord, (k,(¢)) = 0 (because ord, (k,(f)) =t < ty);

2. Oy(K,(€)) = 0 for all g n~ (because r(£) € HY(K oo, Trntt;));

)

3. we(k,(£)) = 0 (by Theorem 4.5);
4. Ou(k),(£)) =ty —t (by Theorem 4.5 and formula (7)). Moreover, the
element d,(r7,(£)) belongs to the kernel of the natural homomorphism:

Wiﬁl

sing(KP‘x’vf? Tfﬂ) ®‘P O — Selv,n ®Sﬂ 0. (8)
To prove this statement use the global reciprocity law of class field theory
(5) and the definition of x{,(¢) (for details, see [BD3, Lemma 4.6]).

Step II: Case of ¢ty = 0. This is the basis for the induction argument. If
ty = 0, that is, £ is a unit, then Selvm = 0. To prove this, note that, for
all n-admissible primes ¢, Theorem 4.5 implies that ﬁslmg(K po.t, Tpn) ® O is
generated by 0(k,(¢)) (as O-module) and that the map 7, in (8) is trivial.
Assume now that Sel}/’n is not trivial. Then Nakayama’s lemma implies that
the group Sely,, /m = (Sely,,[m])" is not trivial, where m is the maximal ideal
of Ayee. Let now s € Sels,[m] be a non trivial element. By Assumption
3, py is residually irreducible. This can be used to show that there is an
isomorphism H'(K, Ay1) — H'(Kyx, As,)[m] (see [BD3, Theorem 3.4] for
details), which allows to look at s as an element of H'(K, As;). Invoke
Proposition 4.1 to choose an n-admissible prime ¢ { ¢ so that dy(s) = 0 and
ve(s) # 0. Then the non degeneracy of the local Tate pairing implies that 7,
is trivial, which is a contradiction.

Step III: The minimality property. Let now II be the set of primes of
Opr so that:

o (is n + ts-admissible;

e The number ¢t = ord,(k,(¢)) is minimal among the set of n + t-
admissible primes.
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By Proposition 4.1, IT # (. Let ¢ be the common value of ord, (k,(¢)) for
¢ € 1I. Then t < t;. This assertion can be proved by an argument, similar
to that used in Step II, which combines Proposition 4.1, the properties of
the map 7, and the non degeneracy of the local Tate pairing (for details, see
[BD3, Lemma 4.8]).

Step IV: Rigid pairs with the minimality property. This step is
devoted to the proof that there exist primes (1, ¢y € II so that (¢1,43) is a
rigid pair. To prove this, start by choosing any prime ¢; € II and denote by s
the natural image of #/,(¢1) in (HN (Koo, Ty[x"])/m) @, O/(v), where m is the
maximal ideal of Aye. The argument in [BD1, Theorem 3.2], generalized to
this situation as suggested in [BD3, Proposition 3.3, Theorem 3.4], allows to
view s as a non-zero element in H'(K,Ty;) ®, O/(v). Note that 94(s) = 0
for all q 1 ¢1n. By Proposition 4.2 choose a n + ¢ admissible prime f5 { ¢ so
that 0y, (s) =0, vy, (s) # 0 and either (¢4, ¢5) is a rigid pair or Sely, (F, Wy) is
one-dimensional. The following relation hold:

t = ord, (ry(f1)) < ordy (ky(f2)) < ord, (vg (K (£2)))- (9)

The first inequality follows from the minimality property using that ¢; € II
and that /5 is a n + ty-admissible prime using the minimality assumption
on t, while the second is clear. By the choice of ¢, and Corollary 4.7,
ord, (ve, (ky(l2))) = ord,(ve,(k,(¢1))). Now note that ord,(ve,(k4(¢1))) >
ord, (k,(¢1)) and that the strict inequality holds if and only if v, (s) = 0,
s0, since vy, (s) # 0, ord, (ve, (ky(f2))) = ord,(k,(¢1)). Combining this with
the inequalities in formula (9) shows that:

t = ord, (k,(41)) = ord, (K, (la)). (10)

It follows that ¢, € II. If (¢1,45) is not a rigid pair, then Sel,, (F, W) is
one dimensional. In this case, by Proposition 4.2, choose a n +t; admissible
prime ¢5 1 ¢ so that 0y, (s) = 0, vg,(s) # 0 and (ls, £3) is a rigid pair. Repeat
the argument above with ¢y replacing ¢; and /3 replacing ¢ to show that
l3 € TI. In any case then, either (¢1,¢5) or (f2,/3) is a rigid pair and the
claim at the beginning of Step IV follows.

Step V: The congruence argument. Choose by the above considera-
tions a rigid pair (¢q,¢y) with ¢1, ¢ € II. Note that, by Proposition 4.2,

t=t, =ord,(Ly) (11)
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(here g is the congruent modular form attached to (¢1,¢3) by Proposition
4.4). There is an exact sequence of A-modules:

0 — Self ,, — Sely, — Seli, s — O, (12)

where Sely, ¢, € Sely,, is defined by the condition that the restriction at

the primes ¢; and /5 must be trivial and Sel{1 0, 18 the kernel of the natural
surjection of duals. There is a natural inclusion:

(Self,,) € Hi(Kyo 0y, Apn) & Hiy (Ko 0y, Apn).

The dual of H} (K~ e, Apn) @ Hy (Kps 4y, Afr), by the non-degeneracy of
the local Tate pairing, is Hy,,(Kpe ¢, Agn) D Hlyp (Kpoo 60, Agn), s0 the above
inclusion leads to a surjection:

(Kpoo,ﬁ?Afm) D [:Il

sing

A~

T]fiHl

sing

(Ko 0, Agn) — Self ..

Recall that, since ¢; is n-admissible, ﬁsling(Kpoo’gl,Af’n) ~ Ape /(7). Let nf

be the map induced by 7n; after tensoring by O via ¢. Then the domain of
17 is isomorphic to (O/¢(m)")?. By property 4 above enjoyed by the classes
K, (01) and k{(£2), the kernel of nf contains (O, «,(¢1),0) and (0, O, ki, (f2)).
The same property combined with equations (10) and (11) yields:
ty —tg = ord, (g ki, (1)) = ord, (O, (K], (£2)).
It follows that:
2t =t) helongs to the Fitting ideal of Selglg2 ®, O. (13)

Repeat now the argument with the modular form g: there is an exact se-
quence:
0 — Self ,, — Selln — Selfzhgg] — 0,

and a natural surjection:
Mg+ Hgn(Kye 0y, Agn) @ Hey (Ko 0y, An) — Self, .

Let 7 be the map induced by 7, after tensoring by O via ¢. By the global
reciprocity law of class field theory, the kernel of ¢ contains the elements

(06, (1, (62)), vey (K5, (€1))) = (v (K, (£1)), 0),
(e, (1, (€2)), vey (5, (€2))) = (0, 01, (K, (£2))),

where the equalities follow from property 3 above enjoyed by the classes
K., (€1) and ,(f2). Note that ord, (ve,r.,(¢1)) = ord, (ve, k,(f2)) =ty —t = 0.
From this it follows that the module Sel?1 4, 18 trivial, so, the natural surjection

Sely,, ®, O — Sely, ) ®, O is an isomorphism. (14)
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Step VI: The inductive argument. Now assume that the theorem is
true for all ¥ < t; and prove that it is true for t;. Recall that ¢t = ¢, <
tr. Moreover, since (¢q,¢3) is a rigid pair, the modular form g satisfy the
assumptions in the theorem, so, by inductive hypothesis,

©(Ly) belongs to the Fitting ideal of Sely , @, O. (15)

Now use the theory of Fitting ideals:

2tf — V2(tf7tg)y2tg
€ Fitto(Sel] ,, ®, O) - Fitto(Sely,, ®, 0), by (13) and (15)
= TFitto(Self,,, ®, O) - Fitto(Sely, ,, ®, 0), by (14)

C Fitto(Sely, ®, O), by (12).

14

Since by definition ord(Ly) = ty, it follows that p(Ly)?* € Fitto(Sel}, @, 0),
proving the result.
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