
On the Anticyclotomic Iwasawa’s Main

Conjecture for Hilbert Modular forms

Matteo Longo∗

July 7, 2005

Abstract

This paper generalizes to the totally real case the previous work of
Bertolini and Darmon [BD3] on Anticyclotomic Iwasawa’s Main Con-
jecture for modular forms over Q with coefficients in Zp. It contains
the definition of anticyclotomic p-adic L-functions attached to Hilbert
modular forms and the generalization of the main result of [BD3] to
this context. The main feature of the totally real case is the possi-
bility of defining several p-adic L functions (each in several variables)
corresponding to different divisors p of p: the paper also explores the
relations between these different p-adic L-functions.
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1 Introduction

Let F/Q be totally real of degree d := [F : Q] and let K/F be quadratic
imaginary. Fix a rational prime p and assume that p does not ramify in K/Q.
Let f0 ∈ S2(n0) be a Hilbert modular form for the Γ0(n0) level structure
(where n0 ⊆ OF is an integral ideal of the ring of integers of F ), with trivial
central character and parallel weight 2. Suppose that f0 verifies the following
condition:

Assumption 1. 1. The ideal n0 is prime to the discriminant dK/Q of
K/Q.

2. f0 is an eigenform for the Hecke algebra Tn0
acting faithfully on S2(n0).

Denote by Of0
the ring of integers of the finite extension of Q containing

the eigenvalues of the action of the Hecke operators on f0 and, for any
prime q ⊆ OF , denote by aq the eigenvalue of the Hecke operator Tq

for q - n0 or Uq for q | n0;

3. There exists a square-free divisor n− of n0 such that:

(a) n− is prime to p;

(b) f0 arises from a newform of level divisible by n−;

(c) The number prime ideals q ⊆ OF dividing n− and d = [F : Q]
have the same parity;

(d) Any prime ideal q ⊆ OF dividing n− is inert in K/F .

4. There is a prime ideal π ⊆ Of0
dividing p such that f0 is π-ordinary at

p, that is, for any prime ℘ ⊆ OF dividing p, there exists a unit root α℘

of X2 − a℘X + |℘|, where |℘| is the norm of ℘.
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Fix an ideal (prime or not) p ⊆ OF which divides p. To such a modular
form f0 is possible to associate a p-stabilized modular form, that is, a modular
form f ∈ S2(n) where n := n0

∏
℘|p,℘-n0

℘, such that U℘(f) = α℘f for ℘ | p

and, of course, Tqf = aqf for q - n, Uqf = aqf for q | (n/p). Using the
notion of Gross points it is then possible to associate to f a p-adic L-function
Lp(f,K) relative to the prime p. This is an element of Λp∞ := Of,π[[Gp∞ ]],
where Of,π is the completion of Of0

at π (note that the eigenvalues of the
action of Tn on f are contained in this ring because α℘ are unit roots) and

Gp∞ = Gal(Kp∞/K) ' Z
deg(p)
p is the Galois group of the anticyclotomic

Zp-extension associated to p (as defined in Section 2.1).
On the other hand, there is a notion of Selmer group attached to f .

Denote by ρf = ρf,π : GF → GL2(Of,π) the π-adic Galois representation
attached to f and by Tf the associated GF -module. Let Vf := Tf ⊗Zp

Qp and
Af,1 := (Vf/Tf )[π]. To define the Selmer group it is convenient to assume
that the modular form f satisfies the following condition:

Assumption 2. Let GFq
⊆ GF be a decomposition group at q. For any prime

q ⊆ OF dividing n exactly and not dividing p, there is an exact sequence of
GFq

-modules: 0 → A
(q)
f,1 → Af,1 → A

(1)
f,1 → 0 such that GFq

acts on the one-

dimensional Of,π/(π)-vector space A
(q)
f,1 as multiplication by ε or −ε, where

ε : GF → Z×p is the cyclotomic character.

The Selmer group is then defined in the usual way by requiring suitable
local conditions to global cohomology classes. This lead to a notion of a
compact Selmer group Self,∞(Kp∞) ⊆ H1(Kp∞ , Tf,∞), which is naturally a
module over the Iwasawa algebra Λp∞ . The theory of Λp∞-modules implies
that the Pontryagin dual Self,∞(Kp∞)∨ of this Selmer group admits a char-
acteristic power series Charp∞(f,K) ∈ Λp∞ .

Anticyclotomic Iwasawa’s Main Conjecture. The equality Lp(f, k) =
uCharp(f,K) holds in Λp∞, where u ∈ Λ×p∞ is a unit.

To state the main result of this paper, suppose that the following condi-
tions on f are verified:

Assumption 3. 1. ρf is is residually irreducible.

2. Let k := Of,π/(π) and define mf,π to be kernel of the natural morphism
Tn → k associated to f . The completion Tf of Tn at mf,π is isomorphic
to Of,π. If this condition holds, say that f is π-isolated.

Theorem. Under the above Assumptions 1, 2 and 3, the characteristic power
series Charp(f,K) divides the p-adic L-function Lp(f,K).
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Remark. While Assumptions 1 and 3 are fundamental for the arguments,
Assumption 2 could, in principle, be replaced by any Selmer-type condition
at the primes dividing n and not dividing p.

The proof of this result is a generalization [BD3], where the case of F = Q
and Of,π = Zp is considered. In Section 4 the main steps of the proof are
recalled and the necessary adaptations are performed.

The main new feature of the totally real case is that it is possible to
define a p-adic L-function for all divisors p | p. In particular, suppose that
p1 | p2 | p, with p1 6= p2 ideals of OF . Then there are two p-adic L-functions
Lp1

(f,K) and Lp2
(f,K) and a natural restriction map λp2/p1

: Λp∞
2

→ Λp∞
1

.
It is then possible to investigate the relationship between Lp1

(f,K) and
λp2/p1

(Lp2
(f,K)). The result is that they are equal up to an explicit fac-

tor which depends on the eigenvalues αpi
=

∏
℘|pi

α℘ for i = 1, 2 and on the

behavior of the primes ℘ dividing p2/p1 in the extension K/F (see Corollary
2.7). In particular, if some of these primes are split in K/F then it may be
possible that this factor relating Lp1

(f,K) and λp2/p1
(Lp2

(f,K)) is zero (see
Corollary 2.7 and the Example after it). It is then conjectured that the same
relation holds between the characteristic power series λp2/p1

(Charp2
(f,K))

and Charp1
(f,K).

Notations. The following notations will be used throughout the paper:

• F is a fixed totally real number field, with ring of integers OF , and p a
fixed prime ideal of Z. The letters p, p1, p2, p′ and p∗ will denote integral
ideals, not necessarily prime, of OF which divide p, while the letter ℘ will
denote a prime ideal of OF which divides p.

• For E a number field, denote by OE its ring of integers; for any place v of
E denote by Ev the completion of E at v and, if v is finite, denote by OE,v

the completion of O at v. The letter q will denote prime ideals in OE. If q s
such an ideal, denote by |q| its norm. If D is a OE-algebra and q ⊆ OE is a
prime ideal, define Dq := D⊗OE

OE,q, while, if v | ∞, define Dv := D⊗E Ev.

• For any field E, let GE = Gal(Ē/E) be the absolute Galois group, where
Ē is an algebraic closure of E. For any GE-module M , denote by Hr(E,M)
the continuous cohomology groups Hr(GE,M). For any extension E ′/E, de-
note by Hr(E ′/E,M) the continuous cohomology groups Hr(Gal(E ′/E),M).
If E is a number field, q ⊆ OF a prime ideal and E ′/E an extension, define
Hr(E ′q,M) := ⊕q′|qH

r(E ′q′ ,M), where the direct sum is taken over all prime
ideals q′ ⊆ OE′ dividing q.
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• For any Z-algebra E, denote by Ê := E⊗Z

∏
q Zq the profinite completion

of E, where q ranges over the set of prime ideals of Z.

Acknowledgements. It is a pleasure to thank Professor N. Schappacher
for suggesting me the problem of considering different p-adic L-functions and
for many helpful suggestions and discussions on this subject.

2 p-adic L-functions

2.1 Anticyclotomic Zp-extensions

Let F/Q be totally real of degree d over Q and K/F quadratic imaginary.
Fix a rational prime p, prime to the discriminant dK/Q of K over Q. For any
integral ideal f ⊆ OF , let Of := OF + fOK be the order of conductor f in
K and let RCF(f)/K be the ring class field of K of conductor f, that is, the

Galois extension so that Gal(RCF(f)/K) ' Pic(Of) ' K̂×/(Ô×f K×), where
Pic(Of) is the Picard group of Of. By the formula of Dedekind:

hf := #Pic(Of) =
h(1)|f|

∏
q|f

(
1 −

(
K
q

)
|q|−1

)

[O×K : O×f ]
, (1)

where
(

K
q

)
= 1 (respectively, −1, 0) if q is split (respectively, inert, ramified)

in K/F . For any m, any ideal (prime or not) p ⊆ OF dividing p and any
ideal c ⊆ OF prime to p, define via class field theory the extension K̃cpm/K
contained in RCF(cpm) by requiring that

Gal(K̃cpm/K) ' K̂×/(Ô×cpmÔ×F K×) ' Pic(Ocpm)/Pic(OF ),

where Pic(OF ) ' F̂×/(Ô×F F×) is the Picard group of OF . Note that K̃cpm ⊆
K̃cpm for any p | p and that K̃cpm is unramified outside the places dividing
cp. Define K̃cp∞ := lim→m K̃cpm . Then:

G̃cp∞ := Gal(Kcp∞/K) ' K̂×/(
∏

q-p

O×K,qF̂
×K×). (2)

There is a non-canonical isomorphism

Gal(K̃cp∞/K) ' Zdeg(p)
p × ∆cp∞ ,

where ∆cp∞ is the finite torsion subgroups of Gal(K̃cp∞/K) and, if ℘ is prime,
deg(℘) := [F℘ : Qp], while if p =

∏
℘1 . . . ℘s with ℘j, j = 1, . . . s ≤ d

(different) primes, deg(p) :=
∑s

j=1 deg(℘j) (so that, since p is unramified in

K/F , pdeg(p) = |p|). In particular, note that Gal(K̃cp∞/K) ' Zd
p × ∆cp∞ .
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Definition 2.1. The p-anticyclotomic Zp-extension Kp∞/K is defined to be
the subfield of K̃cp∞ so that

Gp∞ := Gal(Kp∞/K) ' Zdeg(p)
p .

The extension Kp∞/K does not depend on the choice of c, is Galois over
F and the quotient Gal(K/F ) acts by conjugation on the normal subgroup
Gal(Kp∞/K) by the formula σ 7→ τστ = σ−1, where τ is the choice of a
complex conjugation raising the non trivial automorphism of Gal(K/F ). For
any integer m ≥ 1, define the extension Kpm/K by requiring that Gpm :=
Gal(Kpm/K) ' (Z/pmZ)deg(p).

2.2 Modular forms

For any integral ideal r, denote by S2(r) the C-vector space of Hilbert modular
forms of parallel weight 2 and trivial central character with respect to the
Γ0(r)-level structure and by Tr the Hecke algebra acting faithfully on S2(r)
(see [Zh1, Section 3.1] for precise definitions). For any quaternion algebra
D/F of discriminant d which is ramified at all archimedean places, any ideal
s ⊆ OF prime to d and any ring C, denote by SD

2 (s, C) the C-module of
functions:

Ô×F̂×\D̂×/D× → C,

where O ⊆ D is an Eichler order of level s. There is an action of Hecke algebra
Tsd on SD

2 (s, C) defined as in [Sh] via double cosets. If d is square-free, the
Jacquet-Langlands correspondence [JL] yields a Tsd-equivariant isomorphism
between SD

2 (s, C) and the C-module of forms in S2(sd) which are new at d

and whose Fourier coefficients belong (after a suitable normalization) to C.
Let f0 ∈ S2(n0) be a Hilbert modular form. As in the Introduction fix

an ideal (prime or not) p ⊆ OF dividing p and assume that f0 satisfies the
conditions in Assumption 1 (where K is the field in Section 2.1). From now
on use the same notations as in Assumption 1. Define as in the Introduction
n := n0

∏
℘|p,p-n0

℘ and n+ := n/n−.

Let B/F be the quaternion algebra of discriminant n− which is ramified at
all archimedean places. Fix an Eichler order R ⊆ B of level n+. Since f0 is π-
ordinary at p by Assumption 1, the Jacquet-Langlands correspondence can be
used as in [BD3, Propositions 1.3, 1.4] to show that there exists an unique (up
to multiplication by a number in O×f,π) modular form f = fp ∈ SB

2 (n+,Of,π),
where Of,π := Of0,π, such that:

• f 6∈ πSB
2 (n+,Of,π);

• Tqf = aqf for all prime ideals q ⊆ OF with q - n;
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• Uqf = aqf for all prime ideals q ⊆ OF with q | (n/p);

• U℘f = α℘f for all prime ideals ℘ ⊆ OF with ℘ | p.

In fact, f is viewed via strong approximation ([Vi, Chapitre III]) as a func-
tion:

f : (
∏

℘|p

−→
E ℘)/Γp × {1, . . . , t} −→ Of,π

where
−→
E ℘ is the set of oriented edges of the Bruhat-Tits tree T℘ associated

to PGL2(F℘),

Γp := (B× ∩ (
∏

q-p

R×q
∏

℘|p

B×p ))/(F× ∩
∏

q-p

O×K,q

∏

℘|p

F×p ) ⊆
∏

℘|p

PGL2(F℘)

is a discrete subgroup (acting on
∏

℘|p

−→
E ℘ via conjugation of Eichler orders

of level p) and t satisfies B̂× = (F̂×
∏

q-p R×q
∏

℘|p B̂×℘ B×)×{1, . . . , t}. Set up
the following notations:

• θf : Tn → Of,π: the morphism associated to f ; for any integer n ≥ 1,
let θf,n : Tn → Of,π/(πn) the composition of θf with the canonical
projection;

• ρf : GF → GL2(Of,π): the π-adic representation associated to f ; for
any integer n ≥ 1, let ρf,n : GF → GL2(Of,π/(πn)) the composition of
ρf with the canonical projection.

2.3 p-adic L-functions

2.3.1 Pairings

Same notations as in Section 2.2. Let K/F be as in Section 2.1. Since
Assumption 1 is verified, all prime ideals dividing n− (respectively, n+) are
inert (respectively, are not ramified) in K/F . Define c = cp ⊆ OF by the
following condition: for any prime q, qr | c ⇔ qr | n+/p and q is inert in K/F
(that is, c is the maximal factor of n+/p which is divisible only by primes
which are inert in K/F ). (Note that c = 1 in [BD3].) By [Vi], under this
assumption there exists an optimal embedding of Oc[1/p] := K ∩

∏
q-p Oc,q

into R[1/p] := B ∩
∏

q-p Rq, that is, there is an embedding

Ψ : K → B satisfying Ψ(Oc[1/p]) = Ψ(K) ∩ R[1/p].
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By passing to the adelization, there is a map:

Ψ̂ : G̃cp∞ = (
∏

q-p

O×K,q)F̂
×\K̂×/K× −→ (

∏

q-p

R×q )F̂×\B̂×/B×,

where G̃cp∞ is defined in (2). By strong approximation again, there is an
isomorphism:

η :
∏

q-p

R×q F̂×\B̂×/B× ' (
∏

℘|p

PGL2(F℘))/Γp × {1, . . . , t}.

The natural action of PGL2(F℘) on
−→
E ℘ by isometries induces an action of

(
∏

℘|p PGL2(F℘))/Γp ×{1, . . . , t} on (
∏

℘|p

−→
E ℘)/Γp ×{1, . . . , t} which can be

described as follows. Fix (ē, i) ∈ (
∏

℘|p

−→
E ℘)/Γp × {1, . . . , t} and let (w̄, j) ∈

(
∏

℘|p PGL2(F℘))/Γp × {1, . . . , t}; then (w̄, j)(ē, i) = (w̄(ē), j · i) where:

• If e = (e℘)℘|p ∈
∏

℘|p

−→
E ℘ is a representative of ē (mod Γp) and w =

(w℘)℘|p ∈
∏

℘|p PGL2(F℘) is a representative of w (mod Γp), a repre-

sentative of w̄(ē) is (w℘(e℘))℘|p;

• If {g1, . . . , gt} ⊆ B̂× is a set of representatives for the double quotient

space (F̂×
∏

q-p R×q
∏

℘|p B̂×℘ )\B̂×/B×, then j · i is defined by requiring
that gj·i is a representative of gjgi.

The modular form f yields a Of,π-valued pairing [, ]p between the Galois

group G̃cp∞ and (
∏

℘|p

−→
E ℘)/Γp × {1, . . . , t} → Of,π by the rule:

[g, (e, i)]p = f((ηΨ̂(g)(e, i)).

2.3.2 Gross points and measures

By [Vi], under the above assumptions, there exists an optimal embedding
Ψ0 : K → B of Oc into R0, that is, Ψ0(Oc) = Ψ(K) ∩ R0, where R0 ⊇ R
is an Eichler order of level n+/p. Define the set Gr(c) of Gross points of

conductor c to be the image of ÔcF̂
×\K̂×/K× into R̂×0 F̂×\B̂×/B× via the

adelization Ψ̂0 of Ψ0 (note that, since Ψ0 is an optimal embedding, Ψ̂0 is

injective). By strong approximation, R̂×0 F̂×\B̂×/B× can be identified with
(
∏

℘|p V℘)/Γp × {1, . . . , t}, where V℘ is the set of vertices of the Bruhat-Tits

tree T℘, so a point P ∈ Gr(c) can be identified with a pair (v̄, j) (obvious
notations). Furthermore, for any m ≥ 0, there are optimal embeddings
Ψm : K → B of Ocpm into R, that is, as above, Ψm(Ocpm) = R ∩ Ψm(K).
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Define the set Gr(cpm) of Gross points of conductor cpm to be the image

of ÔcpmF̂×\K̂×/K× into R̂×F̂×\B̂×/B× via the adelization Ψ̂m of Ψm (as

above, Ψ̂m is injective). So, a Gross point P ∈ Gr(cpm) is a pair (ēcpm , j).
Denote by v 7→ v̄ (respectively, e 7→ ē) the canonical projection

∏
℘|p V℘ →

(
∏

℘|p V℘)/Γp (respectively,
∏

℘|p

−→
E ℘ → (

∏
℘|p

−→
E ℘)/Γp). Moreover, for any

e = (e℘)℘|p ∈
∏

℘|p

−→
E ℘, denote by s and t the source and target of e, so

that e = (s(e), t(e)) = (s(e℘), t(e℘))℘|p. Gross points enjoy the following
properties:

• For any ecp ∈
∏

℘|p

−→
E p so that, for some j, Pcp := (ēcp, j) ∈ Gr(cp),

there exists vc ∈
∏

℘|p Vp with Pc := (v̄c, j) ∈ Gr(c) and s(ecpn) = vc. In
this case, say that Pcp and Pc are compatible.

• For any m ≥ 1 and any ecpm+1 ∈
∏

℘|p

−→
E p so that, for some j, Pcpm+1 :=

(ēcpm+1 , j) ∈ Gr(cpm+1), there exists ecpm ∈
∏

℘|p

−→
E p with Pcpm :=

(ēcpm , j) ∈ Gr(cpm) and s(ecpm+1) = t(ecpm). In this case say that Pm+1

and Pm are compatible.

Definition 2.2. Define the set Gr(cp∞) of Gross points of conductor cp∞ to
be the set of sequences Pcp∞ = (Pcpm)m≥0 where for every m, Pcpm ∈ Gr(cpm)
and Pcpm is compatible with Pcpm−1.

For any m ≥ 2, define Ucpm := Ker(G̃cp∞ → G̃cpm). Choose a Gross point
Pcp∞ = (Pcpm)m≥0 ∈ Gr(cp∞) such that, for m ≥ 2, StabG̃cp∞

(Pcpm) = Ucpm .

Since αp :=
∏

℘|p α℘ is a unit in O×f,π, the pairing [, ]p can be used to define a

Of,π-valued measure ν̃p on G̃cp∞ by the rule:

ν̃p(U) :=
[O×c : O×cpm ]

αm−2
p

[g, Pcpm ]p

for all compact open sets U = gUcpm for some g ∈ G̃cp∞ . Note that, since
∩mOcpm = OF and the index of O×F in O×c is finite because K/F is quadratic
imaginary and F is totally real, the relation [O×c : O×cpm ] = [O×c : O×F ] holds
for m sufficiently large. The distribution relation on ν̃p can be obtained by
observing that f is an eigenform for Up :=

∏
℘|p U℘ with eigenvalue αp and

the Galois group Gal(K̃cpm+1/K̃cpm), whose order is |p|/[O×cpm : O×
cpm+1 ], acts

on Gr(cpm+1) by permutation of the points which are compatible with Pcpm .

2.3.3 p-adic L-functions

Define Λ̃cp∞ to be the completed group ring:

Λ̃cp∞ = Of,π[[G̃cp∞ ]] := lim
←m

Of,π[G̃cpm ],
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where the inverse limit is taken with respect to the canonical restriction maps.
Recall the (non canonical) isomorphism G̃cp∞ ' Gal(Gp∞/K) × ∆cp∞ , with

Gal(Gp∞/K) ' Z
deg(p)
p and the finite layers Gal(Kpm/K) ' (Z/pmZ)deg(p).

Define the Iwasawa algebra Λp∞ to be completed group ring

Λp∞ := Of,π[[Gp∞ ]] = lim
←m

Of,π[Gpm ] ' Of,π[[T1, . . . Tdeg(p)]],

where T1, . . . Tdeg(p) are variables. Write also Λcpm (respectively, Λpm) for

Of,π[G̃cpm ] (respectively, Of,π[Gpm ]). Note that Λpm and Λp∞ are independent
of c.

Define for m ≥ 2:

L̃f,cpm :=
∑

g∈G̃cpm

ν̃p(gUcpm) · g ∈ Of,π[G̃cpm ].

The distribution relation satisfied by ν̃p ensures that there exists an element:

L̃f,cp∞ := lim
←m

L̃f,cpm ∈ Λ̃cp∞ .

Define Lf,cp∞ to be the canonical image (via restriction) of L̃cp∞ in the Iwa-
sawa algebra Λp∞ . Denote by L 7→ L∗ the canonical involution of Λp∞ defined
to be the extension by Of,π-linearity of the involution g 7→ g−1 of Gp∞ . Note
that a different choice of Pcp∞ satisfying StabG̃cp∞

(Ucpm) = Pcpm has the effect

of multiplying L̃cp∞ (respectively, Lcp∞) by an element of G̃cp∞ (respectively,
Gp∞). So, the element L̃cp∞(f,K) := L̃f,cp∞L̃∗f,cp∞ ∈ Λ̃cp∞ is well defined and
the following definition is well-posed.

Definition 2.3. The anticyclotomic p-adic Rankin L-function attached to f ,
p and K is the element Lp(f,K) ∈ Λp∞ defined to be the image of L̃p(f,K)
in Λcp∞.

It follows immediately from Definition 2.3 that:

Lp(f,K) := Lf,cp∞L∗f,cp∞ .

Remark. Of course, the definition of Lp(f,K) depends on c; but since c itself
depends only on f , p and K, and the Iwasawa algebra Λp∞ does not depend
on c, the subscript c has been dropped from the notation of Lp(f,K).

Fix a finite order character χ : G̃cp∞ → Q̄p and extend it by Of,π-linearity
to Λ̃cp∞ → Q̄p (this is possible because χ has finite order). Then the following
interpolation formula holds (see [Zh2, Section 1.3]):

χ(L̃cp∞(f,K))
.
= LK(f, χ, 1),

10



where LK(f, χ, 1) is the L-function LK(f, s) twisted by the character χ,
.
=

means that the above equality holds up to an explicitly non-zero computable
term and the values of χ are viewed as complex numbers by fixing an em-
bedding Qp → C.

2.4 Relations between different p-adic L-functions

Assume that p1 ⊆ OF and p2 ⊆ OF are two divisors of p. Then there are
two different p-adic L-functions Lp1

(fp1
, K) ∈ Λc1p∞

1
and Lp2

(fp2
, K) ∈ Λc2p∞

2
,

where fpi
and ci depend on pi (recall that fpi

is obtained by raising f0 at some
primes dividing pi). Suppose that p1 | p2 and assume that fp1

= fp2
=: f

(that is, the primes ℘ ⊆ OF dividing p2/p1 are also divisors of n0, the level
of f0). Since p1 | p2, it follows that c1 = c2p, where p :=

∏
℘|p2,℘-p1,(K

℘ )=−1 ℘

(recall the notations in Equation (1): p is the product of the primes ℘ | p2,
℘ - p1 which are inert in K/F ). It follows that K̃c1pm

1
⊆ K̃c2pm

2
for all m ≥ 1.

So, there are canonical maps:

λ̃m
p2/p1

: Λ̃c2pm
2
→ Λ̃c1pm

1
for m ≥ 1, and λ̃∞p2/p1

: Λ̃c2p2
→ Λ̃c1p∞

1

induced by restriction maps.
Introduce these more general notations: For any ideal r ⊆ OF define the

extension K̃r ⊆ RCF(r) by requiring that Gal(K̃r/K) ' Pic(Or)/Pic(OF ).
Furthermore, for any ideal r ⊆ OF so that there exists an optimal embedding
Ψr : K → B of Or into R, denote by Gr(r) the image of Ô×r F̂×\K̂×/K× into

R̂×F̂×\B̂×/B× via the adelization of Ψr. By definition:

λ̃m
p2/p1

(L̃c2pm
2
) =

∑

g∈G̃c1pm
1

[O×c2 : O×c2pm
2
]

αm−2
p2




∑

σ∈Gal(K̃c2pm
2

/K̃c1pm
1

)

[g̃σ, Pc2pm
2
]p2


 · g,

where g̃ is any element of G̃c2pm
2

whose reduction is g. Write p∗ := p2

p1
; note

that p | p∗. Since f is an eigenform for Up∗ :=
∏

℘|p∗
U℘ with eigenvalue

αp∗ :=
∏

℘|p∗
α℘, the inner sum is equal to:

∑

ρ∈Gal(K̃
c2pm

1
p
m−1
∗

/K̃c1pm
1

)




∑

τ∈Gal(K̃c2pm
2

/K̃
c2pm

1
p
m−1
∗

)

[g̃ρ̃, τPc2pm
2
]p2


 =

=
∑

ρ∈Gal(K̃
c2pm

1
p
m−1
∗

/K̃c1pm
1

)

αp∗

[O×
c2pm

1
pm−1
∗

: O×c2pm
2
]
[g̃(m−1)ρ, Pc2pm

1
pm−1
∗

]p2
;

11



here g̃(m−1) is any element of G̃c2pm
1

pm−1
∗

whose reduction coincide with g

and Pc2pm
1

pm−1
∗

∈ Gr(c2p
m
1 pm−1
∗ ). (Note that, if Pc2pm

2
= ((ē

(m)
℘ )℘, j), then

Pc2pm
1

pm−1
∗

is represented by the product of edges (
∏

℘|p1
ē
(m)
℘

∏
℘|p∗

ē
(m−1)
℘ , j),

where, for ℘ | p∗, the target of e
(m−1)
℘ is equal to the source of e

(m)
℘ .) Define

p′ := p2/(p1p) = p∗/p. A recursive argument combined with the equality
c1 = c2p shows that the inner sum equals:

∑

σ∈Gal(K̃c1pm
1

p′/K̃c1pm
1

)

αm−1
p∗

[O×c1pm
1

p′ : O×c2pm
2
]
[g̃(1), Pc1pm

1
p′ ]p2

; (3)

here g̃(1) is an element of G̃c1pm
1

p′ whose reduction is g and Pc1pm
1

p′ is a

Gross point of Gr(c1p
m
1 p′) which can be described by (

∏
℘|p1

ē
(m)
℘

∏
℘|p′p ē

(1)
℘ , j),

where, for ℘ | p′p, the distance between the target of e
(1)
℘ and the source of

e
(m)
℘ is m − 2. Note that:

∑

σ∈Gal(K̃c1pm
1

p′/K̃c1pm
1

)

σPc1pm
1

p′ =
Up′(Pc1pm

1
)

[O×c1pm
1

: O×c1pm
1

p′ ]
−

∑

℘|p′

δ℘(Pc1pm
1
)

[O×c1pm
1

: O×c1pm
1

p′ ]
,

where δ℘ is a suitable element in G̃c1pm
1
. (Recall that, by definition, if ℘ | p′,

then ℘ is split in K/F , so #Gal(K̃c1pm
1

p′/K̃c1pm
1

(p′/℘)) = |℘|−1 and deg(U℘) =
|℘|; see also the analogous formula in [BD2, page 433, second case of p divides
N ]). Combining this formula with (3) yields the following expression for
λ̃p2/p1

(L̃c2pm
2
):

∑

g∈G̃c1pm
1

αm−1
p∗

αp′ [O
×
c2

: O×c1pm
1
]

αm−2
p2

· [g, Pc1pm
1
]p1

· g−

−
∑

g∈G̃c1pm
1

αm−1
p∗

[O×c2 : O×c1pm
1
]

αm−2
p2

[gδ℘, Pc1pm
1
]p1

· g.

Then:

λ̃m
p2/p1

(L̃c2pm
2
) =

αp2
αp′ [O

×
c1

: O×c2 ]

αp1

L̃c1pm
1
−

∑

℘|p′

αp2
[O×c1 : O×c2 ]

αp1

δ℘
−1L̃c1pm

1
. (4)

The elements δ℘ are independent of m (indeed, they depends only on the
choice of Pc2p∞

2
) and they belong to the torsion subgroup ∆c1p∞

1
⊆ G̃c1p∞

1

(this is because they act only on the ℘-component of Pc1p∞).
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Lemma 2.4. Let np′ := #{℘ | p′}. Then:

λ̃p2/p1
(L̃c2p∞

2
(f,K)) =

(
αp2

[O×c1 : O×c2 ]

αp1

)2

lp2/p1
L̃c1p∞

1
(f,K),

where lp2/p1
:= α2

p′ − αp′
∑

℘|p′(δ℘ + δ℘
−1) + np′ +

∑
℘,℘′|p′ δ℘δ−1

℘′ is an element

of Of,π[∆c1p∞
1

].

Proof. Combine equation (4) with the identity (δ℘
−1L̃c1p∞

1
)∗ = δ℘L̃c1p∞

1
.

Define
λp2/p1

: Λp∞
2
→ Λp∞

1

to be the natural map deduced by restriction on Galois groups.

Proposition 2.5. Notations as in Lemma 2.4. Then

λp2/p1
(Lp2

(f,K)) =

(
αp2

[O×c1 : O×c2 ]

αp1

)2

(αp′ − np′)
2Lp1

(f,K).

Proof. For any δ ∈ ∆c1p∞ , the image of δL̃c1p∞
1

(f,K) in Λp∞ is the same as

the image of L̃c1p∞
1

(f,K). The statement follows then from Lemma 2.4.

Corollary 2.6. Notations as in Lemma 2.4. If p = (1) (that is, all primes
dividing p2 but not dividing p1 are split in K/F ) then np′ is the number of
primes dividing p2/p1 and:

λp2/p1
(Lp2

(f,K)) =
α2

p2
(αp2

− np′αp1
)2

α4
p1

Lp1
(f,K).

On the other hand, if p = p2/p1 (that is, all primes dividing p2 but not
dividing p1 are inert in K/F ) then np′ = 0 and:

λp2/p1
(Lp2

(f,K)) = (αp2
/αp1

)4Lp1
(f,K).

Proof. Follows from Proposition 2.5.

Fix an isomorphism Λ̃c1p∞
1

' Of,π[[T1, . . . , Tdeg(p1)]]. Then there is an

isomorphism Λ̃c2p∞
2

' Of,π[[T1, . . . , Tdeg(p1), Tdeg(p1)+1, . . . , Tdeg(p2)]] such that
the kernel of the restriction map λp2/p1

is the ideal (Tdeg(p1)+1, . . . , Tdeg(p2)).
Fix also such an isomorphism. Then the above results simply assert that
Lp1

(f,K) is the special value of Lp2
(f,K). More precisely: write Tp1

(re-
spectively, Tp2

) for the set of variables T1, . . . , Tdeg(p1) (respectively, for the
set of variables Tdeg(p1)+1, . . . , Tp2

). Then Lp1
(f,K) = Lp1

(f,K)(Tp1
) and

Lp2
(f,K) = Lp2

(f,K)(Tp1
, Tp2

).
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Corollary 2.7. Notations as in Lemma 2.4. Then

Lp2
(f,K)(Tp1

, 0) =

(
αp2

[O×c1 : O×c2 ]

αp1

)2

(αp′ − np′)
2Lp1

(f,K)(Tp1
).

Proof. The isomorphism between an Iwasawa algebra Zp[[G]] (where G ' Zp

is the Galois group of a Zp-extension) and the formal power series ring Zp[[X]]
is defined by sending a topological generator γ of G to 1 − X. The result
follows.

Example. Assume that F/Q is real quadratic, that p = ℘1℘2 with ℘i ⊆ OF

prime ideals, ℘1 6= ℘2. Define p1 = ℘1 and p2 = p = ℘1℘2. If ℘2 is inert in

F/K then p′ = (1) and Lp(f,K)(T℘1
, 0) =

(
α℘2

[O×c1 : O×c2 ]
)2

L℘1
(f,K)(T℘1

).
On the other hand, if ℘2 is split in K/F , then p = (1) and Lp(f,K)(T℘1

, 0) =
α2

p(αp−α℘1
)2

α4
℘1

L℘1
(f,K)(T℘1

). If α℘1
= αp, that is, α℘2

= 1, then the above

formula implies that Lp(f,K)(T, 0) = 0. This phenomenon can be regarded
as a sort of extra-zero of the restriction of Lp(f,K) to the first variable.

3 Iwasawa’s Main Conjecture

3.1 Selmer groups attached to modular forms

Notations as in the above sections. Let Tf = Tf,π be the GF -module, free
of rank 2 over Of,π, associated to the representation ρf ; define Vf = Vf,π :=
Tf ⊗Zp

Qp and Af = Af,π = Vf/Tf (hence, Af ' (Kf,π/Of,π)2 as Of,π-
modules). Moreover, define Tf,n := Tf/π

nTf and Af,n = Af [π
n], so that

there both Tf,n and Af,n are Of,π/(πn)-modules free of rank 2 and there is
an isomorphism of GF -modules Tf,n ' Af,n. Furthermore, Af ' lim→n Af,n

with respect to the inclusion maps and Tf ' lim←n Tf,n with respect to the
multiplication by π maps. Taking the direct (respectively, inverse) limit as
m → ∞ of the groups H1(Kpm , Af,n) with respect to the restriction (respec-
tively, corestriction maps) yields the groups:

H1(Kp∞ , Af,n) := lim
→m

H1(Kpm , Af,n),

Ĥ1(Kp∞ , Tf,n) := lim
←m

H1(Kpm , Tf,n),

where the notations are the same as in Section 2.1 and 2.2 (in particular,

Gal(Kp∞/K) ' Z
deg(p)
p ).

Denote by ε : GF → Z×p the cyclotomic character giving the action of
GF on the p-power roots of unity µp∞ . Assume that the representation ρf,π
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satisfies Assumption 2 so that for any prime ideal q ⊆ OF dividing exactly
n and not dividing p there is an exact sequence of Gq-modules: 0 → A

(q)
f,1 →

Af,1 → A
(1)
f,1 → 0 such that GFq

acts on the one-dimensional Of,π/(π)-vector

space A
(q)
f,1 as multiplication by ε or −ε. Recall that, by Assumption 1, f0 is

assumed to be π-ordinary at p. This condition implies that for any n ≥ 1
and any ℘ | p there is an exact sequence of I℘-modules: 0 → A

(℘)
f,1 → Af,n →

A
(1)
f,n → 0 where I℘ acts on the free of rank one Of,π/(πn)-module A

(℘)
f,n by ε

while it acts trivially on the quotient A
(1)
f,n (which is also free of rank one over

Of,π/(πn)).
Define the following finite/singular and finite/ordinary structure, where

M = Af,n or M = Tf,n:
Let q ⊆ OF be a prime ideal such that q - np. Denote by Iq the di-

rect sum of the inertia subgroups Iq′ ⊆ Gq′ , where q′ ranges over the set
of primes of OKpm dividing q and Gq′ ⊆ GKpm is the choice of a decompo-
sition subgroup. The singular part of H1(Kpm,q,M) is H1

sing(Kpm,q,M) :=

H1(Iq,M)Gal(Kunr
pm,q

/Kpm,q) := ⊕q′|qH
1(Iq′ ,M)

Gal(Kunr

pm,q′
/Kpm,q′ ). The kernel of

the residue map ∂q : H1(Kpm,q,M) → H1
sing(Kpm,q,M) is the finite part of

H1(Kpm,q,M) and is denoted by H1
fin(Kpm,q,M). Taking direct limits for

m → ∞ yields:

H1
fin(Kp∞,q, Af,n) := lim

→m
H1

fin(Kpm,q, Af,n),

H1
sing(Kp∞,q, Af,n) := lim

→m
H1

sing(Kpm,q, Af,n),

while taking inverse limits yields:

Ĥ1
fin(Kp∞,q, Tf,n) := lim

←m
H1

fin(Kpm,q, Tf,n),

Ĥ1
sing(Kp∞,q, Tf,n) := lim

←m
H1

sing(Kpm,q, Tf,n).

The groups H1
fin(Kp∞,q, Af,n) and Ĥ1

sing(Kp∞,q, Tf,n) are annihilators of each
other under the local Tate pairing 〈, 〉q. Moreover, as in [BD3, Lemma 2.4
and Lemma 2.5]:

• If q is split in K/F , H1
fin(Kp∞,q, Af,n) = 0 and Ĥ1

sing(Kp∞,q, Tf,n) = 0.

• If q is inert in K/F , Ĥ1
sing(Kp∞,q, Tf,n) ' H1

sing(Kq, Tf,n) ⊗ Λp∞ and
H1

fin(Kp∞,q, Af,n) ' Hom(H1
sing(Kq, Tf,n) ⊗ Λp∞ , Qp/Zp) (notations for

the Iwasawa algebra Λp∞ as in Section 2.3).
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Let q ⊆ OF be a prime ideal such that q | n exactly and the residue

characteristic of q is not p. Recall the module A
(q)
f,n defined by the above

exact sequence for Af,n at q. The ordinary part of H1(Kpm,q, Af,n) is defined

as H1
ord(Kpm,q, Af,n) := H1(Kpm,q, A

(q)
f,n). Taking direct limits:

H1
ord(Kp∞,q, Af,n) := lim

→m
H1

ord(Kpm,q, Af,n).

Use the isomorphism Af,n ' Tf,n to define T
(q)
f,n ' A

(q)
f,n and H1

ord(Kpm,q, Tf,n)

:= H1(Kpm,q, T
(q)
f,n). Taking inverse limits:

Ĥ1
ord(Kp∞,q, Tf,n) := lim

←m
H1

ord(Kpm,q, Tf,n).

The groups H1
ord(Kp∞,q, Af,n) and Ĥ1

ord(Kp∞,q, Tf,n) are annihilators of each
other under the local Tate pairing 〈, 〉q.

Let ℘ ⊆ OF be a prime ideal such that ℘ | p. Recall the module

A
(℘)
f,n defined by the above exact sequence for Af,n at ℘. The ordinary

part of H1(Kpm,℘, Af,n) is H1
ord(Kpm,℘, Af,n) := res−1

℘ (H1(I℘, A
(℘)
f,n)), where

the following notations are used: I℘ is the (as above) sum of the iner-
tia subgroups I℘′ ⊆ G℘′ , where ℘′ ranges over the set of primes of OKpm

dividing ℘ and G℘′ ⊆ GKpm is the choice of a decomposition subgroup;
res℘ : H1(Kpm,℘, Af,n) → H1(I℘, Af,n) is the restriction map. Taking direct
limits:

H1
ord(Kp∞,℘, Af,n) := lim

→m
H1

ord(Kpm,℘, Af,n).

Again, use the isomorphism Af,n ' Tf,n to define T
(℘)
f,n and H1

ord(Kpm,℘, Tf,n)

:= res−1
℘ (H1(I℘, T

(℘)
f,n )). Taking inverse limits:

Ĥ1
ord(Kp∞,℘, Tf,n) := lim

←m
H1

ord(Kpm,℘, Tf,n).

The groups H1
ord(Kp∞,℘, Af,n) and Ĥ1

ord(Kp∞,℘, Tf,n) are annihilators of each
other under the local Tate pairing 〈, 〉q.

For any prime ideal q ⊆ OF , let resq : H1(Kp∞ , Af,n) → H1(Kp∞,q, Af,n)
be the restriction map. Furthermore, for a prime q ⊆ OF not dividing np
let ∂q denote (by an abuse of notations) the maps ∂q : H1(Kp∞ , Af,n) →

H1
sing(Kp∞,q, Af,n) and ∂q : H1(Kp∞ , Tf,n) → Ĥ1

sing(Kp∞,q, Tf,n) resulting by
composing resq with the residue maps H1(Kp∞,q, Af,n) → H1

sing(Kp∞,q, Af,n)

and H1(Kp∞,q, Tf,n) → Ĥ1
sing(Kp∞,q, Tf,n). Moreover, if ∂q(κ) = 0, denote by

vq(κ) the image of resq(κ) in the kernel of the residue maps.

Definition 3.1. The Selmer group Self,n(Kp∞) attached to f, n and Kp∞ is
the group of elements s ∈ H1(Kp∞ , Af,n) satisfying:
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• For primes q ⊆ OF which do not divide np, ∂q(s) = 0.

• For primes q ⊆ OF dividing n− exactly, resq(s) ∈ H1
ord(Kp∞,q, Af,n).

• For primes ℘ ⊆ OF dividing p, resq(s) ∈ H1
ord(Kp∞,q, Af,n).

• For primes q ⊆ OF dividing n+ and not dividing p, resq(s) = 0.

Definition 3.2. Let s ⊆ OF be a square free ideal prime to n. The com-
pactified Selmer group Ĥ1

s (Kp∞ , Tf,n) attached to f, n and Kp∞ is the groups

of elements κ ∈ Ĥ1(Kp∞ , Tf,n) satisfying:

• For primes q ⊆ OF which do not divide nsp, ∂q(s) = 0.

• For primes q ⊆ OF dividing n− exactly, resq(s) ∈ H1
ord(Kp∞,q, Af,n).

• For primes ℘ ⊆ OF dividing p, resq(s) ∈ H1
ord(Kp∞,q, Af,n).

• For primes q ⊆ OF dividing n+s and not dividing p, resq(s) is arbitrary.

The global reciprocity law of class field theory implies that for any s ∈
Self,n(Kp∞) and any κ ∈ Ĥ1

s (Kp∞ , Tf,n):

∑

q|s

〈∂q(κ), vq(s)〉q = 0. (5)

Define Self,∞(Kp∞) := lim→n Self,n(Kp∞) (direct limits with respect to
the inclusion maps). The Selmer group Self,∞(Kp∞) has a natural structure
of Λp∞-module. For any Λp∞-module M , denote by M∨ its Pontryagin dual.
Then Self,∞(Kp∞)∨ has a characteristic power series which will be denoted
by Charp(f,K). Recall the map λp2/p1

of Section 2.4, where p1 | p2 | p. The
following conjecture is motivated by Corollary 2.7.

Conjecture 3.3. The following relation holds:

λp2/p1
(Charp2

(f,K)) = u[O×c1 : O×c2 ]
2(αp′ − np′)

2Charp1
(f,K),

where u ∈ Λ×p∞
1
.

Remark. Of course, this conjecture is implied by Corollary 2.7 and Iwasawa’s
Main Conjecture. Note also that this conjecture does not really imply directly
a relation between the Selmer groups Self,∞(Kp∞

1
) and Self,∞(Kp∞

2
). Indeed,

Charp(f,K) carries only a part of the information on Self,∞(Kp∞), since it
does not view its submodules and quotients whose support contains primes
of height greatest that 2.
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3.2 Iwasawa’s Main Conjecture

The main result which will by proved in Section 4 is the following:

Theorem 3.4. Assume that f0 satisfies Assumption 1 and f satisfies As-
sumptions 2 and 3. The characteristic power series Charp(f,K) of the Pon-
tryagin dual Self,∞(Kp∞)∨ divides the p-adic L-function Lp(f,K).

The proof of this result is based on a generalization of the argument in
[BD3], which carries over, mutatis mutandis, in the totally real case. So,
it will be presented in Section 4 only the sketch of the argument where the
necessary adaptations to the totally real case will be pointed out.

3.3 Modular abelian varieties

Let A/F be an abelian variety of GL2-type, that is, [EndQ(A) : Q] = dim(A),
where EndQ(A) := End(A) ⊗Z Q. Set E := EndQ(A) and assume moreover
that End(A) ' OE. For any prime ideal π ⊆ OE, denote by A[πn] the πn-
torsion in A and by Tπ(A) its π-adic Tate module. Denote by ρA,π : GF →
Aut(Tπ(A)) ' GL2(OE,π) the associated representation. Finally, denote by
n0 ⊆ OF the arithmetic conductor of A/F .

Definition 3.5. Say that A/F is modular if there exists f0 as in Section 2.2
such that E = Kf0

and there exists a prime π ⊆ Of0
such that ρA,π ' ρf0,π,

where ρf0,π is the π-adic representation associated to f0.

Say that a modular abelian variety A/F is π-ordinary at p if the same
is true for f0. This is equivalent to require that A has ordinary reduction at
any prime ideal ℘ ⊆ OF above p.

Let A/F be modular (denote always by π the prime attached to A in
Definition 3.5) and p-ordinary. The Selmer group SelA,n(Kp∞) defined by the
exact sequence

0 −→ SelA,n(Kp∞) −→ H1(Kp∞ , A[πn])−→
∏

q

δq(A(Kp∞,q)/(π
n)),

where δq is the local Kummer map and q ⊆ OF ranges over all prime ideals.
Define SelA,∞(Kp∞) := lim→n SelA,n(Kp∞) (direct limits with respect to the
inclusion maps). Then SelA,∞(Kp∞) acquires a structure of Λp∞-module.
Moreover, SelA,∞(Kp∞) contains Self,∞(Kp∞) with finite index, so that there
is a pseudo-isomorphism of Λp∞-modules:

SelA,∞(Kp∞) ∼ Self,∞(Kp∞).

In particular, the characteristic power series of their Pontriagin duals are the
same. Define Lp(A,K) := Lp(f,K). Then:
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Corollary 3.6. Same hypotheses as in Theorem 3.4. The characteristic
power series of SelA,∞(Kp∞)∨ divides the p-adic L-function Lp(A,K).

Remark. Suppose that the same conditions as above hold for all prime ideals
π ⊆ OE = Of0

dividing p. Since Tp(A) ' ⊕π|pTπ(A), then there is a similar
statement as in Corollary 3.6 for the Selmer group attached to the p-torsion
of the abelian variety A.

4 The proof

4.1 Admissible primes and rigid pairs

A prime ideal ` ⊆ OF is said to be n-admissible if:

1. ` does not divide np;

2. ` is inert in K/F ;

3. π does not divide |`|2 − 1;

4. πn divides |`| + 1 + θf (T`) or |`| + 1 − θf (T`).

As in [BD3, Lemma 2.6, 2.7], it is possible to show that H1
sing(K`, Tf,n) and

H1
fin(K`, Tf,n) are both isomorphic to Of,π/(πn) and that Ĥ1

sing(Kp∞,`, Tf,n)

and Ĥ1
fin(Kp∞,`, Tf,n) are both free of rank one over Λp∞/πnΛp∞ .

Proposition 4.1. Let s ∈ H1(K,Af,1) be a non-zero element. Then there
exist infinitely many admissible primes ` such that ∂`(s) = 0 and v`(s) 6= 0.

Proof. Easy generalization of [BD3, Theorem 3.2].

Denote by ad0
f the k := Of,π/(π)-vector space of trace-zero endomor-

phisms in Hom(Af,1, Af,1). Let GF acts on ad0
f by conjugation of endomor-

phisms.
Recall the notations of Section 3.1. For all prime ideals ℘ ⊆ OF di-

viding p, define ad
0(℘)
f to be the k-space of trace zero endomorphisms in

Hom(A
(1)
f,1, A

(℘)
f,1 ) and denote by H1

ord(F℘, ad0
f ) the k-vector space consisting

of those classes whose restriction to H1(I℘, ad0
f ) belongs to H1(I℘, ad

0(℘)
f ),

where I℘ ⊆ GF℘
is the inertia subgroup. Moreover, if q ⊆ OF is a prime

ideal dividing n exactly of residual characteristic different from p, then de-
fine ad

0(q)
f to be the k-space of trace zero endomorphisms in Hom(A

(1)
f,1, A

(q)
f,1)

and set H1
ord(Fq, ad

0
f ) := H1(Fq, ad

0(q)
f ). Finally, if ` is a 1-admissible prime,
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denote by ad
0(`)
f the unique one dimensional k-vector subspace of ad0

f on

which FrobF (`) acts with eigenvalue |`| (the existence and uniqueness of ad0
f

follows because |`|2 6= 1 in k). Then define H1
ord(F`, ad

0
f ) := H1(F`, ad

0(`)
f ).

For any prime ideal q - np define H1
fin(Fq, ad

0
f ) := H1(F unr

q /Fq, ad
0
f ). Then if `

is 1-admissible, there is a decomposition in one-dimensional k-vector spaces:
H1(F`, ad

0
f ) = H1

fin(F`, ad
0
f ) ⊕ H1

sing(F`, ad
0
f ).

Let s be a square-free product of 1-admissible primes. Define the s-Selmer
group Sels(F, ad0

f ) attached to ad0
f to be the k-vector space consisting of those

classes ξ ∈ H1(F, ad0
f ) such that:

1. For q - pns, resq(ξ) ∈ H1
fin(F`, ad

0
f );

2. For q | nsp exactly, resq(ξ) ∈ H1
ord(Fq, ad

0
f );

3. For q2 | n of residual characteristic different from p, the image of resq(ξ)
in H1(Iq, ad

0
f ) is trivial (where Iq ⊆ GFq

is the inertia subgroup).

Define a pair (`1, `2) of n-admissible primes a rigid pair if Sel`1`2(F, ad0
f ) = 0.

Proposition 4.2. Assume that f is π-isolated. Let `1 be an n-admissible
prime and s ∈ H1(K,Af,1) be a non-zero class. Then there exists infinitely
many admissible primes `2 such that:

1. ∂`2(s) = 0 and v`2(s) 6= 0;

2. Either (`1, `2) is a rigid pair or Sel`2(F, ad0
f ) is one dimensional over

k.

Moreover, if Sel`1(F, ad0
f ) is one-dimensional over k, then there are infinitely

many n-admissible primes such that:

1. ∂`2(s) = 0 and v`2(s) 6= 0;

2. (`1, `2) is a rigid pair.

Proof. This is a generalization of [BD3, Theorems 3.10 and 3.11]. It can be
easily performed by replacing:

• The result of Wiles [W2] on universal deformation rings and Hecke alge-
bras with the following result: Denote by R the universal deformation ring
attached to deformation of ρ of the representation GF → Aut(Af,1) satisfy-
ing:
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1. The determinant of ρ is the cyclotomic character ε describing the action
of GF on the p-power roots of unity;

2. ρ is unramified outside np;

3. The restriction of ρ to the inertia I℘ ⊆ GF℘
for primes ℘ | p is of the

form

(
ε ∗
0 1

)
;

4. For q | n exactly, the restriction of ρ to a decomposition group at q is

of the form

(
ε ∗
0 1

)
.

Let mf,π := Ker(Tn

θf,1

−→ k) and denote (as in Assumption 3) by Tf the
completion of Tn at mf,π. Then R is isomorphic to Tf . This result has been
obtained in an unpublished work of Fujwara [Fu]. For precise references and
a proof when [F : Q] is even, see [JM].

• The computations on Selmer groups in [DDT, Section 2] (when F = Q)
with the analogous computations which can be found, for example, in [SW]
or [JM].

4.2 Congruences between modular forms and the Eu-

ler system

Fix an n-admissible prime `. By [W1], [Ta] and [Ra], it is known that there
exists an Hilbert modular form f` ∈ S2(n`) which is new at ` and such that:

• For primes q - n`, Tq(f`) ≡ θf (Tq)f` (mod πn);

• For primes q | n, Uq(f`) ≡ θf (Uq)f` (mod πn);

• U`(f`) ≡ εf` (mod πn), where πn divides |`| + 1 − εθf (Tq).

Denote by X(`) the Shimura curve (defined over F ) whose complex points

are given by X (`)(C) = R̂×F̂×\H± × B̂×/B×, where H± := C − R, B/F is
a quaternion algebra of discriminant n−` which is ramified in exactly one of
the archimedean places and R ⊆ B is an Eichler order of level n+. Let J (`) be
the jacobian variety (defined over F ) associated to X (`). Denote by Tp(J

(`))
the p-adic Tate module of J (`) and by Φ` the group of connected components
of the fiber at ` of the Néron model of J (`) over OK . Denote by If`

the
kernel of the map Tn` → Of,π/(πn) associated to the modular form f`. The
results contained in [L2, Theorem 4.13] when f has rational coefficients can
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be easily extended to this general case (see [L1, Section 4.8]) proving that
there exists a canonical submodule D` ⊆ Tp(J

(`))/If`
, such that D` ' Tf,n

(as Galois modules); moreover, Tp(J
(`)) decomposes (as Galois module) in a

direct sum D` ⊕D′`.
For any m ≥ 0 fix an Heegner point P̃m ∈ X(`)(K̃p∞) (see [Zh1, Sec-

tion 2] for the precise definitions: in the notations of [Zh1], P̃m = (1, z)
where End(z) ' Ocpm). Since If`

is not Eisenstein, there is an isomorphism
J (`)(K̃cpm)/If`

→ Pic(X(`))(K̃cpm)/If`
; denote again by P̃m the natural im-

age. For all ℘, let α℘ be the unit root of Frob at ℘; set αp :=
∏

℘|p α℘ and

P̃ ∗m := α−m
℘ [O×c : O×cpm ]P̃ ∗m. The points P̃ ∗m are norm-compatible. Then their

images under Kummer map followed by projection:

J (`)(K̃cpm)/If`
→ H1(K̃cpm , Tp(J

(`))/If`
) → H1(K̃cpm ,D`) ' H1(K̃cpm , Tf,n)

yields a sequence of cohomology classes, κ̃m(`), which are compatible under
corestriction. So, taking limit defines a class κ̃(`) ∈ Ĥ1(K̃cp∞ , Tf,n). Define

the class κ(`) ∈ Ĥ1(Kp∞ , Tf,n) to be the corestriction of κ̃(`) from K̃cp∞ to
Kp∞ .

Choose distinct n-admissible primes `1 - c and `2 - c so that pn divides
both |`1| + 1 − ε1a`1(f) and |`2| + 1 − ε2a`2(f), with ε1, ε2 equal to ±1. Let
T`1 be the Hecke algebra acting on the Shimura curve X (`1) (notations as
above). Assume that f is p-isolated. The map arising from Kummer theory
composed with the canonical projection as above yields a map:

J (`1)(K`2)/If`1
→ H1(K`2 , Tp(J

(`1))/If`1
) → H1(K`2 ,D`1) ' H1(K`2 , Tf,n)

whose image is equal to H1
fin(K`2 , Tf,n) because both Tp(J

(`1)) and Tf,n are
unramified at `2. For the same reason and the fact that `2 - p, the map
induced by reduction (mod `2): J (`1)(K`2)/If`1

→ J (`1)(F`2
2
)/If`1

is an iso-
morphism, where F`2

2
is the residue field of the ring of integers of K`2 . The

identification H1
fin(K`2 , Tf,n) ' Of,π/(πn) and the inverse of the above map

yield a surjective map:

J (`1)(F`2
2
)/If`1

→ Of,π/(πn). (6)

Let S`2 ⊆ X(`1)(F`2
2
) be the set of supersingular points of X (`1) in charac-

teristic `2 and let Div(S`2) and Div0(S`2) be the set of formal divisors and
the set of formal degree zero divisors with Z-coefficients supported on S`2 .
Let the Hecke algebra T`1 act on Div(S`2) and Div0(S`2) via Albanese func-
toriality (it makes no difference if the Picard functoriality were chosen: see
the discussion in [BD3, Section 9]). Since If`1

is not Eisenstein, there is an

identification Div(S`2)/If`1
' Div0(S`2)/If`1

, so there is a map:

γ : Div(S`2) → Of,π/(πn).
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Write T̄ for the image of T ∈ T`1 into T`1/If`1
, so that for primes q - n`1,

T̄q ≡ θf (Tq) (mod πn), for primes q | n, Ūq ≡ θf (Uq) (mod πn) and Ū`1 ≡
ε1 (mod πn). An easy generalization of [BD3, Lemma 9.1] shows that, for
x ∈ Div(S`2) the following relations hold: for q - n`1, γ(Tqx) = T̄qγ(x); for
q | n`1, γ(Uqx) = Ūqγ(x); γ(T`2x) = T̄`2γ(x); γ(Frob`2x) = ε2γ(x).

Proposition 4.3. γ is surjective.

Proof. The proof requires slight modification with respect to the proof of
[BD3, Proposition 9.2].

• Instead of considering the subgroup of norm one elements Γ(`2) contained
in R[1/`2]

×/{±1} (notations as in [BD3, Proposition 9.2]), consider the prod-

uct Γ(`2) :=
∏l

j=1 Γ
(`1)
j , where Γ

(`2)
j is the group of norm one elements in

Rj[1/`2]
×/O×F (here R ⊆ B is the Eichler order of level n+ defining X(`1)

and Rj is defined by Rj := B ∩ g−1
j R̂gj, where as usual {gj}j=1,...,l is a set of

representatives of R̂×\B̂×/B×).

• The Shimura curve X̃ (notations as in [BD3, Proposition 9.2]) can be
defined here in the same way by imposing an extra Γ1(p)-level structure
(recall that p | n+). As a consequence, the subgroup Γ̃(`2) (notations as in
[BD3, Proposition 9.2]) is defined to be the finite index subgroup of Γ(`2) :=∏l

j=1 Γ
(`1)
j defined by taking the product of the subgroup of Rj[1/`2]

×/O×F
consisting of those elements which are congruent to the standard unipotent

matrices (fix isomorphisms Rj,℘ '

{(
∗ ∗
0 ∗

)
(mod ℘)

}
for all ℘ | p and

all j = 1, . . . , t).

• The crucial ingredient in the proof of [BD3, Proposition 9.2] is the ana-
logue in the context of Shimura curves of Ihara’s Lemma [Ih]. This result
is provided over Q by [DT, Theorem 2], which establishes that the action of
GQ on a certain module factors through Gal(Qab/Q). The analogue when
F 6= Q still hold: see [Ja, Section 6].

• The cokernel of the natural map J̃ (`1)(F`2
2
) → J (`1)(F`2

2
) (notations as in

[BD3, Proposition 9.2]) has order dividing p− 1 (hence, prime to p) because
it can be identified with the Cartier dual of Σ := Ker(J̃ (`1) → J (`1)) (see for
example [Co, Section 7]), which is known to have order ϕ(p) by [Li]. When
F 6= Q, the only difference is the analogue of [Li], which can be obtained

as follows. Write X =
∐

Γh+

j=1\H
+ and X̃ =

∐h+

j=1 Γ̃j\H
+, where h+ is the
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narrow class number of F and denote by J and J̃ the jacobian varieties of X
and X̃. There is a canonical injection: 0 → Σ → ⊕h+

j=1Hom(Γj/Γ̃j, U) where
U = {x ∈ C : |z| = 1}. Consider the injection ι : Γj ↪→

∏
℘|p Γ0(℘), where

Γ0(℘) is the subgroup of (mod ℘) upper triangular matrices in GL2(OF,℘);

write ι(γ) =

(
a℘ b℘

c℘ d℘

)

℘

and define ap :=
∏

℘|p a℘, bp :=
∏

℘|p b℘. Then

there is an exact sequence: 0 → Γ̃j → Γj
φ

−→ (OF /p)× × (OF /p)× where
φ(γ) = (ap, bp). It follows that #Σ | ϕ(p)2.

Let B′ be the quaternion algebra of discriminant Disc(B ′) = Disc(B)`1`2

and let R′ be an Eichler OF [1/p]-order of B ′ of level n+.

Proposition 4.4. There exists g ∈ SB′

2 (n+,Of,π/(πn)) such that:

• For prime ideals q - n`1`2, Tq(g) ≡ θf (Tq)g (mod πn);

• For prime ideals q |, Uq(g) ≡ θf (Uq)g (mod πn);

• U`1g ≡ ε1g (mod πn) and U`2g ≡ ε2g (mod πn).

Furthermore, if (`1, `2) is a rigid pair, then g can be lifted to a π-isolated
form in SB′

2 (n+,Of,π).

Proof. Provided Proposition 4.3 and the results of [Zh2, Section 5] on the
description of the set of supersingular points in terms of double coset spaces,
the proof is the same as [BD3, Theorem 9.3, Corollary 9.3 and Proposition
3.12].

4.3 Explicit reciprocity laws

The two following theorems explore the relations between the classes κ(`)
constructed in Section 4.2 and the p-adic L-functions of Section 2. Assume
from now on that ` - c (where c is defined as in Section 2.1). Recall the
notations for ∂` and v` before Definition 3.1.

Theorem 4.5. v`(κ(`)) = 0 and the equality

∂`(κ(`)) ≡ Lf,cp∞ (mod πn)

holds in Ĥ1
sing(Kp∞,`, Tf,n) ' Λp∞/πnΛp∞ up to multiplication by elements in

O×f,π and G∞.
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Proof. Denote by ∂̃` the residue map Ĥ1(K̃cp∞ , Tf,n) → Ĥ1
sing(K̃cp∞,`, Tf,n),

the cohomology groups being defined in the obvious way. In is enough to
show that ∂̃`(P̃

∗
m) ≡ L̃f,cp∞ . The Cěrednik-Drinfeld description of the special

fiber X
(`)
` at ` of the integral model of the Shimura curve X (`) (which is

recalled in [L2, Sections 4.2, 4.3] or [Zh2, Section 5]) combined with the `-adic

description of the image of P̃m in X
(`)
` (see [L2, Section 5.2]) imply that P̃m

can be identified with a pair (g, z) ∈ R̂[1/`]×F̂×\(B̂× ×H`)/B
× ' X

(`)
` (C`),

where:

• B/F is, as in Section 2.2, the quaternion algebra which is ramified at
archimedean places and whose discriminant is Disc(B) = n−;

• R ⊆ B is, as in Section 2.2, an Eichler order of level n+ and R̂[1/`] :=∏
q6=` Rq × B`;

• H` := C`−F` is the `-adic upper half plane, where C` is the completion
of an algebraic closure of F`;

• z is one of the two fixed points of Ψ(K×) acting on H`, where Ψ ∈
Hom(K,B) is deduced by reduction of endomorphisms End(P̃m)⊗Q →

End(P̃m) ⊗ Q (recall that P̃m can be described in terms of a certain

polarized abelian variety defined over K` by [Zh1, Section 1]; then P̃m

represents the reduced abelian variety over the residue field of OK`
;

moreover, the choice of z can be normalized imposing that the action
of Ψ ⊗F F` on the tangent space at P is via the character z 7→ z/τ(z),
where τ ∈ Gal(K`/F`) is the non-trivial automorphism);

• g satisfies End(P̃m)⊗OF
OF [1/`] ' Rg[1/`] and Rg[1/`] := g−1R̂[1/`]g∩

B.

Write X
(`)
` (C`) '

∐s
j=1 H`/Γ`,j , where {g1, . . . , gs} is a set of representatives

of R̂[1/`]×F̂×\B̂×/B× and Γ`,j := ĝ−1
j R[1/`]×gj ∩ B. Note that Pm(`) :=

(g, z) ∈ X
(`)
` (K`) (this integrality property can be deduced by recalling that,

since ` is inert in K/F , then it splits completely in anticyclotomic extensions
of conductor prime to ` (see [Iw])). Consider the natural reduction map:
r` : H` → E` ∪ V`, where E` (respectively, V`) is the set of unoriented edges
(respectively, the set of vertices) of the Bruhat-Tits tree T` of PGL2(F`). By
the Tate-Honda Theorem, the image of z corresponds to a vertex, say vz

(that is, the reduction of z does not correspond to a singular point in the

special fiber of X
(`)
` ). It follows that r`(Pm(`)) can be identified with a pair

(vm(`), j) with vm(`) ∈ V`/Γ`. By the strong approximation theorem, there

25



is an identification between (
∏

℘|p

−→
E ℘)/Γp × {1, . . . , t} ' V`/Γ` × {1, . . . , s}

(notations as in Section 2.2 for the first set). Summing up, r`(Pm(`)) can be

identified with an edge (em, j) ∈ (
∏

℘|p

−→
E ℘)/Γp × {1, . . . , t}. By [L2, Section

5.2], the Galois action of G̃cp∞ on Pm(`) is compatible with the action of
G̃cp∞ on the edges (em, j) defined in Section 2.3.1. Fix a prime `∞ of K̃cp∞

dividing ` and set `m := `∞ ∩ Kcpm . Let Φ` (respectively, Φl) be the group
of connected components of the fiber at ` (respectively, at l, where l | ` is
a prime of some K̃cp∞) of the Néron model of J (`) over OK (respectively,
over OK̃cpm

). Since ` splits completely in K̃cp∞/K, the choice of `∞ yields an
identification:

Φ`,m := ⊕l|`Φl ' Φ`[G̃cpm ].

By [L2, Propositions 4.10, 4.11], the image of P̃m is contained in a canonical
component C`m

⊆ Φ`m
/If`

, such that C`m
' H1

sing(K`, Tf,n) corresponds to

the singular part of H1(K`,D`). For σ ∈ G̃cp∞ , write ∂`m
(σ(P̃m)) for the

image of σ(P̃m) in C`m
' Of,π/(πn). Then ∂`m

can be viewed as a map:

(
∏

℘|p

−→
E ℘)/Γp × {1, . . . , t} → Of,π/(πn).

By multiplicity one, this map is equal (mod πn) to the modular form f (up to
multiplication by an element of (Of,π/(πn))×). The equality ∂`m

(σ(Pm(`))) ≡
[σ, em]p (mod πn) holds for a suitable choice of `∞ (note that the different
choices of `∞ are permuted by the multiplication by an element of G̃cp∞ , and
the same dependence holds for the definition of L̃cp∞). The result now follows
from the definition of P̃ ∗m and L̃cp∞ .

Theorem 4.6. Let g be as in Proposition 4.4. The equality

v`2(κ(`1)) = Lg,cp∞

holds in Ĥ1
fin(Kp∞,`2 , Tf,n) ' Λp∞/πnΛp∞ up to multiplication by elements in

O×f,π and Gcp∞.

Proof. Consider the sequence {P̃m}m of Heegner points. Fix (as in the
proof of the above theorem) a prime `2,∞ of K̃cp∞ above `2 and let `2,m :=
`2,∞ ∩ K̃cpm . Since `2 is inert in K, the points Pm reduce modulo `2,∞ to
supersingular points P̄m ∈ X(`1)(F`2,m

), where F`2,m
is the reside field of K̃cpm

at `2,m. Identify F`2,m
with F`2

2
for all m. Then P̄m can be viewed as a point in

S`2 , and hence, by strong approximation, as a sequence of consecutive edges

in
−→
E `2/Γ

′ (Γ′ := R′[1/p]×/OF [1/p]×, R′ being defined before Proposition
4.4). Reduction modulo `2,m of endomorphism yields by extension of scalars
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an embedding Ψ : K → B′, which is independent of m (B ′/F is the quater-
nion algebra defined before Proposition 4.4). The natural Galois action of
G̃cp∞ on P̃m is compatible with the action of G̃cp∞ on the em via Ψ. Write:

L̃g,cpm := α−m
p

∑

σ∈G̃cpm

g(σPm) · σ ∈ Of,π/(πn)[G̃cpm ];

the sequence {L̃g,m} is compatible under norms and defines an element
L̃g,cp∞ ∈ Of,π/(πn)[[G̃∞]]. Define the cohomology groups

H1
fin(K̃cpm,`2 , Tf,n) := ⊕`2,m|`2H

1
fin(K̃cpm,`2,m

, Tf,n),

Ĥ1
fin(K̃cp∞,`2,∞

, Tf,n) := lim
←m

H1
fin(K̃cpm,`2,m

, Tf,n)

(inverse limit with respect to the corestriction maps). The choice of `2,∞

together with the isomorphism H1
fin(K`2 , Tf,n) ' Of,π/(πn) yields identifica-

tion:
H1

fin(K̃cpm,`2 , Tf,n) = Of,π/(πn)[G̃cpm ],

Ĥ1
fin(K̃cp∞,`2,∞

, Tf,n) = Of,π/(πn)[[G̃cp∞ ]].

By the definition of γ, the image of P̃ ∗m in H1
fin(K̃cpm,`2,m

, Tf,n) corresponds

to L̃g,cpm (mod πn) and so the image of the compatible sequence {P̃ ∗m} cor-
responds to L̃g,cp∞ . Define the class κ̃(`1) to be the image of {P̃ ∗m}m in

Ĥ1(K̃cp∞ , Tf,n). Then v`2(κ̃(`1)) ∈ Ĥ1
fin(K̃∞,`2 , Tf,n) is equal to the image of

{P̃ ∗m}m, and hence to L̃g,cp∞ (mod πn). Since κ(`1) is the corestriction of
κ̃(`1) from K̃cp∞ to Kp∞ , the result follows.

Corollary 4.7. The equality

v`1(κ(`2)) ≡ v`2(κ(`1)) (mod πn)

holds in Λp∞/πnΛp∞ up to multiplication by elements in O×f,π and Gp∞.

Proof. Since the definition of g is symmetric in `1 and `2, this is obvious.

4.4 The argument

Let Λ := A[[T1, . . . , Tl]] be a ring of formal power series in l ≥ 1 variables,
where A is a discrete valuation ring. Let X be a finitely generated Λ-module
and denote by r its Λ-rank. By [Bo, §4, 4, Théorèmes 4, 5], there exists an
exact sequence of Λ-modules: 0 → A → X → ⊕s

i=1Λ/(gi) × Λr → B → 0,
where A and B are Λ-torsion modules whose support contains only ideals
whose height is ≥ 2 and gi ∈ Λ, all i = 1, . . . s. By definition the characteristic
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power series attached to the Λ-module X is CharΛ(X) = g :=
∏s

i=1 gi. If M
is a finitely presented module over a ring R, denote by FittR(X) its Fitting
ideal over R.

Proposition 4.8. Let X be a finitely generated Λ-module and L ∈ Λ. Sup-
pose that ϕ(L) belongs to FittO(X ⊗ϕO) for all homomorphisms ϕ : Λ → O,
where O is a discrete valuation ring. Then L belongs to Char(X).

Proof. If X is not Λ-torsion, then the result follows easily as in [BD3, Propo-
sition 3.1]. So, in the following, assume that X is Λ-torsion. Note that

⋂

P

Fitt(X)P = (g)

in Λ, where P ranges over the set of prime ideals of Λ of height ≤ 1 (see
[HT, page 101]). Since ΛP is a discrete valuation ring, by assumption L ∈
Fitt(X)P for all P; it follows that g | L.

The rest of the section is devoted to sketch the proof of Theorem 3.4. Be-
ing p fixed, denote Self,∞(Kp∞) (respectively, Self,n(Kp∞)) simply by Self,∞

(respectively, Self,n). By Proposition 4.8, it is enough to show that ϕ(Lf )
2

belongs to FittO(Sel∨f,∞ ⊗ϕ O) for all ϕ ∈ Hom(Λ,O) where O is a dis-
crete valuation ring. For this, it is enough to show that ϕ(Lf )

2 belongs to
FittO(Sel∨f,n ⊗ϕ O) for all n ≥ 1. Fix O and ϕ as above. Write ν for an
uniformizer of O. Set

tf := ordν(ϕ(Lf )).

If ϕ(Lf ) = 0, then ϕ(Lf )
2 belongs trivially to FittO(Sel∨f,n⊗ϕO) for all n ≥ 1,

so assume ϕ(Lf ) 6= 0. Moreover, if Sel∨f,∞ ⊗ϕ O is trivial, then its Fitting
ideal is equal to O and, again, ϕ(Lf )

2 belongs trivially to FittO(Sel∨f,n ⊗ϕ O)
for all n ≥ 1, so assume that FittO(Sel∨f,n ⊗ϕ O) 6= 0. The theorem is proved
now by induction on tf .

Step I: Construction of κϕ(`). Let ` be any (n + tf )-admissible prime
and enlarge {`} to a (n + tf )-admissible set S: such a set consists of distinct
(n + tf )-admissible primes such that the map

Self,n+tf (K) → ⊕`∈SH1
fin(K`, Af,n+tf )

is injective (Proposition 4.1 shows that such a set exists). Denote by s the
square-free product of the primes in S and let κ(`) ∈ Ĥ1

` (Kp∞ , Tf,n+tf ) ⊆

Ĥ1
s (Kp∞ , Tf,n+tf ) be the cohomology class attached to `. Let κϕ(`) be the

natural image of this class in M := Ĥ1
s (K∞, Tf,n+tf )⊗ϕ O. By Theorem 4.5,

ordν(κϕ(`)) ≤ ordν(∂`(κϕ(`))) = ordν(ϕ(Lf )). (7)
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Choose an element κ̃ϕ(`) ∈ M so that νtκ̃ϕ(`) = κϕ(`). This element is
well defined modulo the νt-torsion subgroup of M; to remove this ambiguity,
denote by κ′ϕ(`) the natural image of κ̃ϕ(`) in H1

s (Kp∞ , Tf,n) ⊗ϕ O. The
following properties of κ′ϕ(`) holds:

1. ordν(κ
′
ϕ(`)) = 0 (because ordν(κϕ(`)) = t ≤ tf );

2. ∂q(κ
′
ϕ(`)) = 0 for all q - `n− (because κ(`) ∈ Ĥ1

s (Kp∞ , Tf,n+tf ));

3. v`(κ
′
ϕ(`)) = 0 (by Theorem 4.5);

4. ∂`(κ
′
ϕ(`)) = tf − t (by Theorem 4.5 and formula (7)). Moreover, the

element ∂`(κ
′
ϕ(`)) belongs to the kernel of the natural homomorphism:

η` : Ĥ1
sing(Kp∞,`, Tf,n) ⊗ϕ O → Sel∨f,n ⊗ϕ O. (8)

To prove this statement use the global reciprocity law of class field theory
(5) and the definition of κ′ϕ(`) (for details, see [BD3, Lemma 4.6]).

Step II: Case of tf = 0. This is the basis for the induction argument. If
tf = 0, that is, Lf is a unit, then Sel∨f,n = 0. To prove this, note that, for

all n-admissible primes `, Theorem 4.5 implies that Ĥ1
sing(Kp∞,`, Tf,n)⊗O is

generated by ∂`(κϕ(`)) (as O-module) and that the map η` in (8) is trivial.
Assume now that Sel∨f,n is not trivial. Then Nakayama’s lemma implies that
the group Sel∨f,n/m = (Self,n[m])∨ is not trivial, where m is the maximal ideal
of Λp∞ . Let now s ∈ Self,n[m] be a non trivial element. By Assumption
3, ρf is residually irreducible. This can be used to show that there is an
isomorphism H1(K,Af,1) → H1(Kp∞ , Af,n)[m] (see [BD3, Theorem 3.4] for
details), which allows to look at s as an element of H1(K,Af,1). Invoke
Proposition 4.1 to choose an n-admissible prime ` - c so that ∂`(s) = 0 and
v`(s) 6= 0. Then the non degeneracy of the local Tate pairing implies that η`

is trivial, which is a contradiction.

Step III: The minimality property. Let now Π be the set of primes of
OF so that:

• ` is n + tf -admissible;

• The number t = ordν(κϕ(`)) is minimal among the set of n + tf -
admissible primes.
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By Proposition 4.1, Π 6= ∅. Let t be the common value of ordν(κϕ(`)) for
` ∈ Π. Then t < tf . This assertion can be proved by an argument, similar
to that used in Step II, which combines Proposition 4.1, the properties of
the map η` and the non degeneracy of the local Tate pairing (for details, see
[BD3, Lemma 4.8]).

Step IV: Rigid pairs with the minimality property. This step is
devoted to the proof that there exist primes `1, `2 ∈ Π so that (`1, `2) is a
rigid pair. To prove this, start by choosing any prime `1 ∈ Π and denote by s
the natural image of κ′ϕ(`1) in (Ĥ1

s (K∞, Tf [π
n])/m)⊗ϕO/(ν), where m is the

maximal ideal of Λp∞ . The argument in [BD1, Theorem 3.2], generalized to
this situation as suggested in [BD3, Proposition 3.3, Theorem 3.4], allows to
view s as a non-zero element in H1(K,Tf,1) ⊗ϕ O/(ν). Note that ∂q(s) = 0
for all q - `1n. By Proposition 4.2 choose a n + tf admissible prime `2 - c so
that ∂`2(s) = 0, v`2(s) 6= 0 and either (`1, `2) is a rigid pair or Sel`2(F,Wf ) is
one-dimensional. The following relation hold:

t = ordν(κϕ(`1)) ≤ ordν(κϕ(`2)) ≤ ordν(v`1(κϕ(`2))). (9)

The first inequality follows from the minimality property using that `1 ∈ Π
and that `2 is a n + tf -admissible prime using the minimality assumption
on t, while the second is clear. By the choice of `2 and Corollary 4.7,
ordν(v`1(κϕ(`2))) = ordν(v`2(κϕ(`1))). Now note that ordν(v`2(κϕ(`1))) ≥
ordν(κϕ(`1)) and that the strict inequality holds if and only if v`2(s) = 0,
so, since v`2(s) 6= 0, ordν(v`1(κϕ(`2))) = ordν(κϕ(`1)). Combining this with
the inequalities in formula (9) shows that:

t = ordν(κϕ(`1)) = ordν(κϕ(`2)). (10)

It follows that `2 ∈ Π. If (`1, `2) is not a rigid pair, then Sel`2(F,Wf ) is
one dimensional. In this case, by Proposition 4.2, choose a n + tf admissible
prime `2 - c so that ∂`2(s) = 0, v`2(s) 6= 0 and (`2, `3) is a rigid pair. Repeat
the argument above with `2 replacing `1 and `3 replacing `2 to show that
`3 ∈ Π. In any case then, either (`1, `2) or (`2, `3) is a rigid pair and the
claim at the beginning of Step IV follows.

Step V: The congruence argument. Choose by the above considera-
tions a rigid pair (`1, `2) with `1, `2 ∈ Π. Note that, by Proposition 4.2,

t = tg = ordν(Lg) (11)
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(here g is the congruent modular form attached to (`1, `2) by Proposition
4.4). There is an exact sequence of Λ-modules:

0 → Self`1`2
→ Sel∨f,n → Sel∨[`1,`2] → 0, (12)

where Sel[`1,`2] ⊆ Self,n is defined by the condition that the restriction at

the primes `1 and `2 must be trivial and Self`1`2
is the kernel of the natural

surjection of duals. There is a natural inclusion:

(Self`1`2
)∨ ⊆ H1

fin(Kp∞,`1 , Af,n) ⊕ H1
fin(Kp∞,`2 , Af,n).

The dual of H1
fin(Kp∞,`1 , Af,n) ⊕ H1

fin(Kp∞,`2 , Af,n), by the non-degeneracy of

the local Tate pairing, is Ĥ1
sing(Kp∞,`1 , Af,n)⊕Ĥ1

sing(Kp∞,`2 , Af,n), so the above
inclusion leads to a surjection:

ηf : Ĥ1
sing(Kp∞,`1 , Af,n) ⊕ Ĥ1

sing(Kp∞,`1 , Af,n) → Self`1`2
.

Recall that, since `1 is n-admissible, Ĥ1
sing(Kp∞,`1 , Af,n) ' Λp∞/(πn). Let ηϕ

f

be the map induced by ηf after tensoring by O via ϕ. Then the domain of
ηϕ

f is isomorphic to (O/ϕ(π)n)2. By property 4 above enjoyed by the classes
κ′ϕ(`1) and κ′ϕ(`2), the kernel of ηϕ

f contains (∂`1κ
′
ϕ(`1), 0) and (0, ∂`2κ

′
ϕ(`2)).

The same property combined with equations (10) and (11) yields:

tf − tg = ordν(∂`1κ
′
ϕ(`1)) = ordν(∂`2(κ

′
ϕ(`2)).

It follows that:

ν2(tf−tg) belongs to the Fitting ideal of Self`1`2
⊗ϕ O. (13)

Repeat now the argument with the modular form g: there is an exact se-
quence:

0 → Selg`1`2
→ Sel∨g,n → Sel∨[`1,`2] → 0,

and a natural surjection:

ηg : Ĥ1
fin(Kp∞,`1 , Af,n) ⊕ Ĥ1

fin(Kp∞,`1 , Af,n) → Selg`1`2
.

Let ηϕ
g be the map induced by ηg after tensoring by O via ϕ. By the global

reciprocity law of class field theory, the kernel of ηϕ
g contains the elements

(v`1(κ
′
ϕ(`1)), v`2(κ

′
ϕ(`1))) = (v`1(κ

′
ϕ(`1)), 0),

(v`1(κ
′
ϕ(`2)), v`2(κ

′
ϕ(`2))) = (0, v`2(κ

′
ϕ(`2))),

where the equalities follow from property 3 above enjoyed by the classes
κ′ϕ(`1) and κ′ϕ(`2). Note that ordν(v`2κ

′
ϕ(`1)) = ordν(v`1κ

′
ϕ(`2)) = tg − t = 0.

From this it follows that the module Selg`1`2
is trivial, so, the natural surjection

Sel∨g,n ⊗ϕ O → Sel∨[`1`2] ⊗ϕ O is an isomorphism. (14)
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Step VI: The inductive argument. Now assume that the theorem is
true for all t′ < tf and prove that it is true for tf . Recall that t = tg <
tf . Moreover, since (`1, `2) is a rigid pair, the modular form g satisfy the
assumptions in the theorem, so, by inductive hypothesis,

ϕ(Lg) belongs to the Fitting ideal of Sel∨g,n ⊗ϕ O. (15)

Now use the theory of Fitting ideals:

ν2tf = ν2(tf−tg)ν2tg

∈ FittO(Self`1`2
⊗ϕ O) · FittO(Sel∨g,n ⊗ϕ O), by (13) and (15)

= FittO(Self`1`2
⊗ϕ O) · FittO(Sel∨[`1`2] ⊗ϕ O), by (14)

⊆ FittO(Sel∨f,n ⊗ϕ O), by (12).

Since by definition ord(Lf ) = tf , it follows that ϕ(Lf )
2 ∈ FittO(Sel∨f,n⊗ϕO),

proving the result.
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