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#*
enough (Gé= 0.00115 £ 0.0004) to confirm Schwinger's calculation( )

(Gé= a/2ﬂ ) . At present, the accuracy of the measurement of Ge is

3 p.p.m. ; and an adequate comparison with the theory requires the

()

inclusion of the sixth order contributions to Gé .

Does the muon have an anomalous magnetic moment as predicted
by QED ? A positive answer to this important question, which bears upon
one of the greatests puzzles in physics, i.e.,, the origin of the muon-

electron mass difference, has been given by beautiful experiments per-

formed at CERN. The accuracy of the first g-2 muon experiment004) was

3 007,008)

4 x 1077 , The latest gufz experiment has attained an accu-

racy of 28 parts in 105 and has clearly confirmed the vacuum polariza-

(3¥¥)

tion terms with virtual electron pairs predicted by QED . The

accuracy will very likely improve by a factor of 10 to 30 in the next
)

generation of gufZ experiments

(#) See Schwinger ref.003 ; reprinted in the compilation quoted in

ref.R.15 ; paper No. 13.
(¥*%*) See the discussion in Section IV .

(#¥%¥) The calculation of this contribution was first done by Peterman,
ref.005 ; and by Suura and Wichmann, ref.006 . For further details

see the discussion of section v,] .

() Private communication from John Bailey, Francis Farley and Emilio

Picasso .



The understanding of the gu-Z experimental result has been a
challenge to theoreticians which has led to new developments in compu-
tational techniques. An early discrepancy between theory and experiment
motivated the calculation of all the terms predicted by QED which, at
sixth order, make the anomaly of the muon different from that of the
electron. The result of these calculations has brought the theoretical

(*)

prediction again within the errors of the experiment

An important question about the precision tests of QED is the
accuracy they can attain before they are also sensitive to the electro-
magnetic interactions of hadrons. The electron anomaly and systeﬁs like
positronium and muonium are still far from being influenced by the
electromagnetic interactions of hadrons. This makes them the more
excellent candidates for future precision tests of QED. As we shall see
the situation is different for the Lamb shift, the hyperfine structure
in hydrogen, and for the muon anomaly. Here, an adequate comparison bet-
ween theory and experiment requires the knowledge of contributions due
to the electromagnetic interactions of hadrons., It is remarkable that in
some cases, like the muon anomaly, the hadronic contributions can be
related to empirical information already available from the high energy
electron experiments. A very interesting link between high energy expe-

riments and precision low energy experiments is thereby developing.

(*) This is discussed in detail in Section V .
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The high energy experiments are also useful from another point
of view. They can test the validity of the QED rules for the lepton and
photon propagators in processes where the Born approximation is adequate
yet the momentum transfers involved are large (of a few GeV/c with the

present machines).

The main purpose in writing this review was to discuss the
recent developments concerning the anomalous magnetic moment of the muon.
This is done in Sections V, VI and VII. Clearly this requires a parallel
discussion of the electron anomaly as well, which is made in Sects.IV & VII.
We felt, however, that in order to keep some balance, there should also
be a brief review of other fundamental QED topics where there has been
some recent developments. We have therefore included a first part on low
energy tests in fundamental systems : Sections I, II and III ; and a

third part on electron and photon high energy experiments, Section VIITI.

There is an important topic with implications for QED which is
not discussed in this review ; i.e., the determination of o from the
a.c. Josephson effect. The reason for this is that there already exists
an extremely detailed exposition of the Subject(*) to which we have
nothing to add. Of course, in all the numerical estimates in the text we

shall indicate the appropriate origin for the input value of q which

is used.

(#) See Taylor, Langenberg and Parker, ref, R.16 .
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We should finally like to point out that there are various
excellent review articles on different aspects of QED in the literatu-
(%) . . .
re . In writing this review we have attempted more to complement the

already existing literature rather than to write an encyclopaedic review

of QED.

One comment about notations, We use the same metric and Dirac
matrices as in J.D. Bjorken and S.D. Drell's textbooks, McGraw Hill,

New-York .

(##) See the list of review articles at the end.
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FUNDAMENTAL BOUND SYSTEMS

In this first part, we shall consider three fundamental bound
systems : the hydrogen atom ; muonium ; and positronium . We shall
review the present status in the comparison between theory and experi-
ment concerning : the Lamb-shift in atomic hydrogen ; the fine struc-
ture in hydrogen ; the hyperfine structure of the hydrogen ground state ;
the fine-structure of. the positronium ground state ; the annihilation
rates of orthopositronium and parapositronium ; and the hyperfine-

splitting of the muonium ground state.

(¥) TFor a review of other hydrogen-like systems we recommend the

reader the excellent review articles of Brodsky and Drell,ref.R.4

and of Wu and Wilets, ref.R.17 .
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I. THE HYDROGEN ATOM

The basic features of the lower energy-level structure in the
hydrogen atom are summarized in Fig.I.l . In the Dirac theory, the dege-

neracy between the n=2 P3/2 and P1/2 levels is removed by the spin-

orbit interaction. This leads to the fine structure AE (2P3/2- 2P1/2) s

pr0portiona1(*) to (Za)4m » which corresponds to a level splitting of
10969.1 MHz . The interaction of theelectron with the quantized électroma—
gaetic field removes the degeneracy between the levels n = 2 S%- and

P_% . The corresponding level structure : AE (28%- ZP%) = 1057.9 MHz is
the Lamb-shift, It is proportional to mn(Za)4log-(Za). Another cause of level
splitting in the hydrogen-atom is the interaction of the magnetic moment
of the orbital electron with the magnetic moment of the proton. In the
ground state n =1 , this leads to a hyperfine structure between the

triplet F =1 and singlet F = 0 levels of 1420.4 MHz . The effect is

proportional to ﬁ (Za)4m

(¥) z 1is the atomic number, which for hydrogen is one. We shall,
however, keep Z 1in ourexpressions as an indicative of the binding

effects in contrast to the purely radiative effects.
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I.1. The Lamb-Shift,

The two dominant contributions to the Lamb-shift can be quali-

tatively understood in the following way.

On the one hand the electron, in the presence of the electro-
magnetic field of the proton, can emit and reabsorb a photon (see Fig.
I.2) . This leads to a physical spreading of the electron charge over a

mean squared radius < r2> which for a free electron is precisely
-6 ol ,n_1
DR f(3e%-3)

where )\ 1is an arbitrary small mass assigned to the photon. In the hydro-
gen atom, however, there is an effective lower limit (of the order of the hydrogen
binding energy) to the energy of the photons which the bound electron can
emit and reabsorb. Qualitatively one expects that a correct treatment of
the binding effects will replace A by the Rydberg which is the ioniza-

tion energy of the ground state of the hydrogen atom
2
A~Ry =2%m (Za)“ = 13.6 eV ,

and
2

1 « -1

<r’>~— —log (za)
m

The potential corresponding to this charge density distribution diminis-

hes the Coulomb binding - %% and as a consequence the S levels are

pushed higher by an amount
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L~ a(Za)4m log (Zor,)'1 ~ 1000 MHz

101'IOS)Which also includes the contribution

The detailed calculation
from the anomalous magnetic moment of the electron, leads to the result
(see the first two entries in Table I.1 where the reduced mass correction

has also been taken into account)

f(self-energy) = 1077.63 X 0.02 MHz

On the other hand, the effective potential seen by the electron
is modified by the vacuum polarization due to virtual electron-positron

pairs 107,108) (see Fig.I.3)

® 2
Eg-.ﬂ.'.ﬂ' .]_' _d._t.:. Iml’[(t)ﬁ—
2 2 2 7 t 2 ’
T 9 4q 4m? q -t

where % Im T(t) 1is the vacuum polarization spectral function (which is

positive definite)

2 2
1 _a 1 2m 4m 2
s Ima(e) == 3 (+ = 1 - —— 68(t-4m™) .
The effective potential seen by the electron is more attractive than the
Coulomb potential and as a consequense the § levels are lowered by an

amount which turns out to be (without including the reduced mass correc-

tion)

=2 4 1y 2
&£ (vac.pol.) = TT(Zo.) m (- 30) = - 27.13 MHz

Experimentally, there are two accurate direct measurements of
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the n = 2 Lamb-Shift in hydrogen.:

109)%*)

Triebwasser, Dayhoff and Lamb s:exp = 1057.86 X 0.06 MHz ;
Robiscoe, Shyn 110)(revised) 160) séxp = 1057.90 £ 0.06 MHz .

There are also three independent measurements of the interval 2P_, -2FB

3/2°71/2

in hydrogen, which combined with the theoretical value for the fine

structure interval AE==2P3/2—2P1/2 , give indirect determinations of the

Lamb-shift :

Kaufman, Lamb, Lea and Leventhal 111)

(AE - s)exp =9911.38 £ 0.03 ; &£ = 1057.65 X 0.05 ;

Shyn, Williams, Robiscoe, and Rebane 112)

(AE - s:)exp = 9911,25 X 0.06 ; & = 1057.78 * 0.07 ;

Vorburger and Cosens 113)

(AE - ,c)exp =9911,17 £ 0.04 ; &£ = 1057.86 £ 0.06 .

The accuracies of these determinations of the Lamb-shift range from

66 p.p.m. to 47 p.p.m.

The terms which so far have been calculated are given in Table I.1 . A

detailed analysis of the different contributions can be found in two ar-

160)

*) Corrected by Robiscoe and Shyn
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(#*) 114,115)

ticles by Erickson and Yennie . Of particular interest to us,
because of recent changes in their evaluation, is the fourth order self-

energy contributions which we discuss next,

The QED quantity which is involved in the calculation of the
fourth order self-energy contribution to the Lamb-shift is the slope of
the Dirac form factor of the electron to order a? . With the electron

vertex definition

u(p+q) T“(p+q,p) u(p) =

W) ) E D+ g @D | uep)

we are interested in the evaluation of

dF§4)(q2)
4 _ 2 ———
o] =m dq2 q2_ 0
There are sevenFeynman diagrams contributing to 0(4) . They are shown in

Fig.I.4 and their contributions to the slope can be found in Table I.2 .
The first attempt to this extremely intricate calculation was made by
Weneser, Bersohn and Kroll 117) who gave analytic expressions for the

contributions from the diagrams of Figs.I.4b,4e,4f,4g and bounds for the

(¥) For a discussion of the nuclear recoil corrections see also

Grotch and Yennie (Ref.116) .
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others, Later.on, Soto 118) made a complete analytic calculation of

(4)

o . Motivated‘by serious discrepancies between theory and experi-

#* ¥
ment( ), Appelquist and Brodsky 119) undertook a numerical( )

(4)

reevelua-

tion of ¢ ".They found an overall-discrepancy in sign with the previous

calculations and different absolute values for the non-infrared divergent
terms of the cross (Fig.I.4a) and corner (Fig.I.4c,4d) graphs. Their
results concerning the overall-discrepancy in sign and the evaluation of

the corner graph were confirmed by another numerical calculation made

by Lautrup, Peterman and de Rafael 120 ; and an analytic calculation

made by Barbieri, Mignaco and Remiddi 121) . Recently, Peterman 122)

118)
a

has undertaken a systematic investigation of the work by Soto nd

given an analytic result for the cross graph (Fig.I.4a) in good

(et
agreement with the numerical result of Appelquist and Brodsky ).

The new value of the fourth order self-energy contribution to

the Lamb-shift,

2 4m 4819 49 2 1 2 3 _
(F) (za) 3)°" 518z " Z3z " t3 W log2 - A €(3) = 0.46994
(%) For a review of the comparison between theory and experiment,

before Appelquist and Brodsky reevaluation of 0(4) see Brodsky
Ref. R .3

(#%)  For a description of the techniques used in their calculation

see Section IV.2

(#*¢#) The recent analytic result of Barbieri, Mignaco and Remiddi 159)

122)

confirms the résult of Peterman and disagrees with ref. 124.
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when added to the other contributions in Table I.1 leads to a theoretical

value 123)

£, 1057.911 ¥ 0.012 MHz.

158)

This includes the recent result of Erickson The theoretical and

experimental values for Lambshift in Hydrogen and Hydrogenic atoms is
given in Table I.4.

I.2. The Fine Structure AE (2P3/2 -A2P1/2) in Hydrogen.

Let us denote AEH, the n=2, P3/2-P1/2 level interval

in atomic hydrogen (see Fig.I.l). The theoretical walue of AEH is well

known
AE, = & (z0)” 1+2(za)? (1 +1"‘1)'1
H 16 8 M
m,2 m \-3 my-2 , Q 2
-(ﬁ-) (1 +ﬁ) + 2G, (1 +4 ) + TT(zan) log Za
The first term in the parenthesis : 1+%(Zcx.)2 s is the well known Dirac

. (%) m, -1
solution® ’. The appearence of the reduced mass factor (1 +ﬁ) is

explained in detail in Grotch and Yennie 1162The (nﬁl)2 term, calculated by
Barker and Glover 133),, is the effect of the Dirac moments of the elec-

tron and the proton. The Ge term is the effect of the electron anomaly

and is the first term of radiative origin. Its contribution .is roughly

(*) See e.g., Bethe and Salpeter, ref. R.2 .
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0.1% , whereas the last term, which is also a radiative correction,
contributes only about lp.p.m. These radiative corrections have been cal-
culated by the authors of refs., 127 and 128 . Bounds to the next uncalcu-
a 2 . (¥)

lated terms , (E)(Za) , have been estimated by Erickson .

2 m m, 2
Since these terms are comparable to terms of order (J (o ¥ a(ﬁ) ; etc.)
it seems more natural to expand the theoretical expression for AEH in

owers of = and kee only the first power in this parameter. Thus we
P M P P P

get

AE, = Bylza) iza)z [1 +-§-(za)2]( -5 )+

m Q 2
2G, (1-2ﬁ)+ 2 = (20)" log za ;

From this equation, and using the "without quantum electrodynamics value"

-1_ . ()
(WQED) o "= 137.03608(26) obtained from the a.c. Josephson effect ,
we get
AEH(Th.) = 10969.03 MHz

Combining the value of AE, (Th.) with the theoretical

value for the Lamb-shift (see Section I.1) we have that

- = - = +
(AE, 'cH)Th._ 2Py 15=28 4, = 9911.13 T 0.03 Miz

(#*) Quoted by Brodsky and Parsons, ref.134 .

(#%) See Taylor, Parker and Langenberg, ref.R.16 .
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As we pointed out in the precedent section, there are three independent

measurements of the interval 2P - 28 in hydrogen 111,112,113) .
3/2 1/2

We can combined these experiments with the theoretical prediction of

AEHZ— £}I to obtain values for the fine structure constant a

(i) the Vorburger-Cosens. measurement 113)

- = +
AEH £II 9911.17 X 0.04 MHz |,

combined with the theoretical prediction yields a 2.0 p.p.m. accurate

value of a'l s

-1 _ .
a(i) = 137.03570(27)‘ ’

(ii) the weighted average of the values of refs, 111 and 112

- = +
AEH £II 9911.21 £ 0.035 MHz |,

combined with (AEH- £.)

g vields

1

Qi) = 137.03543(23) (2.25 p.p.m.)

The values azi) and a(ii) are derived purely from radiation theory
and experiment and they are in good agreement with the determination of
a-l from phase coherence effects in superconductors. At the present time,

the accuracy on a-l obtained with the new theoretical expression for the

almost

interval 2P - 28 isAthe same as that on the value of a-l deri-

3/2 1/2

ved from the hydrogen hyperfine structure discussed in the next section,
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In Table I.3 we have listed various determinations of
a-l obtained from different sources. This table clearly shows the con-

sistency of QED in describing bound systems.

I.3. The Hyperfine Structure,

In Hydrogenic atoms, the interaction of the magnetic mo-
ment of the orbital electron with the magnetic moment of the nucleus
leads to a splitting of a fine structure level with fixed orbital angular
momentum £ and fixed total angular momentum j into hyperfine struc-
ture (h.f.s.) levels. To a first approximation, the energy separation

. . . 135)
between the two outermost levels is given by the Fermi formula .

For the ground state of the hydrogen atom (see Fig.I.l) this corresponds

to a hyperfine frequency

A v(Fermi) = %? (Za)2 Ry t%:’1420 MHz
“0

e
where pp is the proton magnetic moment and My the Bohr magneton

e el

The measurement of the hyperfine-splitting of the hydrogen

ground state is probably the most accurate number which is presently

known in experimental physics 136)
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Av o (pe) = 1420.405 751 7864(17) MHz .

ex

12 ! More than a test

It corresponds to an accuracy of 1.2 parts in 10
of QED the h.f.s. has become a yardstick to measure our progress in
theoretical physics, As we shall see below there is at present a gap of

seven orders of magnitude between theory and ekperiment.

The framework for the formal treatment of the corrections
to the Fermi formula is the Bethe-Salpeter equation. The dimensionless

parameters which appear are :

m

v electron to proton mass ratio ;

R . . .

T ratio of nuclear to atomic sizes ;
o

a , the fine structure constant ;
Zo. , the strength of the Coulomb potential.

A sequence of approximations in the corrections to Ay (Fermi) is esta-

(%)

blished as follows . To first approximation, with
A\ﬁl(h.f.s.) = Ay (Fermi) (1+68) ,

the proton is taken as a fixed point Coulomb potential

(#) An excellent detailed exposition of the successive orders of

approximation can be found in Brodsky and Erickson, ref.137 .
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+ 0 and gR—»o ;
(o]

=ig

radiative corrections are also neglected ; and only relativistic correc-

tions are taken into account. This yields the Breit correction 138)

=3 ()2
6Breit T2 (za)

At the next level, one still takes 3 = 0 and gﬁ -0
but radiative corrections are taken into account as succesive po;ers of
o ; the dependence on (Za) , which arises when binding is taken into
account, is not however simply a power.series in (Za) . Altogether,

radiative plus binding corrections take the following form :

o2
8 ) + cloa(zo.) +a2(ﬁ) +

a

e

Rad T °Binding = %1

%(Zcx.)z[c22 logz(Za)-zi-c log(Za)_2+ c

21 20]

o3 a
+ a3(5) + <01 a(ﬁ-) Zo + ...

The coefficients a;,a,,a, are those which give the corresponding order

(%)

contribution to the anomalous magnetic moment of the electron

a, = %
2 2

_197 n° n°

3 -—
2 = Tiz t1z - 75 log2 + 7 &(3) = -0.3285

[Y)
]

1.49 * 0.20 .

(#) See Section IV .
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The coefficient ¢ 139) a

10
Karplus, Klein and Schwinger

was first calculated by Kroll and Pollack
140)

nd

_5
0 " + log 2

N

The coefficients oy and 51 have been calculated by Layzer 141) H

142) 137)

Zwanziger ; and Brodsky and Erickson . The latter authors have

also calculated the dominant contribution to the coefficient 020 . The

results are

c =2

22 3
_281 8

€21 =~ 360 -3 1982
= +

Cpo = 18.4 %5

The higher order terms have not been calculated as yet. We recall that the

#*
coefficients 51 and ¢y are state dependent( )

for the n=2 S-level have also been calculated

. In fact,the values
141,142,137,143)

The next level of approximations takes into account the
finite mass and structure of the proton. The corresponding corrections

can be classified as follows

(i) reduced mass corrections ;
(i1) nonrelativistic size contributions 6NR ;
137)

(¥) See e.g. Brodsky and Erickson for a discussion.
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(iii) additional recoil terms of order o /M bc 3

(iv) proton polarization corrections 6p .

The reduced mass correction gives simply a factor
M .3
( |IR
in the Fermi formula. Estimates of nonrelativistic size contributions

were made by Brown and Arfken 144) ;5 and, more elaborated, by Zemach

145)
The calculation of Zemach, in which the nonrelativistic approximation to
the wave function was used, has been analyzed in detail by Grotch and

16)

Yennie 1 within the framework of an effective potential model. It

amounts to a correction

where

- | 1321 0, @ g ouds

->
and pE(?) , pM(r) denote the charge and magnetic distribution of the

16)

proton. Grotch and Yennie 1 , using the expression
- * _ 3 -Ar
Pe(T) = py () Nygq © )

with A = 0.91 M, as suggested by the experimental determination of the

proton form factors obtain
R =102 F ,
P

which amounts to a correction
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GNR = - 38.2 p.p.m.

to the Fermi formula. Additional recoil corrections of relative order

46)

a m/M have also been evaluated by Arnowitt 1 using the method of

147) 148)

Karplus, Klein and Schwinger and by Newcomb and Salpeter

using the Bethe-Salpeter equation. These corrections, which in the case
#*

of muonium can be calculated exactly( ), have been done for a point pro-

ton with an anomalous magnetic moment i.e,, the vertex corresponding to

the absorption of a virtual photon of energy-momentum q by the proton

is put equal to

SR S U (9)Y
I Yyh+ oM igo q, .

The result is logarithmically divergent, due to the nonrenormalizability
of the Pauli interaction. However, as was shown by the calculations of
Iddings and Platzman 149), the divergence disappears when the form fac-
tors of the proton are taken into account, Iddings and Platzman calculate
the corrections to Av(Fermi) arising from two-photon-exchange (elastic-
contribution). In fact, they calculate the contribution to the h.f.s.
from the difference between a coupling with form factors and the point-
like coupling vertex quoted above. This, when added to the result of the

calculations of Arnowitt ; and Newcomb and Salpeter gives a finite

correction of

6p(e1astic) = 3.6 p.p.m. .

(%) See Section III
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There are further corrections to this value arising from the polarizabi-
lity of the proton, i.e. contributions to the h.f.s. from two-photon-
exchange graphs with virtual hadronic states other than the proton it-
self, The possibility of calculating these corrections from experimental

data on inelastic electron scattering from protons was first pointed out

by Iddings 150). The argument is analogous to Cottingham's formulation

of the neutron-proton mass difference 151) in terms of the proton struc-

ture functions. However, in the case of the h.f.s. of hydrogen, what is
needed are the spin dependent structure functions of the proton. These

are accessible from experiments on inelastic scattering of polarized

: #*
electrons from polarized protons( ). So far, the estimates of these

3¢
corrections( give very small contributions

6p(ine1astic) ~1-2 p.p.m.

From the comparison between the experimental result 136)

(*) For a discussion of the spin dependent of the nucleon struc-
ture functions where earlier references can be found see Doncel and

de Rafael, ref.152 .

(##) The m-N S-waves contribution has been estimated by Guerin 153) to

be 1 p.p.m. , and the mT-N resonances to give a contribution sma-

ller than 1 p.p.m. . The importance of hadronic continuum contribu-

tions has been particularly emphasized by Drell and Sullivan 154) ;
and more recently by Chernak Struminski and Zinovjev 55), using a
156)
and

quasipotential method developed by Logunov and Tavkhelidze

Faustov 157) .
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Avexp(pe) = 1420.405 751 7864(17) MHz |,

and the Fermi formula with all corrections discussed above incorporated,

except the proton polarizability correction, and using the recommended
- *
value of @ 1™ ,

ol = 137.03608(26) ,

one obtains

Ave - AvTh
—XP__ M- 95+ 4.0 p.p.m.- 8 (inelastic) ,
AvTh )

consistent with the estimates of bp(inelastic) 153-155)

One can also use the theoretical expression of Av(h.f.s.)
to obtain the fine structure constant,via the comparison with the measured

tv(h.£.s.) . The value one gets is

a‘l(h.f.s.) = 137.03591(35) ,

consistent with other determinations of a-l (see Table I.3)

(#) See Taylor, Parker and Langenberg, ref.R.16 .
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II. POSITRONIUM

Positronium is the atom consisting of an electron and a posi-

#®) .
tron. It was discovered( ) by Deutsch in 1951 . Positronium is clearly

a fundamental system to test QED , in particular our understanding of the

binding mechanism as described by the Bethe-Salpeter formalism 203’204).

At the present time, the only measurements performed in the

positronium system are on the fine-structure splitting of the ground

(n=1) state 205’208); and on the decay rates of orthopositronium (the

381 state)zow

surement of the decay rate of parapositronium Fb was obtained from a
210)

and parapositronium (the 1So state) . The first mea-

measurement value of Ib/f; » where T = denotes the decay rate of

orthopositronium, and using the value of I; quoted in ref. 209 (see

also Ref.R.11). A direct measurement of I% has only recently been re- .

208)

ported . A compilation of results is given in Table II.1 .

II.1 The Fine-Structure Interval of the Ground State of Positronium.

The qualitative features of the positronium energy levels, as
predicted by the Schroedinger equation, are roughly % those of hydrogen

because of the reduced mass for positronium which is me/z . Hence the

(%) See ref.201. For a review of the earlier experiments, see Martin

Deutsch, ref.202 . For a more recent review, see ref.R,1ll.
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ionization energy of the ground n=1 state of positronium which is

6.8 eV .

The fine-structure in positronium is of order a?Ry and the
features here are very different from those of hydrogen. Besides the
dipole interaction, as in the hydrogen h.f.s., there is an exchange in-

teraction due to the virtual annihilation of the e+é- system in the

triplet state into one ¥ 211-213) o fact, the largest contribution

comes from this virtual annihilation interaction which pushes the 381

level upwards with respect to the 180 level. The contributions to the
triplet-singlet splitting of the positronium ground state have been re-
2 214)

cently calculated up to terms of relative order o loga . The result

is

e |2 (6 32 2
Av = a"Ry [6-n(9+10g2) 4a.logc,+0(04):|

The contributions of relative order azloga represent recoil corrections
arising from low momentum components of the wave function associated with

the Bethe-Salpeter equation for positronium. The techniques used in the

calculation by Fulton, Owen and Repko 214) are those previously descri-

bed by Karplus and Klein 213) and by Fulton and Martin 215). The terms

of relative order a? have not been calculated as yet. The theoretical

prediction from the calculated terms is thus

fv,, = 2.03415 x 10° MHz

208
to be compared with the most recent measurement )
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Bgyp. = (2.03403 + 0.00012) x 10° MHz (60 ppm) .

II1.2. The Annihilation Rates of Orthopositronium and Parapositronium.

The annihilation rate of orthopositronium (the 381 ete”

state) has been measured to an accuracy of 0.2% 209)(see also Ref.

R.11) :
T (exp.) = (0.7262 % 0.0015) 107 sect .

The theoretical value for the 3y ray annihilation, which includes only

the lowest order contribution was calculated by Ore and Powell 216)
® 2,2 7 -1
Fo(th.) == mnj (n°- 9) = (0.72112 X 0.00001) 10" sec .

Recently, the correction term of relative order « due to the interfe-
rence of the lowest order diagrams with the higher order diagrams invol-
ving photon-photon scattering has also been calculated 217), using

numerical integration techniques. The effect is to lower the orthoposi-

tronium decay rate :

6
- 2 (2 _a +
ro(th.) = m g (m=-9) [1 pi (0.741 £ 0.017) -l-...]

It must be noted, however, that the photon-photon scattering correction
is only a part of the complete correction of relative order a . The

calculation of the other terms, is clearly necessary for an adequate
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comparison with the experimental value.

The theoretical value for the 2y annihilation rate of para-
positronium (ISO) is known up to terms of relative order o . The

lowest order term was first calculated by Dirac 218) and the corrections

of relative order o by Harris and Brown 219) :

5 2
o a Ll - 10 -1
Fp(th.) =5 m [1 - (5 - -—4)] 0.798 x 10 sec

Recently, the first direct measurement of the parapositroniﬁm annihila-

208). The experiment, which is set to measure the

tion rate has been made
fine-structure interval of the ground state of positronium, involves the
measurement of an induced Zeeman transition between magnetic substates
of ground-state positronium. Detection of coincident 2y ray annihila-
tion rather than detection of the y-ray energy spectrum, as done in

previous experiments, was used. The natural line width of the Zeeman

transition yields the value of I;
_ + 10 -1
Ib(exp.) = (0.799 £ 0.011) 10" sec s (1.47%)

where a one-standard-deviation error is given, in excellent agreement

with the theoretical value.
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III. MUONIUM

Muonium is the atom consisting of an electron and a positive
muon. It was discovered by Hughes and collaborators301) in 1960 . The
muonium system provides an excellent ground to test our understanding of
electromagnetic binding when two different masses are involved ; and
eventually to detect a possible breakdown of electron-muon universality,
Recently, precision measurements of the muonium ground state hyperfine
structure and the magnetic moment of the muon have yielded a new determi-

nation of the fine-structure constant Q , to an accuracy comparable

with that reached in measurements of o using the Josephson effect.

ITI.1. The Hyperfine-Splitting of the Muonium Ground State.

The lowest order splitting of the singlet and triplet levels of

muonium ground state is given by the Fermi form.ula135 )

u
A\)=—1320L2Ry--e"-1 R
uo

. . e
where pu is the muon magnetic moment and M, the Bohr magneton

e _ _el
ub 2m ¢
and
= M
Wy = H (1 + au)
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where pg = 2;#¢

and a‘_1 is the celebrated anomalous magnetic moment

of the muon,

Qualitatively Av(pe) ~ 3Av(pe) , as expected from the ratio
of muon to proton magnetic moments., Corrections to the Fermi formula have

been calculated up to terms of relative order o,(Zo.)2 for the radiative

302) Te 2

and binding corrections a

and up to terms of relative order
303) W

loga. for the recoil corrections . Altogether, the theoretical ex-

pression for the hyperfine-splitting of the muonium ground state v(pe)

can be written in the following way

-3
_le 2. W Te 23
Av(pe) = 3 & Ry —¢ 1+ = 1+ae+(Za) 5 +
Hy u
+ aza) |- -g- + log2 |+ % (20.)2 [— % logz(chL)'2 +
281 8 -2 +
360 " 3 los2 log(za) ~ + 18.4 X 5] + éu .

The factor Oﬁ-gs).{s is a reduced mass correction. The corrections in

curly brackets, eiﬁept for the éu term, are the same as for the hyper-

fine splitting of the 1S level of the hydrogen atom(*). The term a,

is the anomalous magnetic moment of the eletron. The term éu represents
the relativistic recoil corrections which for muonium, unlike the case of

the hydrogen atom, can be calculated exactly. The expression for §

reads

(*) See section 1.3
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2 m -2

-ga loga (1+ =2 ) )
o

The leading term is well known. It has been calculated by various au-

thors 304-306). However, the correction term of relative order
m
= a?loga which represents recoil effects arising from low-momentum
M
components of the muonium Bethe-Salpeter equation is known only since re-

cently. It has been calculated by Fulton, Owen and Repko 303)

The numerical estimate of Av(pe) requires two quantities as input
which have to be taken fromexperiments : the fine structure constant a ;
and the ratio pp/pg . The latter can be obtained from measurements of
the ratio of the magnetic moment of the muon to the magnetic moment of

the proton pp/pp which recently have been performed to an accuracy of

a few p.p.m. by two groups 307-308). It is thanks to these new precise

measurements of Lﬁi/ ”p that muonium has become a precision test of QED,

The previous measurements 309-311) Lil/Lb had errors of 13-22

p.p.m., too large to profit fully from the more accurate determinations

of (i) 312-313-308)

(i) Precision Measurements of the Magnetic Moment of the Muon.

The value of the ratio Lil/L$ reported by a University of Washington-

307)

Lawrence Radiation Laboratory collaboration is



- 36 -

vl
EE = 3,183347(9) (2.8 p.p.m.) ,
P

to be compared with previously reported values (see Table III.l.). In

terms of the muon mass, this determination of LﬁJ/ “p implies

m
EB=206.7683(9) (2.9 p.p.m.) .
e

The ratio Lkl/L$ measured by the authors of ref.307 was performed in
three chemical environments showing no substantial differences. This is

314)

in contradiction with the suggestion by Ruderman that a correction

due to the effect of diamagnetic shielding on the muon moment should exist.

An independent determination of pu/p$ has been made by

308). In this ex-

Telegdi and collaborators at the University of Chicago
periment, both the hyperfine splitting Av(pe) and the muon magnetic
moment p“ are determined from measurements of the Zeeman (F,MF)
transitions : (1,1) e (1,0) and (1,-1) e (0,0) in the region of in-
termediate coupling. The external magnetic field is chosen at a "magic"

value, for which the frequencies of the two Zeeman transitions become, to

first order, field independent. The results are

Ov(pe) = 4463.3022(89) MHz

and

M,/ b, = 3.183373(13) .

The latter value has been obtained assuming that the bound-state g fac-
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tors are not affected by collisions with the host gas atoms. If,on the

: #*
contrary, as suggested by calculations by Herman( ), a pressure shift
of -11 p.p.m. corresponding to the experimental conditions of ref. 308

in excellent agreement with the result obtained by the authors of ref.307 .

(%)

(ii) Comparison between theory and experiment
The theoretical values for Av(pge) which are obtained

using the recommended value of the fine structure constant

ol = 137.03602(21) ;

and the values of LiL/L$ quoted above are

Th _
BV s oo™ 4463.313(21) Mz

B (pe) = 4463.323(19) MHz

Wash./LRL

The most precise experimental determinations of Av(pe) have

been made by the Chicago group 308) and by the Yale group 315)

(#)  See ref.308 , note (2) added in proof.

(¥*) We acknowledge a helpful discussion on this point with Professor

Thomas Fulton,
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Chicago , Av(pe) = 4463.3022(89) ; ref.308

4463. 310 (30) ; ref,315

]

Yale , Av(pe)

Comparing these values to the theoretical predictions given above it can be
seen that the Chicago and the later Yale experimental results are within one stan-

dard deviation of the theoretical values.

The remarkable accuracy of the Av(pe) measurement obtained
by the Chicago group (2.0 p.p.m.) combined with the new determination of
uu/pp allows, from the theoretical-expression of Av(pe)
an independent determination of the fine structure constant « . The
308)

b

value thus obtained is

ol = 137.03617(30)

in excellent agreement with both the WQED value q.-1= 137.03608(26) and

the recommended value (see Table I1.3) .
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THE ANOMALOUS MAGNETIC MOMENTS OF THE CHARGED LEPTONS

The anomalous magnetic moments (the "anomaly" G = E%Z of the
charged leptons have for many years offered one of the most interesting
and important challenges to both theoretical and experimental quantum
electrodynamics., The CERN muon experiments are probably the most out-
standing examples of high-precision experiments done with a high energy
machine, The calculations of the sixth order QED contributions now in
progress around the world (and in one case comple ted) are the highest
order experimentally significant radiative corrections that have been

evaluated, and are formidable challenges to algebraic manipulation and

numerical integration techniques.

The best experimental value for the electron anomaly has been

obtained recently by Rich and Wesley 401)

szp = (1 159657.7%3.5) x 1070 .

The best experimental value for the muon anomaly is the CERN-

storage ring value 007)

e

aux" = (1166 16 *¥31) x 1078 .

The electron anomaly is a purely quantum electrodynamical quan-

tity (see section VII). The theoretical value is

th _ a_ Q2 + a,3
G, = 0.5 = -0.32848 (D" + (1.49 X 0.20) ()7 ,
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where the last term is the sixth order contribution with its theoretical

uncertainty (see Section IV.2). With afl = 137.03608(26) we obtain

G = (1159655.4 * 3.3) x 107°
The uncertainty has two parts, one from the fine structure constant
( *2.2) and one from theory ( + 2.5) . Experiment and theory thus agree

(3)

within one standard deviation . It is interesting to note that a

slight improvement in experiment and theory might lead to a value for the

#3¢
fine structure constant which is better than the Josephson value( ) .

The muon anomaly is not a pure QED quantity. The theoretical

contribution from QED is (section V)

QED _ (5o gy2 . a3
Gu 0.5 p= + 0.76578 (ﬂ) + (21.8 +1.1) (ﬂ)

which numerically becomes

6 - (1165814 * 14) x 1072

M

To this we add the strong interaction contribution (section VI.1)

Gﬁadmmc = (65*5) x 1077

402-403)

(¥)  The Drell-Pagels-Parsons estimate leads to 0.40(%)3

and
thus it disagrees with the latest experiment, which corresponds to
a sixth order term (1.67 + 0.33) (%‘)3 .

(#*) At present we obtain (disregarding the theoretical uncertainty)

ol = 137.03582(41)
g-2
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so that the full theoretical value is

Gﬁh = (1165879 * 15) x 1077

in reasonable agreement with experiment, In Table IV.1 the different

contributions are exhibited.
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IV. THE ELECTRON ANOMALY

The electron anomaly has been calculated completely up to and

including the sixth order.

IV.1 The second and fourth order contributions.

In second order there is only one diagram (Fig.IV.1l) which

gives the famous Schwinger contribution 003)

G(Z) = %% = (1161409.0 * 2.2) x 10"9

where we have used the value

o1 = 137.03608(26)
There are seven diagrams (Fig.I.4) which contribute to Gé at
fourth order in e . The result is rather more complicated than the se-
cond order expression. Compared to the rational % , the transcendentals

*
nz s n2 log2 and E&(3) now appear. These represent special values( )

of the dilog Liz(x) and the trilog Li3(x) . More precisely 405-409)

2
) _ ,a\2 197  « 2 3
G'e _(ﬁ) {m-l-ﬁ-%ﬂ 10g2+z§(3)} .

This fundamental calculation by Karplus and Kroll 405) (later revised ;

see Refs.406 and 407) was the first to demonstrate the consistency of the

renormalization procedure in higher orders of perturbation theory.

(%) See e.g. Lewin, ref, 404 .
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Numerically

'a(:) = - 0.32848 (%)2 = - 1772.3 x 107

The electron anomaly should in fact be expressed as an expan-

m m
sion in the two parameters @ and Es . The leading term in EE s
. by 410) W
coming from the diagram of Fig.IV.2, is however
12

a2 1 ) -
(-T-r) %5 (E;) = 3.10

which, at the level of approximation needed, can be left out.

IV.2 The Sixth Order Contribution,

Considering the increase in difficulty between the second and
fourth order it is not surprising that the evaluation of the sixth order
anomaly is indeed hard. First of all the number of graphs is now 72
(Fig.IV.3) and the complexity of the graphs is such that an analytic
evaluation in closed form is excluded with present day techniques for

virtually all diagrams. Actually diagrams 19-22 (Fig.IV.3) have been

evaluated in closed form 411). In addition to the transcendentals encoun-
tered in G(:) there appear now special values of the polylogarithm
404)

Li4(x) . As the diagrams lead in general to seven-fold integrals, one
expects that the analytic results can involve special values of Lin(x)
with n ranging from 1 to 7 , apart from the possible appearance of

elliptic integrals. Luckily, however, the diagrams are not more complica-

ted than they allow for numerical evaluation,.
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Let us summarize the situation. The 72 diagrams contributing

to G(:) fall into six different classes, the choice of which is mainly

based on gauge invariance criteria.
Class I. Graphs 1-6, containing photon-photon scattering subgraphs

Class II. Graphs 7-18, containing second order (but not fourth order)

vacuum polarization subgraphs.

Class III. Graphs 19-22, containing fourth order vacuum polarization
subgraphs,

Class IV, Graphs 23-28, three-photon exchange.

Class V, Graphs 29-48, two-photon exchange,

Class VI. Graphs 49-72, one-photon exchange.

The first three classes contain fermion loops and coincide with
the class division for the difference Guf G,e . The last three classes
contain no fermion loops and have been classified according to the num-
ber of photons crossing from one leg to another. This classification has
the advantage of being gauge invariant. Inside some of the classes there
are gauge invariant subclasses. We leave it to the reader to prove that
the following sets of graphs yield a gauge invariant anomaly (after re-
normalization) : 1-6, 7-10, 11+12, 13+14+17+18, 15+16, 19, 20-22, 23-28,
29-48, 49-68, 69-72 . In Table IV.2 the history of the sixth order cal-
culations is given., All six classes have been completely evaluated,

although detailed results are not yet available for the last three,



- 45 -

The graphs of class TI have been evaluated analytically by Mignaco and

411) 414,416)

Remiddi and checked numerically . All the other diagrams

have only been evaluated numerically. In Tables IV.3,4,5,6 the results
of various calculations are presented. We have chosen to present the

results as much as possible in the form and detail in which they were

originally published. The analytic results for Class I 411) are given

in Table IV.3 . In Table IV. 4 a comparison is made between the results

for Class I and II of Brodsky and Kinoshita 414) and Calmet and

*
Perrottet 416). The agreement is excellent( ). In Table IV.5 the results

417)

of De Rujula, Lautrup and Peterman for the gauge invariant subset

(69-72) of the Class VI graphs is presented. In Table IV. 6 the recent
418)

results of Calmet are listed.

We give below the overall results

Class I
0(6) = 0.36(4) 62)3 Aldins et al 412,413)
e,I L
Class II
- 0.153(5) (%)3 Brodsky and Kinoshita %)
G’é?]):[ ) a3 416)
- 0.151(3) (E) Calmet and Perrottet .

(*) In Ref.416 graphs 13 and 14 should be interchanged with graphs

17 and 18 .
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Class I
0.055429 (%')3 Mignaco and Remiddi 411)
a‘®) = 0.05546(6) (&3 Brodsky and Kinoshita *1%4)
e, Il i
0.055(2) (%)3 Calmet and Perrottet 420)
Class IV, V and VI
(6) (6) (6) _ a3 419)
Ge,IV + Ge,V + Gé,VI = 1'23(20)(ﬂ) Levine and Wright

The uncertainty in this case is not obtained by statistical methods but
it is rather an educated guess,

The overall result for the sixth order electron anomaly is then

(6)

= + Q3
G, (1.49 *+ o.zo)(") s

where we have used the analytic Class II result, and the weighted average

of the Class II results. Details of the calculation by Levine and

Wright 419) of the three classes IV, V, VI are as yet not available. It

is therefore impossible to compare with the three partial calculations

that have appeared previously 415,417,418)

(*)

classes .

and that overlap with these

Ail the 72 graphs have now been calculated. However, as

"mirror graphs'" give the same anomaly, only 41 of the 72 are independent.

(*) The results of Levine and Wright agree however with those of

De Rdjula et al (M.J. Levine, private communication).
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In view of the complexity of the calculations the necessity for indepen-
dent checks must be emphasized. So far such checks have only been
carried out for class I and I, and in a few instances for graphs be-

longing to Classes IV, V and VI .

Technically the calculation of the Class I, II and III graphs
is not different from the calculation of the corresponding graphs for
Guf Ge (see Section V), For the remaining graphs some simplification
can be obtained for those that contain self-energy and vertex insertions
by using properly parametized forms of these insertions . For those
that do not contain such insertions (the irreducible ones) there is no
way around a full-fledged parametrization of the three interlaced loops.
The complexity of the sixth order graphs has necessitated extensive
computer use for algebraic manipulations and numerical integrations. The
Y-algebra and vector substitutions in the numerator of a graph can lead
to hundreds and sometimes thousands of terms. So far four different al-
gebraic programs have been used in connection with the calculations dis-

cussed here and in Séctions 1.1,1II.2 and V.2 . The interpretative program -.
SCHOONSCHIP written by Veltman 422) used in Refs. 411,417,421,217,123,

and 5 , the language-oriented LISP-based program REDUCE written by

A. Hearn 423), used in Refs.412,413,414 and 119 ; a LISP-programwritten by
Calmet 420) used in refs.416 and 418 , and a program written by
M.J. Levine 424)used in Refs. 415 and 419 .

The parametrizations of Feynman graphs generally have a singu-
lar (or alsmost singular) behaviour at some parts of the border of the

integration region. Gaussian integration methods are very precise for

(#) See e.g., ref., 417 .
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integrands with polynominal type behaviour, but lose rapidly in reliabi-
lity for integrands with a steep rise towards the border. The
singularities can, however, be removed by means of polynomial ' mappings,
thereby smoothing out the function and allowing for Gaussian integration.
This technique has been used by Levine and Wright 419) but has the
disadvantage that it does not readily allow for an estimate of error.
Straightforward Monte-Carlo methods do not work well for integrals that
have their main contribution from some odd corner of the integration
region, because the integrand is not preferentially sampled there. The
following technique has proved adequate for many of the integrals met in
QED : the integration region (the unit hypercube) is subdivided into a
set of subvolumes by dividing the unit interval on each axis. In each
subvolume the contribution to the integral and to its variance is esti-
mated by random sampling of the integrand, (usually only in two péints).
Using the variances found one calculates an improved subdivision of the
unit intervals and reiterates the above procedure. In this way the func-
tion is explored and the interval structure refined such that the inter-
val density adjusts itself to the rate of variation of the integrand,
thereb§ minimising the total variance. A program implementing this

technique was originally devised by C.G. Sheppey 425) at CERN. It was

412,413) .

first used by Aldins et al in a QED context, but has since

proved invaluable for many calculations.
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IV.3. Measurements of the Electron Anomaly.

The best experimental value for the (negatively charged) elec-

tron anomaly has so far been obtained by Wesley and Rich 401)

G°**P = (1 159 657.7 £ 3.5) x 107°

e

9

This value represents an increase of 14 x 10 ° with respect to the pre-

liminary measurement by the same authors426) . The error has decreased by a

factor of two.
The first indications that the electron possessed an anomalous

magnetic moment were reported in 1947 427-428-429) and Kusch and Foley's

002)

experimental value turned out to agree with the calculation by

03)

0 . o
Schwinger . Over the years the precision on the measurements has

430-433) 4 particular with the fundamental experiment

of Wilkinson and Crane 434-435) in 1963 . Their value agreed with

436) 437,438)

steadily improved

the theoretical calculations until Rich and others

reanalyzed the experiment and brought out a three standard deviation dis-

426 ,401)

crepancy. With the new experiments this discrepancy has, however,

#*
again disappeared( ). Experiments along similar lines but with less preci-

()

sion have also been done by other groups

(¥) The original value of Wilkinson and Crane was
GE=51 159622(27) x 107° corrected by Rich to

G, =1 159549(30) X 1077 .

(¥#¥*) See Table IV.7 .
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The technique used by Wesley and Rich 426) is essentially

the same as that used by Wilkinson and Crane434) although the apparatus

is completely new and the magnetic field is an order of magnitude stronger,
Electrons with energy of around 100 keV are partially polarized by Mott
scattering = at 90° on a gold foil, and subsequently trapped in a
magnetic bottle (~ 1000 G) for an accurately measured interval of time.
After being ejected from the bottle the polarization of the electrons is
analyzed by means of a second 90° Mott scattering. While trapped the

average spin motion of the electrons can be described as a precession of

their polarization relative to their velocity.with a frequency

where (@G 1is the anomalous magnetic moment and w, = e B/m,c . (If the
magnetic field is not homegoneous or not perpendicular to the velocity
of the electrons, or if there are electric fields present this formula
must be corrected appropriately). As a function of trapping time the po-
larization and thereby the counting rate will be modulated with this
frequency. This permits determination of @ . The magnetic field is mea-
sured by means of Nuclear Magnetic Resonance (NMR) probes determining

the resonance frequency of protons in water. In fact

ul
w, = (H,0) / (—uﬁ)

439)
a

where p; is the magnetic moment of the proton in a water sample nd

Mg the Bohr magneton. The improvement of the accuracy on the anomaly is
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essentially due to the larger magnetic field used by Wesley and Richs

A very promising new experimental technique has been prOposed440)

and a preliminary result obtained 441)by a Bonn group. They study polarized
electrons circulating in a magnetic field at the cyclotron frequency wc.
The spin can be flipped by applying a radio frequency (rf) field at the
Larmor (spin flip) frequency w = wc(li-G) and the transition is main-
tained by the accompanying depolarization of the electrons. It is however
also possible to observe the beat frequency W - .= wcG corresponding

to a simultaneous spin flip and transition between two Landau levels

(i.e. change of orbit). A measurement of both w and w -, leads to

G wW.-w

_ L
a determination of 196 wL

the previous ones is that the anomaly is measured rf spectroscopically,

. The advantage of this experiment over

that the electrons are quite non-relativistic (~ few eV) and both wp

and W - w, are determined by the same method in the same field. The

L

preliminary value is

G, =1 159660(300) x 107

and is expected to improve considerably in the future.

The anomaly of the positron was originally measured by Rich and
Crane 442) with a technique virtually identical with the one used by

Wilkinson and Crane 434)(see the description above). They found the result

G = 0.001168(11)
et

More recently Gilleland and Rich 443) have improved the accuracy by in-

creassing the length of time the positrons were trapped in the magnetic
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bottle. The result was

G , = 0.0011602(11)
et

The equality of anomalies for the electron and positron is a test of

CPT invariance which implies

The experimental values for the electron anomaly have been

tabulated in Table 1IV.7 .
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V. THE QUANTUM ELECTRODYNAMICS CONTRIBUTION TO THE DIFFERENCE BETWEEN

THE ANOMALOUS MAGNETIC MOMENTS OF MUON AND ELECTRON.

The graphs of the purely quantum electrodynamical contribution
to the anomalous magnetic moment of a charged lepton, electron or muon,

can be divided into two groups :

1. Graphs involving only one lepton

2. Graphs involving both leptons.

The anomaly for a lepton with mass m can therefore be written
G-= Gl(m) + Gz(m,m') ,

where m' is the mass of the other lepton. Since G is dimensionless,
it follows that Gl must be mass independent, and that 62 can only

depend on the mass ratio. We may then rewrite this equation as
m
G¢=a +aE)
which specialized to electron and muon becomes

me

e
¥l
v
Gu = Gl + Gz(me) .

m
Due to the smallness of the ratio EE it is not necessary to evaluate

Gz(x) for all values of x , but only the asymptotic behaviour for small

and large x . It follows from general arguments that Gé(x) vanishes
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m
as x =0 , One may thus, in general, disregard the contribution GZ(EE)
' )

to Gé . The difference

) _ g e
- = - 0 (=
Gu Ge Gz(m ) 2(m )
e M
only involves G, and the evaluation of Guf Ge is generally easier

2

than the evaluation of the complete anomalies,

In the discussion below, we shall only include those graphs
which give a non-vanishing contribution after renormalization. Thus we
leave out all corrections to external lines. We also leave out all
graphs representing renormalization counter-terms, assuming them to be
implicitly included. The difference Gu— Ge has so far been computed

up to (and including) the sixth order. It vanishes at second order.

V.1l The fourth order contribution.

In fourth order there is only one graph that contributes to GZ ’
namely the one obtained from the Schwinger graph by inserting a vacuum
polarization loop in the photon line. Up to terms of the order of

m
(I—ns)3 we have the contribution to G.u

9%
D o2 Y1,  Mu 25
G, (me)'(n) 3 108 m_ 36

g

1'[2 e me 2 m me 2 me 3
+ =26 D log =2 + 3 ()% + 0((=2)”)
m m m m m

M H e M M
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01)

The first two terms were evaluated by Suura and Wichmann 3 and by

502)

Peterman . The remaining terms have been obtained by Elend

by Erickson and Liu 504) . These authors have calculated the function
G§4)(x) for all x . To the same accuracy, the contribution to Ge

is 410)

’

(4),%ey _ ,02) 1 Te2 A
GZ (m_) = (1_1) %5 (;) + 0((m—) )
M W m

which is vanishingly small, but has been included as a reminder of the

fact that both Ge and GU depend on the mass ratio.

Hence the fourth order difference (Fig.IV.2) is

4 _ @2Vl "y 25
@6 = D? } 3105 M-

2 m m m m m
+ - = -4 (=2)2 10g H + 3% (22 4 0((D)3)
m m m m m
3 M e U |53

Numerically we have

@G-a )(4) = 1.09426 (%)% = 5904.1 x 1072
uoe Ll .

V.2 The sixth order contribution.

(%)

In sixth order there are 24 graphs contributing to

503) an

d

m
(¥) Here we disregard the contribution from Gé(—g) .

88
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pr Ge . They are shown in Fig.V.1l . These graphs are naturally divided

into three classes

I Graphs 1-6 , containing photon-photon scattering subgraphs

II Graphs 7-20, containing second order (but not fourth order)
electron vacuum polarization subgraphs

II1 Graphs 21-24, containing fourth order electron vacuum polariza-

tion subgraphs.

Not all of these graphs are independent. Some are related to
each other by charge conjugation, thereby giving the same anomalous
magnetic moment contribution. Two graphs give the same anomalous magnetic
moment if they arise from each other by reversing the directions of the
muon line. Thus there are 14 independent sets of graphs, the only un-

paired graphs being 9, 10, 21, and 24.

From Table V.1 which gives the history of the calculations of
these graphs, it is seen that all graphs except those of Class I have
been evaluated twice (one-graph 2l-even three times). The two indepen-
dent results for graphs 7-24 have been tabulated in Table V.2 and Table
V.3 allowing for a detailed comparison of the values obtained from each

)

graph. The uncertainties arise from the numerical integrations

(#) See the discussion at the end of Section IV.2
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The agreement is generally very good, although there is a slight diffe-

rence between the two values for graphs 7+8 .

(%)

We can now quote the overall results for the three classes

Class 1 4125413) : (@ -6)8= 184+ 1.1)(@3
b el i
+ a3
507,421,506,414) (6) (-2.30—0.02)(;) Table V.2
Class II @G - Ge)II = a3
M (-2.3240.10) () Table V.3
4.2414(%)3 Table V.2
410,505,414) (6) ) 1'r ’
Class III @ - Ge)III= a3
M 4,21 0.03) () Table V.3

The overall agreement between the two independent calculations is exce- -
llent, the small differences having largely cancelled out in the sum.

The final result is

(6) _ a3
(Gu- G) = (20.3+1.1)

9

(254 + 14) x 10

(#) We add the uncertainties quadratically because of the statistical

nature of the errors obtained by the particular integration tech-
nique which has been used. This is in contrast to the attitude of
the authors of ref.414, who add the errors linearly in which case

one would have obtained
(- 2,30 £ 0.05) , (- 2.32 £ 0.20) , (4.21 + 0.04)

for the results of Class II and III .
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In view of the fact that the Class I contribution is by far the most
important one, being an order of magnitude greater than the rest, and at
the same time the only part that has not been checked by an independent
group, we must emphasize the need for a recalculation. It would also be
desirable to lower the uncertainty because the planned experiments on the

muon anomaly may reach the precision of ~ 15 X 1077

We shall now discuss some of the techniques used in obtaining
the sixth order result. The amplitude for an arbitrary vertex graph can
be written - 1 e ru(pZ’pl) where p, and p, are the momenta of the
incoming and ougoing lepton. The most general expression between two

spinors is

(p,+p,) (p,-p,)
- - _ PRy, 2P’y
u, Tu(pz,pl) u; = u, (F1+ FZ)Yu 5 F, + oy Fy b uy
(p,-p )V (p,-p.)
_ = . 2 °1 2 "1°n
-UZ%FIYu_ 10— m  Ht—02 B %“1 ’

which defines the three form factors F}«pz—pl)z) . By definition, the

contribution to the anomalous magnetic moment is
G=F,(0 .

A graph can be subjected to two kinds of gauge transformations, external
and internal. A set of graphs is invariant under external gauge trans-

formations when

(p,- pl)l“l 32 Tp (pyspy) u; =0
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which implies that F, = O . This condition (current conservation) is not
in general satisfied for individual graphs. In Fig.V.l the sets of graphs
invariant under external gauge transformations are 1+43+5 , 24446,
7+11+14 , 8+12+13 , 9+15+16 , 10+17+18 , 19, 20, 21, 22, 23 and 24 .
The external gauge transformations are, however, not relevant for the
purely intrinsic quantity G, which will only be influenced by internal

gauge transformations, i.e, transformations of the photon propagator of

the form

g g
N A A |
K2 k2 MV

where f 1is an arbitrary function. We leave it for the reader to prove
that the following sets of graphs yield gauge invariant total contribu-
tions to the anomaly (after renormalization) : 14345 , 2+4+46 ,

7+8+9+10 , 11, 12, 13+17 , 14+18 , 15, 16, 19, 20, 21 and 22+23+24 .

It can be seen that the contributions from each set is infrared conver-

gent,

It is an interesting coincidence that the most difficult graphs
to evaluate, namely those of Class I , are also the graphs that give the

largest contribution. These graphs were evaluated by the combined efforts

412,413)

of Aldins, Brodsky, Dufner and Kinoshita . Calling the off-shell

IL1p2p3p4(k1k2k3k4) 399,

(k1+k2+k3+k4= 0) we can write the vertex functions from graphs 1-6

using the notation of Fig. V.2

photon-photon-scattering amplitude
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50 ke, Huvpo(q,kl,kS,kz)
I (pysp)) = - e 8 2 2 .2
H (2m k] k; Kj

S A N o Pl

where q = Py~ Py and k3 = —kz- kl— q .

An ingenious use of gauge-invariance made the extraction of the anomalous
magnetic moment much simpler, at the same time explicitly removing the
spurious logarithmic ultra-violet divergence inherent to the photon-
photon scattering amplitude. Current conservation or gauge invariance
gives rise to the identity

H =
T pg (Bkskgsky) =0

from which one obtains by differentiation

N2

po (dskyskysky) = = aqH Mvpg (B:kpskssky)

T

Thereby one can write

_ A

with
d
o§ dkgak, o0 Mvpoldskykgsky)
La(pyopy) = e ) 2 .2 .2
(2m) k2 k2 i

¥ Gyt Uy m)Th VPG -y
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In Thl s

ready taken outside. Differentiation of a graph with respect to an

P, can be put equal to Py because one power of q is al-

external momentum acts like the insertion of zero momentum photons and
decreases the degree of divergence by one, thereby removing the spurious
logarithmic divergence., The remainder of the calculation is in principle
straightforward although very complicated. Aldins et al, used two diffe-
rent techniques for obtaining the parametric form of the integral, one
being the standard Landau method ) the other based on a method deve-
loped by Nakanishi >10) and Kinoshita S (double parametric
representation). Part of the reduction to parametric form was done by
hand, and part was carried out by means of REDUCE, a programing language
for algebraic manipulation developed by Hearn 23) . Finally the
(7-dimensional) parametric integral was evaluated numerically by means of
the special numerical integration program described at the end of
Section IV.1 . It was found that the Class I diagrams contains a
logarithmic divergence for me<6 O contrary to expectations 505) .
Writing

(6)_ (a3
(Gu' G); = )

m
_u :
Cllog = + 02.2

Aldins et al found that C. could be expressed as a 5-dimensional inte-

1

gral with the value
C1 = 6.4+ 0.1

The remainder C, was not determined directly but could be inferred

2

from the overall value quoted above

(¥) See e.g. Bjorken and Drell, Ref.509, Sec.18.4 .
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The numbers C1 and 02 are surprisingly large. In all other cases
purely numerical coefficients turn out to be of the order of unity. This
unexpected behaviour also stresses a need for a recalculation of the

Class I diagrams.

The remaining diagrams are all much simpler to evaluate. All of
the Class III diagrams are examples of the graph shown in Fig.V.3 where
the insertion G 1is a fourth order vacuum polarization graph. The vertex
function from this graph is

(¢) o 20 ak Py _ v y-1 g 10 (G ,
]."L1 (p,sp;) eS(Zn)4 Y @, Kmu) Yy (pllému) Y Doo x) ,

(G)

where Dpo is the contribution to the photon propagator form the graph

G . This quantity can be expressed in terms of a single spectral function

k k (G 2
p(8) _ i(g _Tpoy Bk T)
po po " 2 2

-

satisfying a once subtracted dispersion relation

2 t 2

® 1 «(G)
n(G)(kZ) =S ac = Im I (r)
k o t-k

The imaginary part is given by

600 m 1¥ad =L 5 em ek
6k~ n€G

<o| 3,0)] n> <a| M0 o >
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where the sum goes over the possible intermediate states in G . Accord-

ingly we can write

@) 0% 1 (G) (2)
HH (pz,pl) —So—t-ﬁ Im T 7 (t) I‘}"l (p2,p1,t)

where TﬁZ)(pz,pl,t) is obtained from the usual second order graph

k k
2 v 1
replacing the photon propagator - i /k b -i - )
placing the p propag Y y (gw —H—kz 2.

The anomalous magnetic moment satisfies the same equation

G(G) =S %—% Im n(G)(t) 0(2)(1:)
o .

(2)(1:)

where QG is the anomalous magnetic moment obtained from the

second order graph replacing the photon propagator by

-i (gpw - Eﬁgy‘l/iz-t . The kukv terms can be disregarded as they only

contribute to the renormalization constant Z1 and 6(2)(t) is given by
(%)

the well-known expression

a?r) = & k(o)
1 2
K (t) = S dx 5551251-—-—
o  x +(1—x)—t2-
m
M

These expressions are valid for any kind of insertion G ,» in particular

for the hadronic vacuum polarization (see Section VI.1). In the case of

(#)  K(t) is bounded, and monotonically decreasing

. | o
TK(to)SK(t)<§ - for 0<toSt<eo
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(@ ¢y

fourth order vacuum polarization insertions, the function Im T
was already known from the work of Kdllen and Sabry 512), and the whole
calculation boiled down to a one-dimensional integral which could be

evaluated analytically with the result shown in TableV.2 .

For the analytic evaluation of the double bubble graphs 19-21,

0]
an expression very well suited is5 6)

! 2
@) _ (¢) x° 2
G —S dx(1-x) [— TT (- 1= m|_l )] s

(o]

which is obtained interchanging the order of integrations in x and t
(G) (G)

in the general expression for G . Here,the [ “-function is simply

a product of two second-order T[J-functions.

For the Class II diagrams it follows by the same arguments as

above that the anomaly for a graph is given by
@
_ dt 1 (2)
G_g T & Imn 7 (e) G(r)

where H(Z)(t) is the second order vacuum polarization by electrons,
and G(t) 1is the anomaly from the fourth order graph obtained from a

sixth order graph by replacing the photon propagator containing the

vacuum polarization insertion by a massive propagator
k k 1
-i(g __H'_l)) —
O

The k kv terms can be disregarded because they are essentially gauge

terms that cancel within the following sets of graphs : 7+8+9+10 ,
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11+15 , 12+16 , 13, 14, 17, 18, 19, 20 . Thus at the expense of one ex-

tra integration relative to the fourth order calculation one can

507’421’414). It is even

m
possible to perform the t-integration analytically in the limit ES‘* 0.
#) M

one has to

evaluate the anomaly from the Class II graphs

For a graph (or set of graphs) for which G(0) exists(
m

order —
m

u
-2)(2 B3 + 1 -5
=3 3 (3 log -9 )G(o) 3G +0( )g

where

2
4m ®
G' =S nde {G(t)- a0} + S; 5 de G(t)
(o] t m t
]

does not depend on the mass ratio. The quantity G(t) is a multidimen-

sional integral (up to 5-dimensions) of the form

A
a(t) =§S§ by —-n—n
n21 (B4+Ct)

which can be integrated analytically over t . For t =0 , G(t) 1is the

ordinary fourth order anomaly from the graph (or set of graphs) obtained

(%)

by removing the vacuum polarization insertion . These fourth order

(*) 1f G(0) does not exist (as for graphs 9-18) it is always
possible to separate G(t) into a regular part for which
the analysis can be carried out as shown, plus an irregular

part which can be evaluated explicitly.

(¥%) If G(0) exists, Otherwise see the previous footnote.
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anomalies have been given by Peterman, so that it is trivial to obtain

. m
the analytic form of the coefficient of log EH (see Table V.2) .
e

The final stage of the.Class II calculations is a numerical
integration of the parametric integral again using the Sheppey program
described at the end of Section IV.2 . The reason for the difference in
the quoted uncertainties of the two different calculations of the
Class II diagrams is probably due to the fact that the analytic integra-
tion over t was carried out in refs.506 and 507 (Table V.2) but not

in ref.414 (Table V.3) .
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VI. OTHER CONTRIBUTIONS TO THE MUON ANOMALY

VI.1 The Hadronic Contributions.

The importance of hadronic vacuum polarization insertions in

the second order muon vertex (see Fig. V.3)was first pointed out by

Bouchiat and Michel 601) . They remarked that resonances in the

T-Tr system can lead to an enhancement of the vacuum polarization correc-

tions which could be observable in precision measurements of GU . The

(*) -7

first estimates of this effect gave G“ (Hadrons) ~ 10" , i.e, far

0
below the error in the measurement of GH at that time which was 04)

+5 x 1076

007,008)
e

. Since then, a new precision measurement of Gu has

> and, simultaneously, colliding beam experiments have

605, 606 ) and Orsay 607 - 609) which yield

been mad
been performed at Novosibirsk

precious information on the hadronic contributions to G

The hadronic spectral function which appears in the
Kdllen-Lehmann representation of the photon propagator (see the discus-
sion of Class III diagrams in Section V.2) can be directly obtained from
measurements of the total e+e- annihilation cross-section into hadrons.

To lowest order in «a (see Fig.V.3 ) and t 2 4m§ s

(#)  Independent calculations were also made by Durand, Ref, 602 and
later, using new information on vector mesons, by Kinoshita and

Oakes (Ref. 603 ) ; and by Bowcock (Ref., 604 ) .
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2
o (ey=4Telqy, 18 ()

9
e+e -hadrons

were t 1is the total e+e- centre-of-mass energy sqguared. The hadronic
contributions to (.T.‘.1 s due to vacuum polarization insertions in the
second order muon vertex, can thus be directly related to the annihila-
tion cross-section measured in the colliding beams experiments. Assuming
that the dispersion integral for the hadronic vacuum polarization only

requires one subtraction (charge renormalization) we have

Gu(Hadrons) = LB S dt o o (&) K (t),

41y 411112_r ete ™»hadrons M

where Ku(t) is a purely QED function which results from the combination
of the two fermion propagators and the propagator of a "photon'" with

squared mass t in the muon vertex of Fig.IV.l ,

o x2+ (l-x)—%

m
o)

1 2
€ © j’ b X0

The function Ku(t) is positive definite in the integration region

4m2 St £ © and therefore Gu(Hadrons) must be positive. Notice that,

m
for large values of t , K(t) decreases as ¢1 ,
2 2\2
1 2 t
Ku(t) =3 s + 0 T log -
t2> ml.l

It appears thus that the high energy contributions to Gu(Hadrons) are
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d oy ()
epressed by the factor Ku(t) .

The Gu(Hadrons) integral is
dominated by the low energy region and, in particular, by those values
of t corresponding to the mass squared of resonances which have the

quantum numbers of the photon.

A calculation of Gu(Hadrons) using the results of the Orsay
colliding beams experiments has been done by Gourdin and de Rafael 610) .
The total contribution to G,u(Hadrons) was separated into an isoscalar
contribution I = O and an isovector contribution I = 1 . The isoscalar
part GH(I=O) was estimated using vector meson dominance, taking into
account the contributions from the w and ¢ mesons :

3 2. T(veteT)
G (1=0) = v=<§,cp = Ku(MV)T

= (6.1+1.2+5.0*0.8) x10°2

(¥) 1In particular, this explains why hadronic vacuum polarization inser-
tions in the second order electron vertex can be neglected. They

give a contribution

1 2 0 at
G.e(Hadrons) x5 m S 9 T 94 _ (t)
121 4m1_r e e =hadrons
to 1 m2
i = < <=
In fact, using the inequality - Kp.(to) Ku(t)_ 3 ¢ for

t, St , we get

1 [T \? 1
G (Hadrons) < — [ =& ———— G (Hadromns) =
e 12 m 2
i) Ku(4mn)

= 3.7 x 10”° G.u(Hadrons)
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The isovector part GNFI=1) was estimated assuming that the I =1
hadronic system is dominated by the -m P-wave. The evaluation of the
integral was made using the expression proposed by Gounaris

and Sakurai for the pion form factor 611). This expression, which is
based on a generalized effective-range formula for m-m scattering,
takes into account finitewidth effects and fits well the Orsay data

ranging from 644 MeV to 886 Mev with the following values for the

mass and the width of the p-meson
M, = (770 £ 4) Mev , rp= (111 £ 6) Mev

The result obtained 1is

G (1=1) = (54 £ 3) x 1077

Altogether Gu(Hadrons) is estimated to be

G (Hadrons) = (65 * 5) 1077 .

Notice that the error quoted above only reflects the
uncertainty in the Orsay data used as input. The uncertainties due to the
extrapolation of the Gounaris and Sakurai expression for the pion form
factor below 644 MeV and above 886 MeV , as well as the uncertainty
in neglecting other contributions to the isoscalar part than those coming
from the ®w and the ¢ resonances can certainly be larger than 5 x10-_9

Clearly, more experiments with colliding beams in the region just above

the twopion threshold and at high energies will be extremely welcome to
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reduce these uncertainties,

There have been some attempts to bound the hadronic vacuum

polarization contributions to Gu . An analysis by Bell and de Rafael612)

613)

shows that a proposed theoretical bound s based on the hypothesis of

614), does not add usefully to the strict vector

current-field identity
meson dominance (V.M.D.) estimate of Gp(Hadrons)(*) . In fact, the es-
timated bound depends again on a V.M.D. approximation, and this moreover
to a quantity for which that approximation is less reliable than for

G“(Hadrons) itself, It is possible, however, to bound GuﬂHadrons) in a

different way by a quantity which governs all sufficiently low energy

vacuum polarization effects'612) . Indeed, the hadronic contribution to
the photon propagator is
o L m e
H, 2 dt m
P'(q”) = + I——
4 2t ¢ 2
m -q
and we have
m2 2
< & o Hopy< ol 2r, g ) pH 2
G (Hadrons) S & - P(0) 5 & 3 mu(l 4m2)P(q)
m

for all negative q2 . Large momentum transfer electron-electron scatter-

(¥) Using the experimental input quoted in Refs. 607 - 609 ,the
strict V.M.D. estimate of Gu(Hadrons) is (6 1+ 5) 107° ; see

Refs. 610 and 612 .
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ing experiments can be used to set a limit on PH(qz) for particular

values of q2 . Present experimental results lead to an upper bound

G“(Hadrons) < 9 x 1070 ;
this limit, however, could be lowered down with improved empirical
knowledge on electron-electron scattering at large momentum transfer and

electron-positron annihilation at all available energies.
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VI.2 The Weak Interaction Contribution.

To give a definite prediction for the contribution from weak
interactions is not possible because of the inherent theoretical diffi-

culties with higher order weak corrections. Estimates can however be made,

If the weak interactions are of the local four-fermion V-A
type the diagram in Fig VI,lwill give rise to an anomaly for the muon.
The corresponding diagram for the electron is obtained by interchanging
e and p . Power counting indicates that the anomaly will be quadratic

in the cut-off and by dimensionality arguments one would expect

@& ~c ¢ A% o
H F H

where G 1is the Fermi coupling constant, A is a cut-off and C a

F
numerical constant. This constant, surprisingly, turns out to be
zero 615); thereforeithe dominant term to be expected from the four-
+
fermion interaction is )
" ~ ccln 1ogl =~ 10712
0} F m

vl

much too small to be of importance. If, however, the weak interactions
are mediated by an intermediate charged boson, W , the weak anomaly will
only be of first order in GF = \2 gzlmé . The corresponding diagram is

shown in Fig.VI.2.The history of this diagram has been particularly con-

615-622)

troversial . Only the last two calculations (Brodsky and

621)

. 622) . %)
Sullivan s Burnett and Levine ) agree on the expression

+) See, however, ref. 634.

620)

*) The case K, = O considered by Schaffer ° also agrees with this

expression.
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2
G. m

W F

G = — (2(1-x)) log & + 10/ .

m 8n2\[2( K 3)

Here Kw is the anomalous magnetic moment of the W and & 1is the

regularizer used in the E&-limiting procedure 623) . The overall factor
is
2
G, m
L~ 10x107
8 \2

The other factor is in principle unknown. Brodsky and Sullivan take

€ = a (the fine structure constant) and Ky =0 obtaining

& ~_10x10°
u

while Burnett and Levine get
W -9
G = -20x10
o

. M, 2 2 GevV_ )2 _
using £ = (T) = 3_00—-@) and also K =0 .
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VI.3. Measurements of the Muon Anomaly.

The best experimental value for the muon anomaly has been obtai-

007 ,008) (%)

ned at CERN and the value is

afle = 0.00116616(31)

The first determination of the muon anomaly was the precision measurement
by Garwin et al 624) of the magnetic moment of the muon. Combined with the
measurement of the muon mass the anomaly could be calculated. The precision
(see Table VI.,1) was however not sufficient to see the effect of the fourth
order term (section V.1 ) which differs from the corresponding term in

the electron anomaly due to vacuum polarization by electrons. The subse-

625’004’626’627)a1though much more precise, did still

quent CERN experiment
not allow any definite conclusion to be reached about the fourth order
term. The second. CERN experiment which gave the final number quo-

ted above, however, established that the muon anomaly differed from the
electron anomaly by the amount predicted by theory. It was even

so precise that it was necessary to include the sixth order term in the

theoretical value in order to obtain full agreement with experiment

(*) This value contains results for both p  and Q+ , thus assu-
ming CPT. Separating u+ and pf contributions one has

Guf -G L= (50 £ 75) x 10-8 (see ref.R.1) as a test of CPT .
)
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The CERN experiments measure the anomaly directly (as in the
electrons anomaly experiments) from the precession of the spin of
the muon relative to its momentum. In a uniform magnetic field B the

precession rate (in the laboratory) is

= &
wG—G cB
u

independent of the velocity of the muons. The spin (Larmor) precession

frequency of muons at rest in vacuum is

wu= (1+G.)mic B
W
such that
a Y
146 w

The quantity wu cannot be determined directly, but one can measure the
precession frequency of protons in water wé by means of a nuclear ma-

gnetic resonance (NMR) magnetometer in the same magnetic field. Combined

with the measurements 629,630) of the ratio X\ = wﬁ//wé of muon to
proton precession frequencies in water we find
L % 1 1
40 o' ° A 1l+e
P
wl
where we have put —H = T%E . The Ruderman 631) correction € repre-

w
M
senting the diamagnetic shielding of the field of the muon in water has

recently been experimentally shown to be negligible 629).

The frequency (na is measured by observing the decay of muons
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in a storage ring with an almost uniform magnetic field (~17KkG) . The
muons (~ 1.3 GeV) are obtained from the nearly forward decay of m's
created when a proton beam (~ 10 GeV) hits a target inside the ring .
The muons are on the average longitudinally polarized

(~ 26%) when they become trapped, but while they are circulating before
they decay the spin will turn relatively to the momentum with the fre-
quency wG . The decay rate in the forward direction will be modulated
with this frequency. The top end of the electron spectrum seen at the
inside of the ring corresponds to near forward decays and will thus also
be modulated with o - For further details we refer the reader to for

instance refs.007, 008 and R.1

632’633,R.1) iS being planned at CERN

A new gu—z experiment
as a continuation to the previous experiments. Ingeneous new features
lead to an expected overall improvement of the uncertainty by a factor

of 20 .

28)

Finally let us mention that Henry et al 6 have also measu-
red GU with a technique resembling that of the measurements of the
electron anomaly (section IV.3). The result deviates. from theory by two

standard deviations, but the precision is rather low (see Table VI.1) .
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VII. "EXOTIC" CONTRIBUTIONS TO THE ELECTRON AND MUON ANOMALIES.

In this section we present a summary of the various speculati-
ve contributions to the anomalies. It is generally impossible to give
definite predictions for such contributions due to the lack of knowledge
of the coupling constants and masses of the hypothetical particles or
fields involved. Instead we shall turn the argument around and use the

agreement between theory and experiment to put limits on such parameters,

VII.1l. Generalities,

If a theory gives a certain contribution AG to the anomaly

(%)

of a charged lepton, this quantity is restricted by the inequality

where GFh * oth and G°¥P + o°*P  are the theoretical and experimental

4
lepton anomalies with associated one standard deviation uncertainties( ).
The constant C 1is related to the confidence limit of the bound, We

shall choose a 957% confidence limit with

C = 1.96

(¥) We assume that two or more exotic contributions do not conspire to

cancel each other.

(##) We have added these uncertainties quadratically although this is

not a unique choice.
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We.have (sections IV.3 and VI.2)

%P = (1159657.7 £3.5) x 1070 ; G'=(1159655.4 % 3.3) x 107°
exp 9 th 9

(1166160 + 310) x 10 ~ ; Q]J = (1165879 + 15) x 10

G

such that the inequality above becomes

-7.1x107° < a6, $11.7 x 1070

~

- 325 x 1070 < 4 G, S 887 X 107°

Observe that the muon bound is dominated by the experimental uncertain-

ty.

Many of the exotic contributions to be discussed below
depend on a mass parameter A which can be simply a high mass cut-off -
or the mass of a hypothetical heavy particle. The exotic contributions
vanish in general when A = ® and in most cases we have a quadratic

dependence on 1/A 1i.e. for A>>m

- my2
AG—A.(A) s

where m is the lepton mass and A 1is a quantity consisting of coupling
constants, numerical constants and perhaps a slowly varying function of

the masses. (Let us stress, however, that there are examples discussed



- 80 -

below that do not have this form.)The bounds on AG 1lead to 1owef limits

on A . The super scripts + and - correspond to A >0 or N <O0:

electron
A: 2 4.8 Gev VA

A R 5.9 Gev \I-A.e

muon

=+

2 113 Gev VE

- >
A 183 GeV V—A
Vil M

These limits are somewhat better for negative exotic contributions be-

cause they make worse the agreement between theory and experiment.

Although the electron experiment is about 90 times more precise
than the muon experiment the latter in general puts more stringent
limits on exotic contributions. This is mainly due to the large mass of
the muon which allows it to probe much smaller distances than the elec-

tron .

#*
A very interesting case arises when we assume )

(#) These equations could be called e-p-universality but we shall
refrain from doing so here because of the ambiguous meaning

of this terminology.
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in which case we obtain

> 113 Gev \A

~

A" > 183 Gev \-A
Since now

mé 2
N =(‘_) N 3
m U
V]
we obtain an induced bound on the exotic electron contributions from the

bound on the corresponding muon contribution

2

~

- 8.10712 < 4 G, < 21, 107t

We can conclude quite generally that for any exotic contribution satis-

fying AG.=A(%)2 H Ae=A 3 /\e=/\ the agreement between theory and

M M
experiment for the muon anomaly guarantees that the electron anomaly is

not influenced by it. This is the meaning of the usual statement : the

electron anomaly is a pure QED quantity.
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VIT.2. Modifications of Quantum Electrodynamics.

In order to measure the "goodness'" of QED, modifications of a
general nature not specifying special interactions or particles have been
attempted. As shown by Kroll 701) such ad-hoc modifications are severely
restricted by local current conservation giving rise to Ward-type iden-
tities. A modification of the lepton propagator must be accompanied by a
change of the vertex function, and Kroll showed that these almost comple-
tely cancel each other out, the only exception being the propagators
involved in closed Fermion loops. In the case of the anomaly, modifica-

tions of the lepton propagator can first show up in fourth order and may

be of the form
~ 02 my2
AGcZ K(n) ,(/\)

where K 1is a numerical constant and A 1is a cut-off characterizing the

modification. For K= 1 1 we obtain

AT 2 11 Mev A~ 2 14 MevV

e e

AF > 260 Mev A" > 425 Mev .
%8 u

The anomalous magnetic moment is therefore not particularly sensitive to

#*
modifications of the charged lepton prOpagator( ) .

(¥) Notice however, that the effect of a modification of the eletron
propagator on the muon anomaly (via the diagram in Fig. IV.2) has
not been investigated. One might expect an enhancement for Ae< mu
such that the muon experiment could limit /\é better than the

electron experiment.
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Vertex modifications, not due to propagator modifications,
will give rise (besides the obvious possibility of an intrinsic anomaly)

to second order effects of the form

=g & @2
AG= 1<1_r (A)
3*
For K=1+1 we obtain( )
/\: > 230 MeV A Z 280 Mev
/\“:25.4 GeV AL 2 8.8 Gev

Every modification of the photon propagator corresponds to a

modification of the spectral function of the photon and the influence on

(s6)

the anomaly is most easily expressed by the formula (see Section V.2)

_a (¥ a1
AG_“jo - TTIm ATI(t) K(t)

13)

(%) A recently 7 suggested modification of the charge form factor

of the muon to explain slight deviations from u-e wuniversality

2y _ 4. _ 2,2
Fu(q)—l b+b/(1q/’\4)

with b 2~ 0.04 leads to

AG,=-

dle

2
3 b

g =¥

and thereby
A >1.4 Gev .
“N

(#%) See e.g. Feinberg and Lederman, Ref.R.7 .
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where
1 2 2
KR(t) =j dx 2x (1-x) T o % %— for t > m2
o x +(1-x) 5
m

Since most modifications involve large t values we can use the asymp-
totic form and write

&2 L

AG= A

W)
=Nfe

where % is defined by
A

~ Im A nce)

|
I
C—
8
&
|

For L=+1 we obtain
+ -
AN = 3.1 Gev s A = 5.1 GeV

m,6 2
Observe that photon propagator modifications obey A G, = (E?-) A Gu

and therefore they cannot influence significantly the electron anomaly.

I1f the space of quantum mechanical states has a positive defi-
nite metric Im A M(t) (and thereby L ) must itself be positive

definite. The traditional photon propagator modification

g g g
B S\ _1-52 - _ZEL.
P L S
does not satisfy this requirement (it leads to L = -1). Lee and
05-80
Wick8 >-8 9),however,have recently proposed a theory to handle the pro-

blems associated with an indefinite metric.
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VII.3. Suggested Couplings of Leptons to Exotic Particles.

(i) The most often occurring case is that of a neutral boson coupled to

the charged leptons 703~ 707) . If the mass of the exter-

nal lepton is m , the mass of the internal lepton M (which may or may

not be equal to m ) , the mass of the boson is A , and its coupling is

f Gee Fig. VII.1),we have for the case of scalar, pseudoscalar, vector

and pseudovector coupling the following general expression

f2 m2
AG = — —3 L s
4r A
1
L=j dx Q(x) s
o (1-01-G? 0 + % x

where Q(x) 1is a polynomium in x dependent on the type of coupling.

We list it for the four standard cases :

1) scalar Qs(x) =% x2(1+e-x)
2) pseudoscalar st(x) =2 xz(l—e—x)
3) vector Q (x) = x(1-x)(x-2(1-€)) + } x*(L+e-x) A2(1-¢)?

4) pseudovector va(x) = x(1-x)(x-2(1+€)) + % x2(1-e-x) A2(1+e)?

where € = M/m and A = m/A . In the limit of a heavy boson, i.e.,
(*)

m, M <A we have in the four cases

m

(*) Also assuming (%)2<< M



- 86 -

s
_ M A 3 1
Lps__m(IOgM-4)+6
_M 2
I"v “m 3
=.M_2
PV m 3
3*
These expressions are valid for all m , M << A ) . We specialize

them to the following cases :

a) If a neutral boson exists coupled to only one charged

703'706) we have M=m=m or m and

lepton " L

Lps=—log£+%

As the logarithm is slowly varying, we can conclude that if the coupling
f is the same to muon and electron, the electron anomaly is free of the
influence of such bosons (see Section VII.l). No absolute limit, can, .

however, be put upon the mass because of the lack of knowledge of the

(*) Also assuming (}74\)<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>