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ABSTRACT

A Bethe-Salpeter type egquation is
proposed for taking into account the effects
of particle exchanges between the quarks in
the relativistic gquark model of Feynman,
Kislinger and Ravndal. The equation is
explicitly soluble in the ladder approxima-
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asymptotically dipole-like electromagnetic

form factors.
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The symmetric quark model of hadrons with relativistic harmonic

1)

description of the observed hadron spectrum. The infinitely rising harmonic

interaction gives a crude and simple but in many cases surprisingly adequate
oscillator potential between the quarks acts drastically if the quarks are
separated by large four-distances and it seems that this is required to re-
produce the main features of the spectrum (linear trajectories, for instance).
The harmonic interaction is, however, "soft" at small distances as it vanishes
if the quarks are separated by a lightlike four-vector. Therefore the harmonic
forces are certainly not dominating for small relative distances, or, which is
the Same, for large relative momenta. This can explain the failure of the
oscillator quark model in producing exponentially decreasing form factors if

q2 — - . The experiments on the proton electromagnetic form factors show a
definitely slower decrease and are well described by dipole fits behaving as

(qz)_2 for large (spacelike) g2 2).

The asymptotic behaviour of the form factors can be understood,
however, in a ladder Bethe-Salpeter model 3) of composite hadrons. This shows
that the short range interaction between the constituents of hadrons is well

*).

This suggests that exchange forces may play an important role also in the

approximated by an infinite ladder of (elementary) particle exchanges

oscillator bound states at least as far as phenomena involving large rela-

tive momenta are concerned.

The purpose of the present paper is to show that adding a "gluon"
mediated exchange interaction to the harmonic inferaction leads to dipole-
like asymptotic form factors, indeed **>. For simplicity, here only the case
of spinlesé quarks and mesons (two-quark bound states) will be considered.

The "gluon" exchanged between the quarks is represented by a neutral,

*) On the other hand the conventional Bethe-salpeter models based on ordi-
nary particle exchanges have troubles with reproducing the observed li-
nearly rising trajectories. This can be easily understood having in mind
that the exchange potentials decrease rapidly with increasing distances.
A nearly linear spectrum can be obtained, of course, also in the conven-
tional Bethe-Salpeter framework if the exchange potential is replaced
artificially by some other type of potentials. See, e.g., Ref. 4).

**) An attempt to understand the asymptotics of form factors in the framework
of the oscillator quark model was made in Ref. 5). The lesson drawn from
this work was that field theoretic unitarity corrections represented
asymptotically by Pomeron-exchange may essentially alter the asymptotics.
The role of the short distance behaviour of the interaction was not
realized, however.



scalar (or pseudoscalar) field of mass m. (In the actual calculation m
will be chosen to be zero, too.) The extension to the cases with spins and
baryons does not seem to involve any essential new difficulty besides the

"spinology" encountered in every Bethe-Salpeter type model.
y J

The bound state of two equal mass scalar quarks is described in
the harmonic oscillator quark model by the bilocal field ﬂ£q<x1’x2)’ X1 5
b

denoting the position four-vectors of the two gquarks. “he field \kq(x1,xz)

obeys the equation 1)56)57)
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Let us suppose that the quarks in the bound states are coupled to
*
some neutral, scalar gluon ) field (P(x) in such a way that the interaction

Hamiltonian is given by

b +
o= g [fadn by by g .,

In the interaction picture the field 4%(x1,x2) obeys the field equation (1)
in the same way as (P(x) does the free field equation. The perturbation

expansion of the S operator is given by
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The action of the time-ordering T on bilocal operators like qz q(x1,x2)

is defined as if qzq(x1,x2) would belong to the centre-of-mass four-vector
1

X = 2(X14-X2).

8)

The Bethe-3Salpeter equation for the two bound state Green

function

*) The "gluon'" does not necessarily represent here some new kind of ele-
mentary particles rather it may be considered as an approximation for
the description of an ordinary, composite particle. The pion, for
instance, can be described for many purposes to a good accuracy by a
local quantum field, even though it is considered as composite.
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can be derived in exactly the same way as the conventional Bethe-Salpeter
equation is derived for the four point Greo: function. (YOH denotes the

Heisenberg operator belonging to ﬂ q') The equation has the form

6= Q +GI& , (5)

where GO denotes the free two bound state function, i.e., the propagator

of the oscillator bound state
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Here M2 = mi + 20 - wa'+a is the mass squared operator for the oscillator

(a;. and a are the creation and annihilation operators of the internal

oscillationé?land ]? ) stands in general for a ket in the internal Hilbert
Space (|¢>> on the other hand denotes the state of the whole system, in-
cluding also the centre-of-mass motion 6)). In BEq. (5), I stands for the
sum of irreducible kernels which, in the ladder approximation, reduces simply

to one gluon exchange between the two quarks in the bound state.

The wave function of the bound state Ip > with total momentum
p 1s defined by
..t:ri’(’(q"x‘,)
)Cf(x“x,_): (ol‘;k% Gnt)|pr=e \lbf(x,.-x,,) C

The equation for ):IJ can be derived from Eq. (5) considering the residuum

of the bound state pole. It is given by

Xp= QT X, (o)

We consider Egs. (5), (8) in the ladder approximation which is
represented graphically on Fig. 1. The integral equation for *)p in Eq. (7)

is then
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In this equation, a Wick rotation in the z plane is already performed and
2 C s

= + + + = -p°~. i
therefore also pg pg p1p1 p2p2 p3p3 p4p4 P This is unavoidable
in our case as the Wick rotation is inherent already in the pure harmonic

*
oscillator model ) 6). It is obvious from Eq. (9) that it has an 0(4)
*%

symmetry for every value of the total momentum . Therefore it can be

expanded according to the 0(4) harmonics Ynlmcflz) in the way

“’1:(%)‘ %;w \rmhw (‘D‘%) *’p‘ (%)

where !/‘ =g 2g - The equation for \I)pz(;)n is :
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M and W denote the Whittaker functions 9>. In the case of zero gluon mass
the equation (10) simplifies a bit as then (m/};')K1(m'$') is replaced by

()2

The solution of Eq. (10) is facilitated if one goes over to a
differential equation. It can be shown, namely, that the solution of Eq. (10)

satisfies the differential equation

*
) This point is a delicate one and it is presumably connected also with
the ghost problem but for the moment we cannot do anything better than
accept the Wick rotated equation as a starting point.

*
) Note that G in Eq. (4) is not a four-point function in the usual
sense therefore this 0(4) symmetry has nothing to do with the 0(4)
symmetry of the scattering amplitude at p = O.
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This equation is explicitly soluble in the case of zero gluon mass when the

9)

solution less singular near the origin is
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Here @ denotes the confluent hypergeometric function and 4)- is related

to the quark-gluon coupling constant by ;\ = (g/161[2). In the harmonic
oscillator model the bound state wave functions are square integrable in the
Wick rotated 2z space 6), the eigenvalues of the mass Squared operator being
defined by.the requirement of square integrability. In the same sense the

solution of Eq. (12) is square integrable if

f"-—- mtw—-: Mo, + (1+2,N r\}n‘—)\) ) N=042,.. (13)

The confluent hypergeometric function is in this case reducing to a Laguerre
polynomial, that is the (Wick rotated) wave function of the bound state with
quantum numbers N, n, £, m 1is

nin-1 g
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(14)
N=o, 1,2y, 3 m-1z0zim] .

The 0(4) trajectories corresponding to Eq. (13) are depicted on Fig. 2 in
the case of attracting gluon interaction, that is for J\ > 0. ( )-< 0 cor-
responds, of course, to repulsive gluon interaction and A =0 to the pure
harmonic oscillator model.) As it can be seen from Eq. (13), the ground state
solution msgkes sense only if JK <1 (;\I> 1 would give complex mass squared
for some of the states). The essential deviations are at small values of n
(which means also small values of the spin f). In general, the gluon inter-

action has the effect that it breaks the symmetry of the harmonic oscillator



model. In the physical case of quarks with internal quantum numbers this
leads also to the breaking of the SU(6,6) symmetry down to SU(3) or even
to SU(Z)I X U(1)Y, depending on the actual form of the gluon coupling matrix

in the space of internal quantum numbers.

The electromagnetic form factor is expressed by the Fourier trans-—
formed (k) of the wave function ﬂ{ (z) in the following way [see, for
instance, Ref. 5{[ :

Flg)- @x)qs&fz b PlkxLq) . (15)

The two signs correspond to the contributions of the two quarks, respectively.
(The whole form factor is given actually by the sum of the two terms.) From
the expression of the wave function Eq. (14), we get for the form factor of

the ground state (N =0,n=1, £ =m=0)

]
2 - 3 "'L
F(a')-swt' C,J(Q 2/\,2.,%) j =z‘ {1 ) (16)

The asymptotic behaviour of this function for q - -® is

~2A ,1 —-&1‘2/\
1.) ~ cowst . 2 P(ZA) ( ) . (17)

It can be seen from Egq. (17) that the asymptotic behaviour of the
form factor is essentially the same as that of a dipole. The deviation from
the exact dipole depends on the quark gluon coupling constant A which is
not too large if the original oscillator spectrum gives a good approximation
for the physical spectrum. If /\ = 0 (no exchange forces) then the coeffi-
cient of the dipole term vanishes due to the pole of the gamma function. In
that case the form factor F(qz) is a pure exponential as the confluent hyper-
geometric function degenerates to an exponential function. We note that in
the timelike region (q2 > 0) the form factor F(qz) in Eq. (16) needs
further corrections (in order to satisfy, for instance, unitarity) as it has
no resonance poles and threshold branch points and behaves asymptotically

(as q2 - +®» ) 1like an exponential.

I am grateful to Professor D. Olive for helpful discussions and

for the critical reading of the manuscript.
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FIGURE CAPTIOQNS

Figure 1 Equations (5), (8) in the ladder approximation. The quarks are
represented by the two edges of the shaded areas, the dashed
line is the gluon.
a) Equation for

G
b) Equation for X

H
p*

Figure 2 The 0{4) trajectories for N = 0 (empty circles : @ )
and X >0 (full circles : @ ).
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