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ABSTRACT

A unified approach to double scattering, as well
as the final state interaction of the two nucleons at small
and large momentum transfers are given. The closure sum
rule for the final state interaction at small momentum
transfers is shown explicitly in a simple model for the
deuteron wave function and nucleon interaction. An appli-
cation for the process KD - K°PP is given, trying to

explain discrepancies present in recent experiments.
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1. - INTRODUCTION

The interest in doing experiments of the type XD—-YNN lies in
the possibility of extracting information, from the data for this reaction,
on the amplitude X—Y for a free neutron target. The extraction is pef—
formed using the single scattering impulse approximation ! which reduces
the initial three-body problembto two independent two-body problems. In the
past, the data were not precise enough to show any discrepancy from this

3),4)

theory 2 , but nowadays several experiments have high enough statistics
to show a marked discrepancy for high momenta of the "spectator". The
"spectator" is defined as the slower of the two nucleons and this discre-
pancy casts some doubt on its actual physical réle : that is at least for
high momenta, it seems to. interact with the incident particle or with the
recoiling nucleon. These two types of secondary interactions are distin-
guished in the following by the name of double scattering for the former

and by final state interaction for the latter.

In this paper we are concerned with the calculation of both
effects keeping the independence hypothesis contained in the impulse appro-
ximation, but allowing successive multiple collisions. The framework is the

1)

by Feynman graphs. This technique was exploited extensively by Shapiro's

5)

group in nuclear reactions ; it was used by Ericson and Locher 6 to

Watson multiple scattering theorv in the impulse approximation generated

study the analytic properties of pion and nucleon-nucleus scattering ampli-
tude, and it was successively used for scattering of elementary particles

off deuteron 7)’8).

The formalism has the following features :

1) it is naturally relativistic invariant 9),10) ;

2) it contains the Glauber theory as its 1limit for high energies and small
angles, for a deuteron target 7>, as well as for heavier nuclei as
shown by Gribov in the forward direction 1) and recently generalized

by Bertocchi 12) for small angles ;

13)

3) as shown by Aitchison a long time ago y 1t shows remarkable corres-
pondence to dispersion theory, in the treatment of final state inter-
action at low momentum transfer, and it is consistent,. at least in a

simple model, with the closure sum rule, as will be shown in this paper.



The plan of the paper is the following. In Section 2 we consider
the evaluation of the double scattering, linearizing the internal propagator ;
using a Gaussian parametrization of the deuteron wave function, in S and D

waves, we are able to derive analytical expressions for it.

In Section 3, we consider final state interaction for high
values of the momentum transfer, where the linearization procedure can be
applied to the internal nucleon propagator, in a perfectly symmetrical way :

even here the D state of the deuteron is taken into account.

In Section 4, we study the final state interaction at small
momentum transfers, where the energies of the nucleons are ron-relativistic,
and the relative diagram can be calculated analytically. We prove the

closure sum rule.

Section 5 is devoted to the aprplication of the formalism to

the process K+D—’Kopp.

In Appendix A, we give some details about the calculation of
integrals entering the double scattering and the final state interaction at
large momentum transfer. In Appendix B, we show in detail the cancellation
which gives rise to the closure sum rule for the final state interaction

at small momentum transfer.

2. — DOUBLE SCATTERING

Using traditional Feynman rules and an additional rule for the
deuteron vertex 9), we can write down the diagrams of Fig. 1. The kinematics
is self-understandable from the figure, provided the dashed line represents
the incident particle (T , K meson) and possibly its excited states in the

final state, and the continuous lines the nucleons.

Figure la gives :

5T

—
1l
~—~
=
4
2
N
—
_(:
NM

We write this trivial transcription of the diagram 1a to make clear which
normalization and which phase we choose. We emphasize that we do not
consider the phase factor (-), which would come naturally from Feynman
rules.
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where M 1is the deuteron mass and & , G are the spin and isospin indices
for the elementary scattering operator. The calculation of diagram 1b was
already done in Ref. 14) and refined in Ref. 15) to include recoil effects.
However, we repeat briefly the essential points, including the spin of the
5) we take the

lines :i + €  and E;-— {i on the mass-shell (E;: X - &/2) and we get

deuteron. Following the procedure for the elastic scattering

A

T,

. ) s T .
%ﬁ_ 3 Y+ € T,g(g)‘l;.,(’cz)g(({\ (2)

WUE ) E (§+2)

where
Q=E"+W- WE-T1-E(T+7)
and
1 - -
and

W = W+ Tlz)

E ard () represent the energies of the nucleon and of the hadron, where

the notation is that of Ref. 14). The wave function in this case includes

the spin-deperdent part 16)

W ()= Y, g - 8@’\%(\'{\\
Ny (:j'cnz (3)
O(ﬂx-— = (5. ———C—\-TZ-— - 'Z>

where J 1is the spin of the deuteron. Using a Gaussian parametrization of

the wave function 16)

—o;
L@)= L Aie 1

L"z m)z Z:Bu ééiﬁl 611 (4)
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and a Gaussian form of the amplitudes, we can perform all integrals analytic-

ally, provided we linearize the propagator Q in the variable fi . The
M+ €l

is kept small by the deuteron wave function) is small with respect to ko

and we can neglect therefore second order corrections in the expansion of

Q)(E;— ?i). Under these conditions

linearization can be done whenever |i?| (and therefore Ié' because

Q= %-(—\ﬁ + M) (5)

= - .
and YN==Q)O +m-E -F, W, = Q)(ko) and m is the nucleon mass.

After some standard integration we get
al \o.(t \o-t

d_(°\ (el & Q
’L= —‘\I—— Q\ \(\\ kox Ko M [I ij )

where
't‘:.—. (,Uo-h)ﬁz_ Q_T“ (wo-w;\% _‘(‘:"_Y‘\.A“ _ A? {4
: t 2 (7)
‘t7'= (.-, ‘\'2\(“ (w—-wb\ \S(;;;—\(“ + |I-A||—Az/4
and
T=1 A 9 (¢, 5, D)
L .
2 (J%,
1 7_'6 ]Q.,s,»\{o )+ 523 ——L) l ((Ms\}
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are the components of the relative momentum of the two nucleons and of the
tri-momentum transfer on the plane orthogonal to -EO. As was shown in

17) but

Ref. 14), this formula tends to the formula of Glauber and Franco
as it is, it can be used at higher momentum transfers, containing the recoil

effect.

The aspect of this formula tells us that, only in the region of
small values of l €|, the effect is important and it is suppressed for large

values of Iél .
We have not specified, to simplify the formalism, the possible

intermediate isospin states of the incident hadron and the nucleon pair 1 H

however, they are taken in account in the final calculation.

3., — FINAL STATE INTERACTION AT HIGH MOMENTUM TRANSFER

When the momentum treansfer [& is large we expect the fast
recoiling nucleon to interact with the .spectator nucleon in a perfectly
symmetric way as the fast hadron in the double scattering term. In a similar
fashion, we put on the mass shell the spectator nucleon and the fast recoil-
ing nucleon *). We can stert again from formula (2), but it is convenient to
change the variable and call the internal variable of the diagram, as shown

on Fig. 2. We then obtain

A (3) >
T-if F YD Mo e+ T T
ﬁe(ﬁ'—ﬂ-etﬂ[ VT 6 £ T efflg)

*

) A similar treatment wa given by Smith and Wilkin for the case of electron

5,
deuteron scatterlng



where
Q= E;E_-'E(f]-E(TS_'{\ (10)
and
- - z ind —- —» 1\
L= (EEER) - (Bt E-T+3) (1)
and t 1s the momentum transfer of the hadron. T ~and Tv denote

nucleon-nucleon amplitudes, where /&, Y 1indicate the appropriate isospin
*
combination ). If /A is large enough, we can again linearize the propa-

gator Q - and get

~ A4
Q-‘: E(—A\(ﬁ“_’z‘"\ (12)

where

2= ‘i(_gl-(E(A\A-‘m—E*— E™) (13)

This time the reference axis is given by the direction of the momentum transfer,
which is the forward direction for the nucleon-nucleon scattering. As a matter
of fact, the transverse components of X  are small, becauvse of the damping
factor in the deuteron vertex and by momentum conservation the same can be said
of éﬁ_ while GW\ is of the order of &A/2. From this observation, it fol-

lows that the momentum transfer in the second scattering is

r = 'L_ _ _ 1 (Mz*’e")z \
R ol

= - (EJ.“'TLY. + ‘tzo

*) MW and vV are direct and charge-exchange scattering for neuvtron-proton
in the final state and correspond toth to pp scattering for charge-exchange
processes but with opposite c.m. angle and opposite sign. In the high
energy limit, however, the second term can be safely neglected.
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The first part is the usual transverse part of the momentum transfer, while
the second part is the recoil correction ; the integrals in (9) can be per-
formed analytically, provided we assume for the nucleon-nucleon amplitude

an exponential dependence on the momentum transfer and no spin dependence

1 XR T Ty ) éwt“(t):- )+ O T,0) (38-0r
“3\®W (15)

2\\
(- 25
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et
N

b _é’.\. + %u A
b,)'\'(’>;_ A

The immediate consideration one can make, looking at the formula,
is that the effect will be relevant only if the transverse part of the rela-
tive momentum is small and suppressed when € is very large. This is
reasonable, because we have assumed that at hiéh momentum transfers, the
nucleon-nucleon energy is high and the scattering is concentrated in the
forward direction. Now the question arises which 1is the region of validity
of this formula : the region is limited at high momentum transfers, for two
reasons, first the approximation of linearizing the propagator is justified
only if < ﬁ 2>/< [fz > << 1, second the assumption that all nucleon-nucleon
scattering in the forward direction is true only if '\/A2 >1.5 GeV/c, as is
seen from displaying the slope of the nucleon-nucleon differential cross~
section as function of incident momentum 19). Therefore, we would suggest

that the latter is the actual 1imit of application of this formula.



4. - PINAL STATE INTERACTION AT SMALL MOMENTUM TRANSFERS

When the momentum transfer is small, however, the situation
changes completely : the momentum transfer is of the same order as the average

Fermi momentum < [&2 >~ < B2

> and the diagram of Fig. 2 becomes non-
relativistic. It is a fortunate circumstance that in this limit the diagram
becomes integrable analytically + this circumstance will allow us to derive

an interesting property and to make calculations at the end.

Although the calculation appears already in the litergture 20)’21>
wé feel that for sake of completeness we have to repeat it, at least along
its main lines. The starting point is still the diagram of Fig. 2, with the
same convention for the variables. Using the same procedure as before, we
put the line ‘§  on the mass shell : we do not proceed further because,

at low energy, the cancellation with higher order terms is not definitely
occurring as at high energy 22 . A posteriori, we can say that this is‘the
right choice, because in that way, we obtain a result exactly consistent with

closure.

The formula for the triangular diagram is therefore

A e,
To=-4 0\ \T.‘(f\'lz(mfr;(t\T,(tz\ 45
e JTP Y i [E+e-E@)- B m'+ie ER) ()

If the momentum transfer is small [}? << m2, we can take the non-relativistic

20)

limit for the propagator
- -, z - —» ~ - rs - -
[Erre-E@1- -3 & 2m (Ereed))- E3)°

& 2 (e®- Fla-xt+ 20T )

Now, to go any further, we are bound to assume that the amplitudes do not
depend on internal variables : this is certainly justified for the hadron-
nucleon amplitude and it is justified even for the angular dependence of the
nucleon-nucleon amplitude, at least at low energy. As far as the off-shell
dependence of the nucleon-nucleon amplitude is concerned, we cannot tell too
much, if we limit ourselves to the experimental evidence, and therefore we
can assume, 25 & working hypothesis, that it is constant. Once this depend-

ence is eliminated, we are left with an integral, which can be done analytically
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—

provided the form of the wave function is chosen to be a pole term in ﬁ

or, in a more realistic case, as a sum of poles 23). We will take the one
pole case to work out the result for the amplitude, but that result is
immediately generalized to more realistic wave functions. We get, therefore,
by first integrating on the angle between ? and Z, and after, doing

an integration in the complex plane :

T=_@W AbE(i%) Ty f“”?i(

if the wave function of the deuteron is defined (only S wave) as

r
k\’(ﬁ) ’ﬁ 'X (19)

We will now show that when we have a spin triplet state for the

e+° i')() (18)

nucleon-nucleon system in the final-state and the corresponding scattering
amplitude is approximated by a pole term, we get a result which is graphic-
ally expressed in Fig. 3. That is exactly the result of closure 17). We

will see also that in the case of a spin singlet state for the final nucleons,
we do not get any effect of the final state interaction. If we consider only
the S wave, there is no way to distinguish between T, and Tr~ and we

get for the total amplitude

T+ -(mr}n\ [T G(E+3) +T M (E-3,) + ﬁ
41— qa— 2\ ra ‘2 MTL"’ [)-i
x(Tx Tp) . lb €+ xixX
¥ (’5 v % e-bj2+iX (20)

where 70 = B(-1%).

Transforming the amplitudes T 1in the centre-of-mass, one gets 10)

A A o
T-\-Tof = (¢ -n}n\/. g5 ‘Eo( .(:L\;('Q'+ B2+ C,\Hg_’slz\ +
t\r\; (l-\'C\ N . e+b[2 1% (21)
AR

e - Alz"" X
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where f are the centre—of-mass amplitudes and fP = Cf 5 ©  Dbeing a

!
complex function of the momentum transfer ; Vs* s NSy are the centre-of-
mass energies of the elementary process and of the nucleon-nucleon scatter-

ing, respectively.

Let us now integrate on the phase space of the broken deuteron,
neglecting the fact that the angle of the fast particle is related to .é
through energy and momentum conservation. f_ can be taken out of the inte-

gral and we are left with the integration of the square brackets

[ Tf’%r. \M‘ctns'lzwc.\l»('é-‘i/z)lz 4[2’

T LAY € rtler i 42y

LW g -Bp+iX (22)

?.A'§ Eg_&(,(u-c,\ ,F\) Qma Ef_blf._t'_l( [&\,(QJH-\—C L[a ..A]z ~} A e

If we now assume that f,) 1is just a pble term

L
*[ = (23)

v e -

we can make all the integrations in (22) analytically and by making the
/
approximation that NS ~ 2 o’ we can cancel one part of the third integral

*
with the second one ) and we are left with

™,

2)
[ 1A% = | |e@mns ez ds

€ -ix E-bzHX € HYX £-8[,-iX

- oQ -— ol

o) ‘ o4
et 3t (i 22 e (i
A

(24)

More details in Appendix B.
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The latter integrals can be solved again by the complex plane method and we

get

_ 2 411. N log? X-¢ Al
[trel * 8 X iblq

which can be simply related to]the deuteron form factor S(Z&/Q) in the one

pole approximation and we get the final formula

gt 1% - P4+ 1c1®+ 2R (e¥) Say - l14c|tS%(a)2) (29

17), which is remarkably reproduced

This is the result of closure
in this simple model. In this model we have done the implicit assumption that
the hadron-nucleon amplitude is pure non-spin flip and charge preserving. If
the elementary amplitude is pure charge-exchange non-spin flip, the result is
still (25), with C = -1. In this case we do not have an effect of the final
state interaction in the S wave, because of the spatial antisymmetry of the
final state. If we consider spin singlet states for the nucleon pair (with
I =1), which can be obtained using a pure spin-flip amplitude (charge pre-
serving or charge exchange), the scattering length for the singlet nucleon-
nucleon interaction is negative and the integrals in (24) are identically
zero. The picture is therefore perfectly consistent with the closure sum

rule.

This consistency is encouraging and we can use this model for
actually calculating the final state interaction in deuteron dissociation
induced by hadrons. However, one has to consider with better care the spin
structure of the nucleon-nucleon amplitude, together with the spin structure
of the elementary amplitude. The spin structure of the amplitude is changed
in a Lorentz transformation and therefore one should in principle use the
invariant forms for the hadron-nucleon and the nucleon-nucleon amplitude 24)’25).
However, since the energy is low, we can neglect such a Lorentz transformation
of the amplitudes ; furthermore if the hadron-nucleon is diagonal in the space
of the total spin of the nucleon pair, we can factorize some combinations of
amplitudes in the differential cross-section. To do this we calculate the
matrix elements for the spin triplet and spin singlet of the nucleon pair

in the final state.
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Chwt | T )= (' [{ +16ae 3\w> K {[qa (T+ %) +

Sy N

+ C\l»(E—Klz\] Dmwm + Ly +e f»‘“ﬂ“g 8 +oaniX

€ -4 +iX

GolT 1wy = ig k(g @amp)- etz +

(26)
+i Z‘Az Slf-ef 1 %Q*“'”‘X B

1
where K = (161{3M)2 BK/Jsx and C = +1 for the isospin singlet state of
the nucleon pair and -1 for the isospin triplet. Using these matrix ele-
ments, we can trivially calculate the differential cross-section for the
0)
tion a good guess for the centre-of-mass angle for the nucleon-nucleon

scattering is cos 6% = (_é_&/ E,A) : indeed, & is the momentum of

charge exchange process and for the charge preserving one In this calcula-

the centre-of-mass and |§| is the momentum of each nucleon in their
centre-of-mass. For the actual calculation, one has to abandon the one-pole
23)

wave function and use the Hulthén or the Gartenhaus-Moravcsik wave

function.

5. — APPLICATION TO THE PROCESS K *p - Klopp

We will now work out numerically an example of application and
we will choose as incident particle the K meson : the reason is that the
K nucleon interaction is weak compared with the nucleon-nucleon interaction,
so that double scattering and final state interaction are distinguishable.
Moreover we choose the charge exchange, because the K° 1is detectable in
the bubble chamber and by detecting the recoiling proton, the complete kine-
matical reconstruction can be done even if the spectator proton is not visible
‘and therefore we have the whole "spectator distribution" 3)’4> while the
other experiment, with the neutron recoiling (like K+D -+ K np), does not

allow it 287,
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The "spectator" distribution is important, because on that dis-
tribution it is easy to check the validity of the single scattering appro-
ximation, just plotting against experimental data the probability distribution

of the deuteron wave function (Moravcsik-Gartenhaus 23) in Fig. 4)

Py = on [ Walepar + g Cpod | (21)

If we do that, including the D wave of the deuteron, which is not usually
included in the comparisorn, done in the literature, we get a good agree-
ment for Py < 250 MeV/c and a rising discrepancy at higher momenta (see
Fig. 4). The attitude generally taken is to throw away events with high
spectator momenta, and limit the analysis to low momenta. This procedure
can cause normalization problems, as shown in Ref. 3) for the case of KX
production, where the total production rate on a proton extracted from

deuterium data is 20% lower than the same measured directly in hydrogen.

In order to solve the problem, one should try to calculate the
effects of secondary interaction at low momenta and extrapolate it for large
momenta, filling the gap between theory and experimental data.

Before starting it, it is necessary to understand the kinematics
of the spectator distribution. For this purpose we divide the interval of
centre~of-mass angles of the elementary process, in this case the charge-
exchange K+N—*PP, into several slices, and we calculated - using a program
with three-body kinematics 10) - the average value of the three-momentum
transfer as a function of the momentum of the spectator

A
& ZNGIT
)
(N = (28)
A
7 VT 1% Ay
b
Figures 5a,b show the result for 0.98 and 1.51 GeV/c incident

momentum of the K meson. The lines in the plot show the behaviour of the
average value of A for bins of 0.15 in cos ec_m. of the K+1\T—>PP process
from -0.95 to 0.95 : for small angles (at the bottom of the plot) A is sumall
for small values of Py and it is increasing with Py» but remaining in the
non-relativistic regime. For large angles (at the top of the plot) A is
large and we can eikonalize the theory along the direction of E . Therefore

for small angles, we can apply the non-relativistic approach and, at large
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angles, the eikonal model. As far as the double scattering is concerned, .

only the bottom part on the left of the diagram seems to be safe, for the appli-
cation of the Glauber theory, but one could certainly isolate better the region
of small € , considering the spectrum of the invariant mass of the two pro-
tons, possibly in the low momentumn transfer region for the K meson, where ko

is large.

Figures 6a and Ta show the result of the calculation at small
momentum transfers of the K meson at 0.98 and 1.51 GeV/c of incident
momentum. The line with crosses shows the result of the calculation, using
for the final state interaction the non-relativistic theory with the Hulthén

23) and the McGregor proton-proton amplitudes 27).

wave function
The agreement with experiment is extremely encouraging, but the
model is not giving the suppression of the peak, which would be reguired by
the closure sum rule. In this paper, however, the emphasis is put on the
interpretation of the tail of the spectrum. The problem of closure is being
investigated and will be published in a forthcoming paper 28). Some preli-
minary results give a very good consistency with closure of the same model
in the case of the neutron-proton system, with the Hulthén wave function and

effective range expansion for the nucleon-nucleon amplitude.

In the same Figs. 6a and Ta, the effect of the double scattering
is shown to be very small in the region of high momentum of the spectator ;
however, it causes a suppression in the region of small spectator momenta
(pS < 250 MeV/c), which amounts to an integral value of 4.8% for 0.98 GeV/c
and 3.1% for 1.51 GeV/c. Here, and in the following calculations, a Gaussian

parametrization 16) of the Gartenhaus-Moravcsik wave function was used.

Figures 6b and 7b show the result for the model of final state
interaction "& la Glauber" at high momentum transfers. The crosses show the
result with the D wave for the deuteron and the dotted line without the D

wave. The result is consistent with the one at low momentum transfers.

While in the single scattering and in the non-relativistic model
for the final state interaction we have used the amplitudes obtained by a
complete phase shift analysis 29) for the double scattering and for the final
state interaction at large momentum transfers, the kaon-nucleon amplitudes

are parametrized as a pure non-spin flip Gaussian
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bt
{-_- A(l+e) e (29)

and the values of the parameters are extracted from the differential cross-
26),30) 31)

sections and from a dispersion relation calculation

The nucleon-nucleon amplitude is parametrized in the same way,

with A determined from total cross-section data 32), X determined from
dispersion relations 33) and b parametrized in the following way
2
L:: o_::_l'__ﬂ_c._l_‘\_. (30)
.0

following Ref. 35).

6. — CONCLUSIONS

We have been facing.in this paper the problem of unifying the
formalism of the finai state interaction for large and small momentum transfers.
The results we are getting are surprisingly filling the gap between single
scattering theory and experiment at high momenta of the spectator for the
case of K+D—>KOPP ; therefore we interpret the high momentum tail as the
final state interaction of the protons in this case. The intuitive reason
is that high momenta correspond to small distances and, if the interaction
with the incident particle occurs for small distances between the two nucleons,
we expect double collision effects to be important, and in this case the
nucleon-nucleon interaction is much stronger than the kaon-nucleon interaction
and is likely to dominate. O<her processes like LD — TL's NN will require
obviously other explanations for the high momentum tail and the annihilation
channel for incident antiprotons is a different problem, but basically a
secondary interaction is required to explain it.

We want now to conclude, commenting on a recent interpretation 34)
of the high momentum tail as an evidence of high momentum components in the
deuteron wave function. This interpretation is not inconsistent with what we
are saying in this paper, because when two nucleons are emitted, their form
factor is affected by the final state interaction, and therefore one can
generalize the concept of the wave function, including final state interaction

effects.
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APPENDIX A
To perform the integration of Eq. (2) we can take as the z axis

the direction of ko’ and after having made the integration, we can rotate

again the z axis to coincide with the quantization axis of the nucleon spin,

the amplitude being rotationally invariant.

The integral for the S wave is easily made

g‘ﬁn T 6 P R E ST

(V&2 B K\
Cq cftwel S
ETE (8.1)

while that for the D wave requires first of all a variable transformation

— _ > — —»_ — ]2—) — ——)A/——-—"‘"
yli-m+Qo where Qo—(U€l+2A_‘)/(S+X) and Q(;-QO\S‘“X

gm —‘& & +)* 'D‘p L

4T Sty e e 6eer -

—\‘(.el\ "'T\\ s . “'\5) |7.
—e Y %e; +Q; gAylu 0 {3 [32 (o) + (T-Giix A
¥ Jg (s eu\i-(ihc‘u-w + - @+3-30) % (Y.*e.] -

- — —X( nTin "‘e.l. ()
- (‘?-L+ G.L Qo\ (\(’n'\’e\\‘ } y *‘(\ +9

(O 5 (3@ (Y )xA -

where { = @:_—-T?: + (\{l “‘Gu\ %

This proves Eq. (8). An analogous task is to prove Eq. (16).
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APPENDIX B

We show here in more detail the cancellation which leads to
Eq. (24) and therefore to the closure result (25). Let us simplify the

notation, defining

(B.1)

Factorizing the elementary amplitude in the last two terms of (22), we get,
integrating on the angle
oL

an \ ' _ 1”8'\ g & e*de —
A&T: ez* )

o

N+cl?

o4

NE 27 log AT 4 ]
- EI;%: = -\)C 8‘A GE*\?CQQ}

,[%AJ'-\-LBA:leAe

(B.2)

The last term is expanded giving

o

NG 2R oLl ad le K
»@ TN (:..-nc %A‘ +em(}‘°3A M

YA} T - ea
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which proves the cancellation between the last term and the first term of
(B.2) provided s/§ - 2(\ s/ ), which is the kinematical condition for
the validity of the closure . This condition is satisfied because the

relative energy of the two nucleons is low and therefore ds = om and

~ e
(o}
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FIGURE CAPTIONS

Figure 1 Diagrams representing the single and double scattering. The
dotted lines represent the incident hadron and possibly its

excited states in the final state.

Figure 2 Diagram representihg the final state interaction between the

two nucleons.

Figure 3 Closure sum rule expressed in diagrammatic language.

Figure 4 Spectrum of the slower proton for the reaction K+D—*KOPP at
0.98 GeV/c. The crosses are the result of the calculation
using the single scattering approximation and proper three-body
kinematics, and the open circles are the plot of the probability
density of the deuteron normalized at by = 0.01 GeV/c to the
other curve. The effect of the phase space is to lower the curve
and it results in a suppression of 2% in the area of the spectrum

for pg < 0.25 GeV/c.

. [ 2 . -
Figure 5 Plot of the quantity A< A > as function of the momentum of

the spectator Py for 12 intervals of 0.15 in cos ec.m. of
the process K'N->k°P from -0.95 to 0.95 leaving the interval
~0.05 + 0.05, to separate clearly the forward from the backward
hemisphere. The lower part of the plot corresponds to small
angles and the higher one to large angles.

a) Incident momentum 0.98 GeV/c.

b) Incident momentun 1.51 GeV/c.

Figure 6 Plot of dG‘/dpS, calculated theoretically, using the same
prescription as for the experimental analysis j the dash-dotted
line corresponds to the single scattering approximation, the line
with crosses corresponds to the inclusion of the final state
interaction between the two protons. The incident momentum is
0.98 GeV/c.

a) The calculation is done for 0.8 < cos 6, < 0.95 and the

.M.
curve is renormalized to fit the first part of the spectrum.
The final state interaction is calculated using the non-

relativistic model. The dashed curve shows the contribution

of the double scattering.



Figure 7

b)

The
a)
b)

_25_

Here cos ec_m. ranges between -0.95 and -0.8 and the
final state interaction is calculated using the eikonal

model ; the dotted curve is the result without the D wave
of the deuteron, neither in the single scattering term, nor

in the final state interaction.

same, for 1.51 GeV/c of incident momentum.
0.9 < cos ec.m. < 0.95.

-0.95 < cos ec o < 0.
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