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Abstract

Consider the group G := PSLy(IR) and its subgroups I' := PSLy(Z) and
I := DSLy(Z). G/T is a canonical realization (up to an homeomorphism) of
the complement S*\T of the trefoil knot 7', and G/T" is a canonical realiza-
tion of the 6-fold branched cyclic cover of S\ T, which has 3-dimensional
cohomology of 1-forms.

Putting natural left-invariant Riemannian metrics on G, it makes sense
to ask which is the asymptotic homology performed by the Brownian mo-
tion in G/I", describing thereby in an intrinsic way part of the asymptotic
Brownian behavior in the fundamental group of the complement of the
trefoil knot. A good basis of the cohomology of G/I', made of harmonic
1-forms, is calculated, and then the asymptotic Brownian behavior is ob-
tained, by means of the joint asymptotic law of the integrals of the above
basis along the Brownian paths.

Finally the geodesics of G are determined, a natural class of ergodic
measures for the geodesic flow is exhibited, and the asymptotic geodesic
behavior in G/I' is calculated, by reduction to its Brownian analogue,
though it is not precisely the same (counter to the hyperbolic case).

1 Introduction

Most knots obey the celebrated uniformization theorem of Thurston ([T]) : their com-
plement in S* are homeomorphic to a unique complete hyperbolic manifold of finite volume,
which assigns then a canonical geometrical structure to these manifolds. In this homeomor-
phism the knot is sent to infinity, namely to the unique cusp of the hyperbolic manifold.

In this canonical hyperbolic context, it makes sense and it is possible to compute
the asymptotic Brownian and geodesic behaviors. This has been done in [F2]. See also
[ELJ|,[EFLJ1],[EFLJ2].

The trefoil knot 7' is the simplest of non-trivial torical and then non-uniformizable
knots. There is a classical algebraic realization of T as a simple curve in C?, but this does
not correspond to a precise canonical geometric structure, and the asymptotic Brownian



windings about 7" one can compute in such model (the quantity computed so is the length
of the knot (trefoil or other) divided by the global volume, see [F1]) is not intrinsic, and
does not resemble anyway the uniformization.

Now, there exists however for the complement of this particular knot some intrinsic
geometrical structure, replacing the non-existing hyperbolic structure. Indeed it is known
([M],[HP]) that the complement of T in S* is homeomorphic to the quotient G /T of the
group G := PSLy(IR) by its modular subgroup I' := PSLs(Z). Moreover it happens that
any left-invariant Riemannian structure on this homogeneous space G/T is quasi-hyperbolic
(and hyperbolic in the sense of Gromov), with a unique cusp corresponding to the trefoil
knot T'. The 1-cohomology of this space is a real line, generated by the harmonic 1-form
computing the linking number about 7.

Moreover this canonical structure for the complement of 7" admits a less known inter-
esting feature. Among the cyclic branched covers of the complement of 7', which exhibit
a 6-fold periodicity, one unique presents an increase of the first Betti number : the 6-fold
cyclic branched cover ¥ of the complement of 7' in S® has a 3-dimensional cohomology of 1-
forms. (For these questions, see [R]. For example, ¥s is the Poincaré sphere.) X = X;UT
is a smooth compact manifold, and H'(Xg) = IR? corresponds to two “angles” accounting
for more information on the fundamental group of S*\7 than the linking number 1-form
alone. Of course taking also this linking number into account, we have H'(Zf) = IR3.
Note that the two “angles” just mentionned are computed by bounded 1-forms, counter to
the linking number 1-form.

Now it happens that this cover Xf is in turn homeomorphic to G/I', I' := DSLy(Z)
being the subgroup of the modular group I' generated by its commutators. So we have a
canonical structure for this interesting cyclic cover of the complement of 7', at least once
some natural left-invariant Riemannian metric is chosen on the Lie group G. We fix such
metrics (depending on a real parameter a) by taking orthonormal some basis of the Lie
algebra sfy(IR) which diagonalizes the Killing form and is made of symmetrical and skew-
symmetrical elements, and which is simply expressed in the Iwasawa coordinates. They
happen to be canonical in a natural geometrical sense, viewing G as T'IH?, and pertain to
the 6th of the eight 3-dimensional geometries described by Thurston ([T]), viewing G /I
as T'(H?/T").

It becomes now fairly natural to compute in this canonical model the asymptotic behav-
ior of the Brownian motion. This canonical Riemannian manifold G/I" is quasi-hyperbolic,
hyperbolic in the sense of Gromov, has finite volume, one unique cusp, and projects (by
annihiling the maximal compact subgroup of G, a circle) onto H?/T", a hyperbolic surface
of genus 1, which carries the two “angles” mentionned above. These “angles” give raise
to regular windings and then to a central limit theorem, while the linking number will be
given roughly by windings around the cusp and then will generate singular windings.

To perform the computations, of the harmonic forms (see Theorem 1 below) and of
their stochastic line-integrals along the Brownian paths, and then of the asymptotic be-
haviors of those integrals (see Theorem 2 below), we use the Iwasawa coordinates on G,
taking advantage of this parametrization without singularity, which moreover shows up the



hyperbolic part of G.

From a probabilistic and technical point of view, the arguments used here were already
partly scattered in [EFLJ1], [ELJ], [F1], and [F2], but the major difficulty in the proof of
Theorem 2 below is to establish the asymptotic independence of regular and singular wind-
ings, that is to say the independence of the limiting laws of the slow and rapid windings.
Such a question, relative to this type of independence, seems not to have been yet precisely
addressed. See however [GLJ], for an analoguous question concerning the geodesic flow on
a surface, handled totally differently, by means of a coding method.

Then the geodesics of G are determined. They happen to project on IH? according to
a generic Euclidian circle or line (intersected with IH?), these projections having constant
energy. This allows to exhibit a natural class of ergodic measures for the geodesic flow on
G/I", with respect to which the asymptotic geodesic behavior in G/I" is calculated, by
means of the joint asymptotic law of the integrals of the harmonic basis along the geodesics
(see Theorem 3 below).

The method for getting the geodesic result is based on a reduction to the Brownian
behavior, calculated previously, as in the series of articles [EFLJ1], [EFLJ2|, [ELJ], [F2],
[LJ2]. There are however some noteworthy simplifications in comparison with the proofs
in these articles, mainly due to the harmonicity of the integrated 1-forms, as in [LJ1].
In particular, there is no more need of a spectral gap, nor to use a foliated diffusion.
Another change (and hopefully clarification) with respect to these previous proofs is the
use of a simultaneous disintegration of the Liouville and the Wiener measures : we avowedly
condition the Brownian motion (starting from a given point z € IH?) to exit the hyperbolic
plane at the same point as a given geodesic (starting also from z). This point of view was
more or less implicit in the preceding proofs, but did not really appear.

Finally it is worth noticing that, counter to the hyperbolic case of [EFLJ1|, [EFLJ2],
[ELJ], [F2], [LJ1], [LJ2], the geodesic and Brownian asymptotic behaviors are here no
longer the sames, though comparable. The spiral windings of the geodesics about their
projections on IH? is mainly responsible for this feature.

It is a pleasure to thank J.P. Wintenberger for having drawn my attention towards
congruence groups, Hurwitz formula, and Shimura’s book, and T. Delzant for a useful
remark.

2 The commutator subgroup of the modular group

Consider the group G := PSLy(IR), its modular subgroup I' := PSLy(Z), and T" :=
DSLy(Z) the subgroup of I' generated by its commutators.

As usual, let us identify G with the unitary tangent bundle T'JH? = IH? x S! of the
hyperbolic plane IH? = IR x IR’ , and also with the group of M6bius isometries (homogra-
phies) of H?.



Let us distinguish the following elements w, v, 3,7y of G, defined by :
u(z) = —1/z, v(z) == (2 = 1)/z, B(2) := (22 +1)/(z+1), 7(2) :== (2 +1)/(2+2) .

Consider also the subgroup I' of elements of I which are congruent to the unity modulo
6, that is to say equivalently : I's is the kernel of the natural projection p of I' onto
PSLy(Z/6Z) .

Lemma 1  The group T is generated by {u,v} and admits the presentation {u,v|u® =
v® = 1} ; The group T" is the free group generated by {B,v} ; The quotient group T'/T"
is isomorphic to Z./6Z . Moreover we have : B = [v,u|, v = [v7"}u], vu(z) = 2 + 1,
8,77 = (vu)® = (2 2+6) €.

Denote by Dy the most usual fundamental domain for the action of the modular group
T on the hyperbolic Poincaré plane IH? : Dy is the ideal triangle of IH? delimited by the
vertical half-lines [e¥V~127/3 o] and [e¥~17/3 00| and the segment of the trigonometric
circle delimited by eV~17/3 ¢vV=127/3 = Recall that {1,u} is the stabilisator of the elliptic
point v/—1 , and {1, v,v?} is the stabilisator of the elliptic point eV~17/3 = ¢V-127/3

Then we have the following fundamental domains for the action of I :
Dy U vDy U v2Dy U uDy U vuDy U v?uDy
and
D := Dy U 7B Dy U Bv2BDy U BuyDy U vuDy U v?uf™ Dy .

As BB 2)=2-2, Bv?B(2) =2+2, Buy(z) =2+3, v*uB ™ (2) =2—1, we see
that D is merely the union of the translates of Dy successively by —2,—-1,0,1,2,3.

We have the following identifications on the boundary of D :
'y(eﬁ%/?’ — 2,1 —2, eV 120/3 _ 1) = (em2”/3+2, V-1 +1, em2”/3+1),
5(6“3277/3 —1,v/-1 -1, e‘/’_”“/?’) = (e‘/’_12“/3+3, V-1 +2, e‘/’_12“/3+2),
B,y—l (eﬁ2ﬁ/3, \/_—1 ,eﬁzn/3+1) _ (eﬁzn/3+4, \/_—1 +3, eﬁzw/3+3),
B,y (V2R — 24+ VT Ry ) = eV 128 4 44+ -1 R, .

Lemma 2 IY is a congruence group. More precisely, we have I'¢ C IV, and in I' a word
in {B,7} belongs to T'g if and only if its total weights with respect to B and -y are even and
equal modulo 6. Moreover [I' : Tg] = 12 = Card(p(I")), the quotient group p(T')/p(I") is
isomorphic to Z/67Z , and the quotient group I'/T'¢ is isomorphic to Z/6Z x Z/27. .

Proof We saw with the fundamental domain D above that I'/T' is made of the cosets
(2 z+ k)", for k € {0,..,5}. Then we have [p(8),p(7)"'] =p([8,77']) =1, showing
that p(B) and p(y) commute. Thus for any integers m,n the element p(8™~7") is (as a
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matrix) symmetrical in p(T'), that is to say symmetrical or skew-symmetrical as a matrix
in SLy(Z/6Z) , since B and 7y are.

Moreover, p(3)® = p(y)® =1, and p(T) = {p((z = Z+k)5m7n)

a+keb b+ kd)
be d
a

b
! __ ma.n 1
g, ==+1 and p(f™") = (bs d) , showing that

0<k<50<mn<5}.

!
And p((z =zt k)5m7n) =1 ( = (6 g,) modulo 6, where

0

p((z — 2z + k)ﬁmfy”) =1<= k=0 and p(B)"p(y)"=1.

Hence we have shown that I's C I, and also the second statement of the lemma, since it
is easily seen that p(8)"p(y)" =1<= m €2Z and m —n € 6Z.

The above also implies the isomorphism between p(I')/p(I') and Z/6Z, and that the
kernel of (Z/GZ 3 (m,n) — p(B)™p(y)" € p(F’)) is isomorphic to Z/3Z. Whence
Card(p(I")) =12, [T : T¢] = Card(p(T')) = 72, and [[':T'¢] = 72/6 = 12. The last claim
is now clear from the above, which shows that I''/T'g is generated by the cosets of 5 and
B7, which commute and are of order respectively 6 and 2. ©

3 Modular forms on H?/T’

The Hurwitz formula ([Sh], section 1.5) asserts in our case that

2 x genus (H?/T') —2 =06 x (2 x genus (H*/T) —2)+ > (r(z)—1),

z€H?/T!

where 7(z) denotes the ramification index of the covering (IH?/T" — IH?/T') at z, which
satisfies Y 7(z) =6 for any 2’ € H?/T.
z above 2/

Here the ramifications occur only above 0o, /=1 , and eY~127/3  There are 1 point above
00, with index 6, 3 points above v/—1 , with index 2, and 2 points above eV~!27/3 with
index 3. Since IH?/T" is homeomorphic to IH?, and then has genus 0, we get the genus 1
for IH?/T".

Now, theorems 2.23 and 2.24 of ([Sh], section 2.6, case k = 2 and genus =1) assert that
the modular forms f(z)dz, for IH?/T" as for JH?/Ts, are all proportional.

We need next the n function of Dedekind, defined on IH? (seen as the Poincaré half-
plane) by :
n(z) — eﬂvrz/l2 x H (1 _ eﬂ%nz) .
nelN*

We shall also need its logarithmic derivative :

i(z) = '(2)/n(z) = V=1 5 — 2mv/—1

n
Z ef\/f_127rnz_1 ’

nelN*




which converges absolutely uniformly in D. 7 and 7 are holomorphic, and bounded in D.

n clearly satisfies n(z+1) = eY~1™/12y(z) , and is known (see for example ([A], theorem
3.1 of section III.3)) to satisfy also (with as the square root the usual principal branch) :

n(=1/z) =e ¥V 1"z n(2).

As a consequence, 7(g(z)) = 1(z) x ¢'(z)"*/* up to some 24-fold root of 1 (depending on
g) for any g € T', and in particular 7(g(z)) = n(z) x ¢'(z)"*/* for any g € I'".

Hence we have the first sentence of the following lemma (owing to the canonical injection
of HY(IH?/T") into H'(G/T"), induced by the canonical projection g — g(v/—1) from G
onto IH?). The second sentence is obtained merely by differentiating the above relation for
7. The third is straightforward from the above expressions of 1 and 7.

Lemma 3 (i) n*(2)dz is a closed modular form on IH?/T", and thus on G/T".
(1)  We have 7(—1/z) = 2* X 7)(2) + 2/2 and 7j(z + 1) =7j(z) for any z € H?.
(iii)  We have in D :  n(z) = O(e="¥/'?) and 7(z) = v/—1 7/12 + O(e~27Y) .

Remark 1 Set O(z) := ) eV~ ™% which is holomorphic in JH2. Poisson formula
neZ,
applied to the function n — e ™" shows that (for z = /=1 y and then for any z € IH?)

O(=1/z) = e V14 /2 O(z)

as for n above. But this theta function © is only 2-periodic, and has no 1-periodic power,
so that (since vu = Buy(vu)?) it cannot be used to get a ['-automorphic form.

4 Link with the trefoil knot

Denote by T the trefoil knot, realized in the sphere S®. Denote by ¥, the k-fold
cyclic branched cover of its complement S*\ T, for k£ € IN*. See [R], in particular ([R],
X, C,D), ([R], VI,B), and ([R], VIL,D). X} is a compact 3-dimensional smooth manifold,
Hi(Zg) = Hi(Zgs6), and H'(Zg) is trivial for k£ ¢ 6IN. (A pleasant feature, irrelevant
here, is that X5 is the Poincaré 3-sphere.)

It is not very hard to see that H;(Xg) = Z°. Indeed II;(3g\T) is made of those lifts
of elements in TI;(S*\T') which are still loops, that is those which have linking number
(with respect to T') belonging to 6Z. This implies that I1;(36\7") (up to an isomorphism)
is generated by the center (isomorphic to Z) and the commutator subgroup (free on two
generators) of IT;(S*\T). Whence the abelianised H;(Xq\T) = 73, the H;(%¢) = 7
component corresponding to the commutator subgroup contribution.

The real cohomology of 1-forms of S*\T', H*(S*\T), identified with the space of har-
monic 1-forms on S*\ T, is generated by the harmonic 1-form computing the linking number
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about 7. Considering Xf := 3\, we have a 6-fold cover of S\ T which has a three-
dimensional real cohomology of 1-forms : H'(Xf) = IR3, generated by the lifts of the
harmonic forms belonging to H*(S*\T) = IR and the restrictions of the harmonic forms
belonging to H!(Zg) = IR

It is convenient to think of those two more directions brought by H'(Xs) into H'(X§) as

two “angles” accounting for more of the complicated fundamental group of S*\7, than
the mere linking number 1-form generating H'(S*\T) does alone.

The following proposition links this interesting cover with the preceding section, con-
fering thereby to X a somehow canonical structure of homogeneous space.

Proposition 1 S*\T is homeomorphic to G /T, and moreover Y is homeomorphic to
G/T'.

Proof The first assertion seems to be due to Milnor. See [M], and [HP]. The second one
does not seem to be widely known, but M. Boileau, F. Bonahon and T. Delzant knew it.

G/T" is clearly a cover of G/I', with as a fibre the cyclic group I'/T' = Z/6Z, as it must be.
So it remains to be sure that this cover is indeed a cyclic branched cover, and namely that
near the trefoil knot the canonical projection is diffeomorphic to ((s,z) — (s, 2%)). Now,
[HP] shows that in G/T', T has been sent to infinity (it corresponds to the subgroups of
IR? isomorphic to IR, while its complement correspond to the lattices with unit area). And
near infinity, G/T" is locally homeomorphic to the unit tangent bundle of a neighborhood
of oo in the fundamental domain D (with identification of its two vertical edges by means
of (z = z+6)). It should now be clear that the cover G/T" — G/T' has the required

structure near infinity, being given by ((9 z++/=1y)— (0,6 ++/— y)) # denoting
the parameter of the circle above the point z ++/—-1y € D. ¢

Observe that the harmonic 1-forms of G/I' = Xf are sums of forms of two different
types : the forms arising from G/T' = S3\T and then from the linking number (with
respect to T'), which are unbounded, and the forms coming from ¥4 or equivalently from
the modular surface IH? /T’ (onto which G/T' = T (IH?/T") canonically projects, and which
has 1 handle, see section 3), which are bounded.

5 Iwasawa coordinates and metrics on G

G = PSLsy(IR) is classically parametrized by the Iwasawa coordinates
(z=x++/-1y,0) € H*> x (IR/2rZ) , in the following way : each g € G writes uniquely
g = g(z2,0) := n(x)a(y)k(f) , where n(x), a(y), k() are the one-parameter subgroups
defined by :

n(z) = (1 a:) , a(y) = (\ég 1/2/@) , k(0) = (—C(;SIE%?%) ELI;((Zég))) ’



and generated respectively by the following elements of the Lie algebra sf5(IR) :

V= (8 é) , = (1(/)2 _§/2> o= (—?/2 162) '

Note that g:g(z,e):)[g(\/—_l)zz and g’(\/—_l):ye‘/__lo].

Set also A :=v—kKk = (1(/)2 1(/)2> , which is natural, since a, A are symmetrical
while x is skew-symmetrical, and since in the basis (a, A, k) of sla(IR) the Killing form
-2 0 0
is diagonal : it has matrix 0 -2 0
0 0 2

For this reason, we take on sfs(/R) the inner product such that the basis (a, A, ax)
is orthonormal, for some arbitrary parameter a € IR*. And since we want to work on
the homogeneous space G/I", the Riemannian metric to be considered on G must be a
least I''-left-invariant, and then a natural choice for the Riemannian metric on G is the
left-invariant metric, say ((gf;)), generated by the above inner product on sf,(IR).

The simple lemma below shows that this choice of metric(s) is geometrically canonical
(up to a trivial multiplicative constant), G being seen as T'IH2. This equips G/I" =
T'(IH?/T") with the 6th of the eight 3-dimensional geometries described by Thurston ([T]).

Let us denote by L, , L, , L., £, the left-invariant vector fields on G generated
respectively by v, a, kK, A. A standard computation shows that

. .0 0 0 0 . 0 . 0 0
EA—ysta—y—i-ycos&%—cosQ%, Ea—ycosea—y—ysm@%-l-sm&@, L= 2

Lemma 4  The Riemannian metrics ((gf;)) defined above are, up to a multiplicative
constant, the only ones on G which are left-invariant and also invariant with respect to
the action of the (Cartan compact subgroup) circle {k(0)}. They are given in Iwasawa
coordinates (y,z,0) by

Y2 0 0
((gi)=1] 0 (A+a?)y? a?y!
0 a_zy_l a—2

Proof The left-invariant metrics on G are those which are given by a constant matrix

0 0 0
((aij)) in the basis £ := (Ea,ﬁ)\,ﬁn). Set 7 := (8_3/’ %’ %) . We have Z = EA, with
y~tcosf —ylsinf 0
A:= |y 'sind ylcosd 0|, sothatthe left-invariant metrics are given in the basis

0 y ! 1
T by *A((aij))A. Among them, the ones we want have to satisfy % ‘A((a;ij))A=0.



1
A direct computation shows that this is equivalent to ((a;;)) =c* | 0
0

to ((gf;)) being as in the lemma. ©

Note that with these metrics the holomorphic form 7*(z)dz of Lemma (3,i) is coclosed
and then harmonic.

The left Laplacian on G corresponding to the basis (a, A, ak) is the Beltrami Laplacian
associated with the metric ((gf;)), and is given by

A% = L34 L2+ a2 =y (8—2+8—2) oy +(1+a2)a—2.
A @ * oy?  0x? 000x 00?

y~ 11 .Notethat Ly and L, generate the canonical horizontal left-invariant vector fields
lifted from JH? to G, IH? being endowed with its Levi-Civita connexion, so that A? is the
Bochner horizontal left Laplacian, and A® = A° + a2§—; )

dx dy db
A7 2
probability measure (as is easily seen by integrating over D x [0, 27] ), proportional to the

volume measure of G/T". Thus the volume of G/T" is 47%/|a| .

The measure pu(dg) := is bi-invariant, and its projection onto G/I' is a

Let § denote the height in the cusp of the projection IH?/T" of G/T", that is to say
7 = y when we identify IH?/T" with its fundamental domain D (see section 2). Let us
consider § as a function on G/T" or on IH?/T" as well, and then also as a I'-invariant
function on G or on IH?.

6 Winding form on G/T

Let us look here for the harmonic 1-form on G/T', which calculates the linking number
about the trefoil knot sent to infinity. Let us denote it by

wo = A(z,0)dz + B(z,0)dy + C(z,60)d6 = U(z,0)dz + U(z,8)dz + C(z,6)d6 ,

with A, B,C real and 2U = A — +/—1 B. C must be non-null, since H*([H?/T') = 0.

wo must be left-invariant under I', which amounts to say such that ~*wy = wy for
¥(z) =2z +1 and for y(z) = —1/z.

Clearly the invariance with respect to z — 2z + 1 is equivalent to the 1-periodicity of
A, B,C (with respect to the variable z).

We have then to write down the invariance with respect to u = (z — —1/2).

Now wug(z,0)=g(—1/z,60 —2argz), using the notation of section 5, so that
" dz = dz I, —
wvwy=Uou—+Uou—_ +Coux (d0+\/—1 || (zdz—zdz))
z z
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equals wy if and only if C is I'-invariant and
U(-1/z,0 —2argz) = 2°U(2,60) —v/—=1 20(z,6) for all 2,6.

Observe that with the metric ((g§;)) given in section 5, the divergence of wy is

0B 9(A—Cfy) (1;;120—A/y)) (BA 6B) 9C  9(a+aC —yA)

dwo =y (8y 9z 26 oz Toy) Yoz T a0
Hence wy is harmonic if and only if
U  aC A 8B  _,0C  _,d((1+a®)C — yA)
il 1 _ = il 17 2 —
gz sreal, G =g, ad Hot g, TV B Y 26 0,
which is equivalent to
oU _ acC U 80 . _,0((1+a®)C —yA)
=0, W W G W a0 ‘

Now Lemma (3, i7) shows that C =1 and U(z,0) = —24/—1 7j(2) is a solution.

So our 1-form wy must be = df + 4Im(7(z)) dz + 4 Re(7(2)) dy , up to a multiplica-
tive constant (which we take equal to 1, to have the linking number calculated by wq/27,
see the comment below).

Gathering this, Lemma (3,i), and section 4, we get the following :

Theorem 1 A basis of H(G/T") is made of the 3 following harmonic 1-forms, ez-
pressed in the Iwasawa coordinates :

wo := df + 4Tm(ii(2)) dz + 4 Re(7i(2)) dy = d(6 + 4 arg(n(2))) ,

wi = Re(n’(2)) dz — Im(n*(2)) dy, w2 := Im(n*(2)) dz + Re(n*(2)) dy.

wy and wy are bounded, and wy = 3 dxr + df + O(ye™?™Y) near y = oo

As usual, we identify the forms on G/I" with the I"-(left-)invariant forms on G .

Note that the norms of the forms dz and dy are of magnitude § (defined in section 5),
though the norm of df is of magnitude 1. Then wy is unbounded, having a singularity at
the cusp of G/I", and does not belong to L*(G/T", u) .

This agrees with the different natures of the windings involved : = whereas wy calculates
the singular windings about the trefoil knot (even if located at infinity), w; and ws calculate
regular windings around a handle, and belong to L*(G/T", u) .

Observe that wy also calculates a sort of angle, about the trefoil knot at infinity, and

that the corresponding linking number is then calculated by wy/27 . This is coherent with

d
the approximation in Theorem 1 above : ;U—O = Fx + O(1) near y =oco, showing that
T
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our linking number is mainly made of the number of windings around the cusp performed
by the projection on IH?/T" ; note that it is clear on the fundamental domain D that a
loop aroud the cusp corresponds to an increase of = by +6.

The norms mentionned above are relative to any left-invariant Riemannian structure on
the Lie group G (and on G/T"). But more precisely, with respect to the precise canonical
Riemannian structure ((g5;)) (see section 5), we have the following.

Corollary 1  Ezpressed in the dual basis (L}, LE, L}) of (La, Ly, L), we have

wo = L + (sin 0 + 4y[Re(7(z)) cos 8 — Im(7j(z)) sin 0])52
+( — cos 0 + 4y[Re(7(2)) sin 8 + Im(7(z)) cos 9])5;\ ,
w1 = [Re(n*(2)) cos 8 — Im(n*(2)) sin O]y L% — [Re(n*(2)) sin 8 + Im(n*(2)) cos By L}, |
wy = [Re(n*(2)) sin @ + Im(n*(2)) cos Oy L} + [Re(n*(2)) cos § — Im(n*(2)) sin O]y LY, .

As a consequence, we have
jwol* = 1+ a® + 16y°[7(2) [ — 8yIm(7i(2)) , |wrf” = |wal* = ¢*[n(2)*, (w1, w2) =0,

(wo, w1) = 4y* [Re(n"(2))Zm(77(2)) — Im(n’(2)) Re(i7(2))] — y Re(n*(2)),
(wo, w2) = 4y* [Re("(2))Re(71(2)) + Im(n"(2))Zm(5i(2))] — y Im(" () -

7 Left Brownian motion on GG

The Brownian motion g; = g(zs,60s) = g(ys,xs,0s) on G has infinitesimal genera-
tor %A“ and is the left Brownian motion solving the Stratonovitch stochastic differential
equation

dgs=g9s0o(ANdYs + adX, + kadWy),

where (Y, X,, W) denotes a 3-dimensional standard Brownian motion.

Since a direct calculation shows that + (cos 8dy—sin 8dz)2g(z, 0) *dg(z,0) = (sin 8 dy+
cosfdx) 3 + (cos@dy — sinfdx) i (ydé + dx) > wegetthedif ferentialsystemdy, =
Yssinf; o dYs + yscosb; o dX; = y,sinf;dY,; + yscosb;dX, ,dry, = yscosf; o dY, —
Yssinf; o dX; = yscosbsdYs — yssinb, dX; ,df; = adWs — cosf,; o dY,; +sinf; o dX; =
adW, — cosbB,dY,; +sinf, dX, .

Setting dU, :=sinf,dY; 4+ cosf,dX; and dV;:= cosf,dY; —sinf,dX,, we get a
standard 3-dimensional Brownian motion (Us, Vs, W;) such that

dys:ysts , dws:ysd‘/; , dfs = adW, —dV;.

We see that the projection of our Brownian motion g, = (ys,s,6s) on the hyper-
bolic plane IH?, that is to say on the Iwasawa coordinates (y,z), is simply the standard
hyperbolic Brownian motion of IH?, and that the angular component (6;) is just a real
Brownian motion with variance (1 + a?).

11



Remark 2  The degenerate limit-case a = 0 is quite possible for the left Brownian
motion (gs). It corresponds to the Carnot degenerate metric on G, and to the horizontal
left Brownian motion on G, associated with the Levi-Civita connexion on IH?2.

8 Three martingales

Let us denote by M/ := /[ ij , 7€{0,1,2} ; the 3 martingales obtained by
g/0,t

integrating the 3 harmonic forms w; along the paths of the left Brownian motion (gs).
Let us introduce also M; := M} ++/—1 M} = /[ ]774(z) dz , which by corollary 1 is a
9

I

conformal martingale.
Note that we may as well consider the Brownian motion (gs) as living on G or on G/I".
Section 7 and Theorem 1 show that

-aWt+/ 4Re () ys AU, + (4Tm i(z,) ys — 1) dV3) ,

¢ ¢

Mt1 = / (Re n*(2s) ysdVs—Im n*(2s) ysts), Mt2 = / (Im n*(2s) ysdVs+Re 0 (25) ysts),
0 0

and then

Mt:/Ot Hzg)ys AV +v/—1U,) .

Lemma 5  The law of (M}, M?)/v/t converges towards the centred Gaussian law with
covariance matriz equal to the unity matriz multiplied by the variance 2 [, |n(z)[*dzdy .

Proof By the above, we have some complex Brownian motion (Z,) such that

M= Z((M)) = Z( [ 62 n(a0) P ds),

and then by scaling, we have the following identity in law (for each ¢ > 0) :

£ 0, = 2((M)y/8) = 2( [ 92 n(z0) P ds),

which by ergodicity converges to

2( [, P dn) = 2( [ P G) = 2(C [ P dedy). o

Then let us consider, for any r > 0, the martingale

Ny = g/o Lg>ry Ys AV = 5/0 Lig,>ry ds

12



where ¢ is the height in the cusp (defined in section 5).

Now using that wg is bounded in the compact {7, < r} and using Lemma (3, 7i)
observe that g, e 2" ?73) M) — N} is a martingale with bounded quadratic variation, so
that as t — oo (Mto — Nt’") /vt converges in law and (Mto — Nt’")/t goes to 0 in
L?-norm.

Hence M)/t Dbehaves as NI /t, which depends only on the hyperbolic Brownian
motion (z,), as M;. 9f; Lig,>r U2

9 Asymptotic Brownian windings in G/I"

The following theorem describes the asymptotic Brownian windings in G/I".
Theorem 2 Ast — oo, (MT? , MT;I , MTE) converges in law towards (C,N'',N?), where
the variables C,N*,N** are independent, C is Cauchy with parameter %, and N',N? are

centred Gaussian with variance 3 / In(z)[¥dzdy .
™ I Dy

Observe the irrelevance of the parameter a in this theorem, which is valid as well in the
degenerate case a = 0. The reason is that a was initially the inverse norm of £, = % ,
which does not concern w; and ws, and which in wy contributes only to a second order
term. Technically, in the proof of Theorem 2 below M} /t is firstly replaced by Ny /t
(defined at the end of Section 8) which, as M;, does not depend on the real parameter a .

Remark 3  Theorem 2 is true as well for all finite dimensional marginals: ast — oo,
(ijt/t, Mcljt/\/i, Mczjt/\/f) , 1< j <N, for any given N € IN* and 0 < ¢; < .. < ¢cn,
converge jointly towards (CC].,Nclj,Nci_) , where the processes C, N1, N? are independent,
started from 0, C is Cauchy with parameter L, and N'',N? are real Brownian with vari-

27
3 8
ance ;/Do In(2)[°dz .

Proof of this remark 3 is somewhat more tedious than the proof of Theorem 2, but without
notable additional difficulty (but notational). So it will be omited.

10 Proof of Theorem 2

Let us split this involved proof in several items.

Note that a large part of the arguments and techniques employed below already ap-
peared more or less in the union of [EFLJ1], [ELJ], [F1], and [F2], but none of these articles
contain them almost all, and the major difficulty here is to establish the asymptotic in-
dependence of regular and singular windings, that is to say the independence of C and

13



(M1, N?) in the theorem. Moreover such a question of independence seems not to have
been yet dealed with, except in [GLJ] by means of a coding method concerning the geodesic
flow on a surface. From a probabilistic and technical point of view, this could be the main
interest of the present proof.

10.1 Excursions near the cusp

Fix r,¢ > 0, and set 7 :=min{s > 0|gs > r+gq} , o :=min{s > 0|7, < r},
To:=0, andforne IN: o, =7,+000,,, Thy1 ' =0, +T700,, .

Note that [7,,0,] is the n-th discretized excursion interval near the cusp (cut at level r).
Let us also set (, := max{s < o, |¥s > r+q}.

Denote by Cf :=max{n € IN|(, <t} the number of complete discrete excursions
near the cusp performed till time ¢. This is an additive functional, and then Cf}/t
converges almost surely as ¢ — 0o, by the ergodic theorem, towards some constant p.

Note that we shall finally let » and ¢ go to oo, in such a way that ¢/r — 0 (taking

for example ¢ = /r).
N

Observe then that we have A}im Z(an —7,)/N = [E(01 — 71) almost surely, since
— 00 n—1
the irrelevance of the entrance points of our excursions (coming from the fact that (ys) is

an autonomous diffusion) and the Markov property imply the independence of the different
variables (o, — 7). Observe also that

1+C7

/ Ligesriqy ds < Z —7,) and / Ligo>ryds > Z(O’n Tn) -

Thus the ergodic theorem yields :

rog = I > r+all <ox Blon—m) <pl{i>r} =2

10.2 Laws of an excursion

We need the duration and winding law of the typical excursion. We proceed more or
less as in [ELJ].

Fix c € IR, , and observe by direct application of It6’s formula that

e °° X (ys)(l’Vch)/ 2 is a bounded martingale. Hence the optional sampling theorem
gives

]EHq[e—ca(T)] (1+ )(1—\/@)/ '

This implies that  FE|o,, — 7,,] = 2 log (1 + g) for any n € IN*.
r

14



Note that this and Section 10.1 imply that

3 3

27 (r +q) log(l—l—g) < eshng:= 27rrlog(1+§) ’

h(r,q) ==

and therefore that lim pq=3/(2m).
q/r—0

Fix then b € IR, and observe by direct application of It&’s formula that

b2 s
exp ( — |blys — 3 / y?dt) is a bounded martingale, and then we have by the optional
0

sampling theorem
b? folr) B
E,.Jrq[exp(—;/o yfdt)]ze bla

Note that this shows that the variables { / i y2ds ‘ n > 1} are independent and stable

with parameter % . Moreover using the existence of a standard real Brownian motion (w;)
independent of (ys) such that during each excursion in {§ > r} we have

Ty = Tog+ w( /0 gjf dt) , we deduce that the variables {cpn = / " dx,

pendent and Cauchy with parameter q.

n > 1} are inde-

10.3 Approximation of regular windings

. t y
For j = 1, 2, consider Mg(r) = / 1{ﬂs<7'}dM-g :
0 <

It is clear (see Lemma 5) that (Mj — M/ (r))/+/t converges in law, with quadratic variation
going almost surely to O(u({gj > r})) = O(1/r) ; so that (M{ — M](r))/t converges
uniformly to 0 in probability as r — 0.

For £ € IR? and n € IN*, set J':= / n+1(ﬁldM51(r) + £,dM?2(r)) , so that we have
1 2 1 2 o ¢ ot 1 2
ElMt (’I“) —+ Eth (7“) = ElMTI (’f’) + EZMTl (’I") —+ Z ‘]n - /t ]-{gjsgr}(EldMs —+ KQdMs) .
n=1

Now (1M} (r)+ €:M2(r))/v/t goes to 0 almost surely as ¢ — oo, and

TCT +1 [
Ry = </t " g (dM] + 6dM7) [VE) = O(sup{(rni1 — 00) [n < C7}) /t,
so that for any ¢ > 0
P(R; > €') < IP(C] > 20t) + P(sup{(TnH —7,) |n < 20t} > é?It)

<o(1)+20tP(rs — 0y > €'t) = 0(1) + O(1/1)
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that (01 — 7) € L? and since (1o — 01) is square integrable, as exit time of the compact
{g<r+g}.

This shows that / o (g, <} (Grd M, + szMf)/\/z_f goes to 0 in probability as t — oo
\ <

Then similarly

Ci lot] [(o+')t]
IP[<(§J€ ZIJZ)/\f> > 5] < JP[|CT/t—Q| > 6] -I—IP[O( _[(Z I)](Tn+1_0n)) > <€It]
=o(1) + O(1/t),

provided we can establish that the correlations between the variables (7,11 — 0,) decay
exponentially. To this end, observe that by Markov property and Schwarz inequality

Cov{(Taemir = Onim), (Fnir — o)} < B[(rnin = 0a)?] B[, (1) = B, (1)]],

showing that we shall be done if we prove that IE, () converges exponentially fast in L*-
norm as n — oo . Now viewing the ergodic stationary historical process (z;| —0o < s < t)
as a suspended flow under the function 7, we may apply Ambrose’s Theorem to deduce
that the induced Markov chain (2,,, 25,,,) is stationary and ergodic under the so-called
Palm invariant probability measure x induced by w. See ([SLM]|, Exposés I and II). x
being clearly compactly supported, the transition operator of this Markov chain has a
spectral gap in L?(), from which our exponential decay directly follows.

Ct lot]

Hence we have shown that (Z JE—3 Jﬁ) / vVt goes to 0 in probability as t — co.
n=1 n=1

Therefore we have proved that, as t — oo, (élMtl(r) + &Mf(r))/\/f behaves in

[ot]
probability as E Jf; / Vit .
n=1

10.4 Approximation of singular windings

Recall from Section 8 that (M — N7)/t goes to 0 in L?-norm, and write
/ Lig,>mdr, + 3 Z/ drs + % dz, —i—/ )dVs .
TinCy +1

o t
It is obvious that / ’ 1{gs>r}da:3/t goes to 0 almost surely, and that / O(l)st/t goes
0 0

to 0 in L?-norm, as t — co.
Then P[[} . do,#0] =Pl >r+q=0ul{j>r+q})=001/r).

Tt/\cg+1
On

Moreover, using that the ¢, = / drs , n € IN*, are independent and Cauchy with

Tn
parameter ¢, as shown in Section 10.2 above, and denoting by C a right continuous
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Cauchy process with parameter ¢, we have for any &', > 0:

Ci lot]
PH gl(pn - ;19011

[ot]+k

Z @n‘>st]

/t >s’] —1P[|C’{/t—g| >€”] §2IP[ max

0<k<e't

gIP[ sup |Csl >s’t] =IP[ sup |Cs| >€'],

0<s<e't 0<s<e”

showing that

[ot]
11msupﬂ3 ‘ E On — Z ©n

/t >s]<]P[ sup |C|>s]

0<s<e!

Ci [ot]
whence the convergence to 0 in probability of ‘ Z On — Z <pn‘ / t by letting £” decrease

to 0. This method was already in [F1].

So we have proved that, as t — oo, M?/t behaves in probability as 2 Z ©¥n / t, and
n=1
this with probability 1 — O(1/r).

10.5 Conditional independence
So far, we have established that for any (¢,¢') € R?> x R
Ag = tli)rgloE[exp (\/—1 (6L M} + €M)/t + 0 Mto/t])]

= lim hm ]E‘[exp (\/_ [(ﬁlMl( )+ 52]\4,52(7‘))/\/7E + N[/t])]

r—oot

r—o0 \ t—oo

= lim <hmJE[exp (\/_[ J‘/\/ t+Lr an/t])] +0O( 1/7"))

—hmhmJE{JEf[exp(\/_[ Jf/xf+ an])]},

T—00 t—00

denoting by F the o-algebra generated by the varlables {20, Zrpy1) IR € IN} .

NOW the strong Markov property insures the conditional independence of the variables
{J¢, ¢, |n € IN} . Therefore

[ot]
Ay = lim lim E{]E‘f[exp (\/_ Z Je/‘[)] X E]:[exp (\/——1 (l'w/3t) Z gon)]}

r—-o0 t—o00

— 4 = lim, o0 limy o0 B{ [124 B [T 7 | <124 B7 [V T €n/300] )=
2ty o [T5 w7 [EF - -
limr_)oonhmt_,oo ]E‘{ H%’ﬂ ]E‘ZZH [eﬁ Jf/‘ﬂ] x H[@t] Ezone [ V=1 (¢'n/3t) (pn] } _
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10.6 Getting rid of the conditioning

We need to get rid of the above conditioning by F. We first follow the argument of

([EFLJ1], Lemma 12). Setting Y := / y>ds and using again that x, = x¢ + w(/ ytzdt)
T1 0

during each excursion, we have for any real b : J¥ ‘/Z] = Hgf:t]l =" [emb%]

E[e\/fl buw(Y) |w(Y) modulo 1] ,andforanyrealcandpositives’ :

E[( v=lbu(y) _ 1) Z 1{c<w k<c+a’}]

E e\/jl bw(Y) w(Y) E]C,C+ 8,[+Z — 1= ke
[ ‘ :| E [ Z 1{c<w(Y)—k<c+s’}]
ke
E[(Q?TY 1/2/ Z \/_bw — 1) —2?/(2Y) 1{c<a: k<c+e'} dw]
_ N/
E[(Q’]TY 1/2/ Z e @*/(2Y) 1{c<az k<c+e'} d‘r]

kel
E[(27TY 1/2/ Z( V=1 r(z+k) _ 1) o= (@+k)?/(2Y) dx]
© kel

E[@ry) 12 / Y e (@ Hk2/(Y) g
¢ kel

c+e'

Then
sup {|e‘/__1 bk _ 1] x e ¥/(Y) ‘ ke ]R} < sup {min{Q, |bk|} x e **/(2Y) ‘k € R}

— max {max{e*“/(m |k > 2/[b|} ; max {[bk| x e ¥*/¥) |0 < k < 2/|b|}}
= max{ —2)7 s min{2, [b]vVY } X exp [— min{1,4b_2/Y}/2]}

= 2 6_2(b2y)7 1{Y>4b*2} + ‘b‘\/? X 6_1/2 1{Y§4b*2} S |b|\/? .

Hence we can replace the Riemannian sum above by a Riemannian integral + an error
term :

Z (eﬁb($+k) _ 1) 67(w+k)2/(2y) — / (e\/j b(z+k) _ 1) e*(l‘+k)2/(2y) dk + O(|b‘\/?)
keZ "

= (e_b2y/2 — 1) Vory +O(plVY).
Therefore we obtain for all ¢ and ¢’ > 0 (with a uniform O) :
&' x E[(e Y2 —1) + O(Jb))]
'x (14 O(B(Y112))

E(e‘/__lbw(y) ‘w(Y) €le,c+ 6'[+Z) -1 =
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= [ =1+ 0(p)] /(1 +0(1/0),
since E[e*bzyﬁ] = e %7, which in turn implies E(Y~Y/2) = (2r)7Y/2 [pe I®4db=1/q.
This proves that

Ezan[ \/—_1b<pn] -1— (1 + On(l/q)) X (1 —elbla 4 On(\b|)) =1- (1 + On(l)/Q) blq,

ZTn

with O,(1) denoting a uniformly bounded function of z,, .

10.7 End of the proof of Theorem 2

Let us apply the result of the preceding section 10.6 for large ¢ and r/q, and for
b={n/3t, with t = co. We get from the above and from Birkhoff’s ergodic Theorem
applied to the Markov chain (z,,) (via the sequence O,(1)) :

[T Bz [ €na00] = ] [1 = (14 Ou(1)/a) Ielan/3]
n=1 n=1

| I

QZ 1+ 0,(1)/q) + o(1)) = exp (— |£I|§q”(1+0(1/q))).

=exp(

Coming back to Section 10.5 and taking for example ¢ := /7, this yields :

4, = lim lim B [H B [V ) e (- 2T (14 0(1/9)))

r—00 t—00 =1 3

= lim lim /B[ exp (‘/f (M} (r) + &ME(r)))] x exp (- W% (1+0(1/9)))

r—00 t—00
:tlgrgolE[exp(‘/; (M} + 6,M2))] x e71/2 = exp (= 3"5'/ 2)fdz — |‘;|),

by Section 10.2 and Lemma 5. This achieves the proof of Theorem 2, since A, was defined

. . : OM} + 6 ME M)
in Section 10.5 as tll)%loE lexp (\/—1 [ 7 + : ])

11 Geodesics of GG

11.1 Description of these geodesics

The Levi-Civita connexion of G = PSLy(IR) equiped with its Riemannian structure
((gf])) of Section 5 has Christoffel coefficients classically given by

F;k ((%glk + Orgy; — 8gg;k) X gﬁi for 1<14,5,k <3,
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and the geodesics () are the solutions of the following system :

d*y}

; d’}/j d’yk
de? k(1) X —F X —E

= <1<3.
th 7t 0 for 1<:1<3

Using the expression of Lemma 4 for ((gf;)) , a somewhat tedious but direct computation
gives the equation of geodesics (y; = (v, 24, 6;)) of G in the Iwasawa coordinates by means
of the following system :

v =9y + (L+a )z [ye+ a1, = 05
— (24 a7 ?)yiwy/y — a Py =0
92, +(1+a” )ytxt/yt +a yﬁi/yt =0.

Linearly combining the last two equations gives 6} = (—z}/y;)’ . Consequently our
geodesic system is equivalent to the following, for some real constant c.
0, =c—x}/y; ;

&y — 2y /ys — calyy =0
Y _ytz/yt+xt [y +ca”’z; = 0.
Eliminating ca=2 between the last two equations gives some real constant C such that
2’ +y’=Cy; .
Considering then the [—1,1]-valued function f(¢) :=y;/(Cy;) and eliminating z}, we get

the equation
f'—f-C'(l—fz)j:ccfzy/l—]“'2 =0.
ds

C’ (1—s2) +kyv/1—82

Letting apart the simple case when f is constant, and then when (y;,x;) runs a straight
line or is constant, we must have ho f(t) =t — t;. Changing the variable by

Now consider k:= +a 2¢/C, and h(z

u = 1= Vsl_‘°'2 € [—1,1] in the formula for h , we get successively the following computations.
ST k| =1: h(z) = 212 and then f(t) = romais = o & log (14 C2(t — 1)?) |
C' CC'(t—t
whence y(t) = z(t) = xo + (t=to)

1+ C2(t—t0)?° 1+ C2(t — tp)?
-If k| <1: h(z) = c\/ﬁ argth(,/ k[l Lz ]) and then

flt)= %1 X %log (ch [C’\/l — k2(t — to)] - k) ,  whence

0 - c 0 —ms O sh[CvI = R3(t — to)]
Y = eyi—Ri—t) -k VT T AR OV = Rt — to)] —
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-If k| >1: h(z) = CW arctg(ﬁ[l_ 21_22]) and then

flt) = 61 X — log (‘k — cos [C’\/k2 1(t — to)] D ,  whence

c 0 —m s O SHOVRT (1)
k—coslCVRE —1(t—t0)] " 7 T V=1 k= cos[CVEE = 1(t — to)] |

y(t) =

As a consequence, we see that our geodesics project on the hyperbolic plane IH? in the
following way.

I k=1 (x(t) —zo)® + (y(t) — C"/2)> = (C"/2)?, and we get an horocycle ;
c’

SIE R < 1: o (a(t) — o) + (y(t) + 15%) = (5%
intersecting IR, which is a geodesic if and only if k& =

)2, and we get an Euclidian circle
0;
SIE R > 1 (2(t) —wo)? 4 (y(t) — $E)? = e )%, and we get an Euclidian circle
totally included in IH? (necessarily C'k > 0). This is thus also an hyperbolic circle.

Finally we recover 6(t) from the initial equations.
For constant function f, we see at once that 6'(¢f) must be constant.
For |k| =1, we find that  6(¢) =6y + (1 + a*)Ct — 2arctg(C(t — to)) -
For |k| < 1, we find that  6(t) = 6y + Cka’t — 2arctg(th[0m(t —19)/2]) -

For |k| > 1, we find that  6(¢) = 6y + C|k|a?t — /&2 — 1 fTVF710) __do

|k|—cosp *
In this last case, we observe that we may choose k > 1, and that using the 27 periodicity

we have [J |k|i‘:’;w = \/:;:1 X [5=] +0(1) .

Observe still that the constant energy of these geodesics equals

95 (1) d‘;’tt dgtt = (1 + k?a?)C?. Hence prescribing speed 1 gives |C| as a function of |k|.
We have finally shown the following.

Proposition 2 For any geodesic ~(t) = (y(t),z(t),0(t)) of speed 1 of G, there exist
constants C € [—-1,1], C' > 0, and tg, zo, 0y € IR such that one of the four following cases
occur. We let k € [—1,1] satisfy (1+ k?a®)C? =1.

Case 1 The projection on IH? is a straight line (quasi-geodesic or horocycle), or a point.
Case 2 |k| = 1. The projection on IH? is the horocycle having equation

(x — )2+ (y— C"/2)2 = (C'/2)® . Precisely, we have

c CC'(t — to)

t: t:
y() 1+02(t_t0)2 ) .'L‘() $0+1+02(t_t0)2’

t
6(t) = 6y + el 2arctg(C(t —ty)) -
Case 3 |k| < 1. The projection on IH? is the quasi-geodesic having equation
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(x—20)®+ (y+ 10_1,52)2 (1%2)2 . Precisely, we have

(t) = % (t) = 20+ C' sh [Cv/1 — k2(t — to)]
Y = oV Rt—t) -k " T T A h[CVI— Rt —to)] —

6(t) = 0o + Cha’t — 2arctg(th[Cv/1 — K2(t —t0)/2])

Case 4 k > 1. The projection on IH? is the circle (totally included in IH?) having equation

(x —z0)® + (v — ,Slkl) = (kf_'l)2 . Precisely, we have

(t) = ¢ 2(t) = 70 + (o " sin[Cvk? — 1(t — t)]
Y= kE —cos[CVE2 —1(t —ty)] T 1 ke — cos[Cv/IZ = 1(t —t0)]

cVEZ=it ¢
Gt:00+0ka2t—\/k2—1/ 1
0

In this case the geodesic has periodic projection, and even is periodic (with Riemannian

length | C|\2/’;‘1Ll )if \/k;:j,l is rational (equal to p/q with p,q relatively prime integers).

= (ka® - VE2—-1)Ct+0O(1).

k — cos

In all cases, we have z'(t)? +y'(t)? = C?y(t)*> for any real t, so the projection on H? has
constant energy (speed), and it is the intersection of IH? with an Euclidian circle or line.

Corollary 2  Let () denote the geodesic of G generated by (y,z,0,u,v,w) € TG,
where o = (y,z,0) is the base point n Iwasawa coordinates, and (u,v,w) are the coor-

dinates of v in the basis (ya ,yax, %> of T, (y,z0

So that (using Lemma 4) we have w = —v iam =: w¥(u,v), with C? :=u?+ 0?2,
Then the geodesic (y;) lives on the leaf of T'G, say L(C?,+), having equations

{v? +v?>=C?%, w=w(u,v)}, or on the leaf L(C? +), having equations

{u? + v =C?, w=w"(u,v)}, and has closed (periodic) projection on IH? if and only if
02

1+a2 :

Remark 4 1) The geodesics of G which project on a geodesic of JH? correspond to
k = 0, or equivalently to C? = 1, and then are exactly the horizontal geodesics of
G = T'IH?, H? being endowed with its Levi-Civita connexion.

2) The quasi-geodesic v; = (y(t), z(t)) of case 3 in Proposition 2 above is at bounded

distance of the geodesic g of JH? having the sames ends : g; = ( = kzch Gy %ot \/16’ ’Zgéhc (%t))

More precisely, we see by an easy computation that for any real ¢
ch[dist(v;, 9, /1=g2¢)] = 1/V1 — k? = ch[dist(v, 9)] -

This is the same (as it must be by changing the point at co) for the quasi-geodesics (non-
horizontal half-lines) of case 1 in Proposition 2.

Consequently, all quasi-geodesics we get as projections on IH? of the geodesics of G are
made of equidistant points with respect to some geodesic of IH?.
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3) The case 1 in Proposition 2 above appears as exceptional only due to the choice of a
particular point of JH? sent to oo in the Poincaré half-plane model. This choice is directly
dependent of the choice of the Iwasawa coordinates on G.

11.2 Exponential geodesics

Making a stronger use of the Lie group structure of G = PSLy(IR), we find among the
geodesics which ones are given by exponentials.

Denote by V the Levi-Civita connexion of G (of course still equiped with its Riemannian
structure ((gf;)) of Section 5). Again a somewhat tedious but direct computation (note
however that by left-invariance it is enough to make this computation at the unit element

of G ; or alternatlvely to use the formula V. £; = £ 3, (ck cij+ H_E%CJ Hf ||||2 ¢ty )ALy,

Where the c - are the structure constants of G) gives the following covariant derivatives for
our basic left invariant vector fields :

Ve £a=Ve La=Ve Ly =0; Ve Lya=1Ly=-V(,La;

1
—)Lx .

1 1
V[,)\,C,.; = 2—612,6,1 3 anLA = (1 -+ 2—0’2),60‘ ) V[,QLK L)\ 3 Vcn (1 —+ 2 2

As a consequence we see that
v(uLA—I—vLa—l—wlln)(UE)\ + ’UEa + wﬁn) = (1 + 0172) w (Uﬁa — ’U[,)\) .

Hence we get the geodesics of G which are given by exponentials as the one-parameter left
cosets generated by the vector fields afl, and (cosp)Ly+ (sinp)L,, ¢ € R/27Z.

Equivalently, these are the following exponentials : ¢ — ggexp[atk] = g(z¢, 00 + at/2),
and

t— go exp[(t cos )X + (tsin w)a] = (ch (t/2) 4 sin o sh (t/2) cos psh (t/2) )

cos psh (t/2) ch (t/2) —sinpsh (¢/2))’

which are respectively the vertical and horizontal geodesics.

12 Ergodic measures for the geodesic flow on G/I"

Corollary 2 above shows that the leaves u? +v? = C? of T'G/I" are stable under the
geodesic flow, disjoint, and that they are made of closed geodesics for C?% < Hence
we have the following necessary condition for an ergodic measure to exist.

1
1+a? *

Corollary 3  Any ergodic invariant measure for the geodesic flow on G /T must be car-
ried by a leaf L(C?¢) of equation {u®+v? = C?, w = w®(u,v)} (in the basis chosen in

2
Corollary 2 above, with C? € [0,1] and € = + ). Moreover if C? < 1+1a2 and if C\/kl‘:z—_l
is rational, then it must be carried by some closed (periodic) geodesic.
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Notice that the ergodic invariant measures for the geodesic flow on G /I which are
carried by a leaf L(C?¢) such that C* < 7 would lead to a more or less trivial
asymptotic result for the integrals of harmonic 1-forms along the geodesic flow on G/T".
So we drop them henceforth.

Lemma 6  For (C?¢) fized such that 1 > C? > 15, there is a natural one-to-one
map Y = YE from the leaf L(C? &) (seen as made of geodesics of G/T" ) onto the set of
geodesics of IH?/T". This map goes as follows : with any geodesic -y of the leaf L(C?,¢),
associate successively the projection v' on IH? of its lift to G, and the projection ¥ () on

H?/T' of the geodesic of IH? at bounded distance of ¥'.
This map makes sense as well between the set of line-elements of L(C?,¢) and T*(H?/T").

Proof Proposition 2 (case 3), Corollary 2 and Remark (4,2) insure that our map 9 = 9°
is well defined. In the reverse sense, to any geodesic ¥(7) of IH?/T" corresponds a unique
geodesic lifted to IH?, then two quasi-geodesics in IH? at constant distance 1/y/1 — k2 =
a/va?+1— C~2 of this lift, according to the sign of k. Then since the formulas of Case
3 in Proposition 2 give 0'(t) + z'(t)/y(t) = Ca?k = +av/1 — C?, we see that the choice of
¢ prescribes the sign of k (the sign of C' determining the sense of the geodesic 1(g)), and
then a unique quasi-geodesic, whence by the equations for the geodesics of G a unique 7.
By using furthermore the orthogonal projection in IH? between our quasi-geodesics and
their associated geodesic, we get at once the analoguous map at the level of line-elements.
o

Now it is known (see [H]) that the Liouville measure on T*(IH?/T") is invariant and
ergodic under the geodesic flow. This fact and Lemma 6 above allow therefore the following.
Definition 1  For (C?¢) fized such that 1 > C? > H:ﬁ , denote by uS the image of the
normalized Liouville measure u on T*(IH?/T') = G/T" under the map ¢E of Lemma 6.
So ul is a probability measure on the set of line-elements of the leaf L(C?,¢), which is
invariant and ergodic under the geodesic flow on G/I".

13 Asymptotic geodesic windings

We fix here a leaf L(C?,¢), and endow it with the ergodic invariant probability measure
ul of Definition 1. We want to obtain the asymptotic law under p¢ of

(t_l/ wo,t_l/2/ wl,t_l/2/ wz) as t— 00,
7[0,7] 7[0,t] 7[0,¢]

where the geodesic v of G/T" is chosen (at time 0) according to uf and 7[0,¢] denotes
this geodesic «y run during the time-interval [0, ¢].

Note that by the I'-invariance of the forms w; it makes no difference to think of the
geodesics 7y as started in the fundamental domain D and living on G, the forms being
harmonic on G as well.
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The following lemma reduces essentially our study of the geodesics of G to a study of
the geodesics of IH2.

Lemma 7 Ast — oo, the asymptotic law of (t_l/ wo t_1/2/ w1 , t_1/2/ wz)
70,4 7(0,4] 7[0,4]

under uS = p(dy) is the same as the asymptotic law under the Liouville measure p =
wu(dg) on T*(H?/T') of the following (w§ denoting (wy — df)) :

— -1 , at —-1/2 at —-1/2
(8a 1= (\/1 —02) /g[o,t] 0 (\/1 —02) /g[O,t} “L (\/1 —02) /g[O,t} w2> '

Proof Let us deal first with wy,wy. By Definition 1 and Lemma 6 and the fact that
wj = m*w; for 1 < j <2, 7 denoting here the canonical projection from G = T'IH? onto

IH?, we just have to compare t_l/z/ wj = t_l/z/ wj Wwith t_1/2/ wj -
7[0,¢] 70,4 $(7)[0:¢]

Now use that on H? w; = dF; is exact, and recall from Remark (4,2) that the geodesic
() must be run at speed |C|\/1 —k2=+/1-C?/a, to get :
_ | = |F(v(t)) - F; VI= L) F(v/(0) + F, 0
o™ Lo oy 1] = (B0 @) = B0 =)= F3 (¢ (0)) + F;(4:(1)(0))
2||wjllon/ VI — K2 .

<
This shows that ¢~'/2 ( / [ / | wj) goes uniformly to 0, whence the result
o, t 1-c7t

relating to wy, ws .

Now we have to deal with wy, which from Theorem 1 writes wy = df + wy, with
wy = m*wy . Thus we can handle w{ as wy,ws above, to get :

= = b +0(1) x (Y 0)+Y t
Lo = Loy = L yourmons, %+ O x (T 02,00+ T (g om,1),
where Y (g,t) —sup{ ‘d@st (V1—-C?%E),2) < 1/\/1—k2}.

On the other hand we have by Proposition 2 (Case 3) and the proof of Lemma 6 :

/[ @8 =Cha’t + O(1) =cavT=C7t +0(1).
~[0,t

Therefore the asymptotic law of ¢! / . }wo under m&(dvy) is the same as the asymp-
0,

totic law of cav1l—C2? +t7! /

o 1—C2t}w0+0< (9,0) +Y(g,t )/t under m(dyg) .

Observe further that under m(dg) the process Y (g,t) is stationary, so that the last
term above asymptotically vanishes in probability. = Hence we have shown that the

asymptotic law of ¢! : ]wo under pf(dy) is the same as the asymptotic law of
~[0,t
eav1l—C? +t’1/ wy under p(dg).
gl0,v1-C21]
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Finally the result is valid jointly for the term with wy and the two others, since for each
at

the neglected contributions vanish in probability. It remains only to replace ¢ by JieT
o

The following theorem describes the asymptotic geodesic windings in G/I", under the
ergodic measures of Section 12.

Theorem 3  Let us consider a fized leaf L(C?,¢) (defined in Corollary 8) of G/T", with

1>0%> T +1a2 , endowed with the ergodic invariant probability measure uS of Definition 1.

Then the law under uS = uC(dy) of (t’lf wo , t’l/Z/ w1, t’1/2/ wz) converges
7[0,2] 710,t] 7[0,t]

ast — oo to the law of

(5(1@ i (2\/ 1a— 02) (2\/1— )1/2

A (

where the variables C,N*, N are independent, C is Cauchy with parameter §, and N'', N

are centred Gaussian with variance = / In(2)|*dzdy.

Note a clear difference between the Brownian and geodesic behaviors : mainly, here
(counter to the Brownian case) the df-part of the form wy is responsible for a non-negligible
asymptotic contribution. Moreover the parameter a now appears in the limit law.

This makes a noteworthy contrast with the hyperbolic case (see [EFLJ1], [EFLJ2|, [F2]).

This difference appears in Lemma 7 above, whereas once the df-part has been moved
away, the remaining asymptotic law is essentially the same as the Brownian one, given
by Theorem 2. So that our remaining task will be below mainly to compare on JH? the
geodesic paths to the Brownian paths, somewhat in the spirit of the methods already
employed in [EFLJ1], [ELJ], [F2], [LJ2], but in a more synthetic and simple way, taking
advantage of the fact that we have here, somewhat as in [LJ1], to deal only with the closed
forms wp, wf, w1, ws .

14 Proof of Theorem 3

The strategy for this proof is mainly to replace the geodesic paths by the Brownian
paths, as in [ELJ], [F2], [LJ1], in order to reduce Theorem 3 to Theorem 2. But we shall
here take advantage of the closedness of our forms wy, wy, wi, w2 , somewhat as in [LJ1], to
simplify sensibly the proofs of these articles. In particular, we do not any more have to use a
spectral gap, nor to rise to the stable foliation. Another change (and hopefully clarification)
with respect to these proofs is the use of a simultaneous disintegration of the Liouville and
the Wiener measures : we avowedly condition the Brownian motion (starting from a given
point z € JH?) to exit the hyperbolic plane at the same point as a given geodesic (starting
also from z). This point of view was more or less implicit in the preceding proofs, but did
not appear transparently.
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The asymptotic law we are looking for is given by the asymptotic behavior, as ¢t — oo
and for £ € IR3, of the following quantity :

Ly A 12
Eom [ eV (O] B e [ )
¢ G/r eXp[ (t o0 0V oot T Vi g w2)]ﬂ( 9

14.1 Conditionning by the end-points

Using the notation g = g(z,6) = g(y, z,6) and the expression of u = u(y,z,6) in the
Iwasawa coordinates (seen in Section 5), and setting wy = fow) , w := liwy + lows , We
have

2m dx dy
J¢ :/ / exp |v—1 t_l/ w"+t_1/2/ w)|dé .
t Jplo p[ ( o004 9(3,2,0)[0,¢] )} 472 o2

Then for (z =z ++/—1y, 0) € H? x (IR/2rZ), denote by (2¢) the geodesic defined
by g(z,0), and by IP? the law of the Brownian motion (Zf) of IH?, started from z and
conditionned to exit JH? at the positive end 2% of the geodesic of IH? defined by g(z,9).

Consider then the the hitting time by the coordinate process (Z;) of the stable horocycle
defined by (2% ,29), say h;. It is defined precisely by
hy = b2 ;= inf{s > 0| By (2,Z,) =€'}, where (z,2') = By(z,2') = p(2',u)/p(2,u)
denotes the Busemann function based at u € §JH?, p denoting the Poisson kernel.

The following lemma insures that the disintegration of the Liouville and Wiener mea-
sures is simultaneous, by conditionning with respect to the end-point 22 . A reason for
that is that the harmonic measures at OIH? are the sames for both, namely p(z,u)du .

27 do
Lemma 8 P, = / Pf o 1s the Wiener measure started from z, for any
0 s

z€ H?*/T', and P, := /]PZO du(z,0) is the stationary Wiener measure on IH?/T".

Proof (Z?) is by definition the h-process of the unconditionned Brownian motion, with
h(z) =p(z,2%), p(z,u) =y/|z — u|? still denoting the Poisson kernel.

Hence we have for any (z,6), any t and any F;-measurable positive functional Fj :
EJ[F) = E,[By (2,2Z;) X F].

The first identity of the lemma follows, since for any 2,60, Z we have

27
/0 B (2,Z)df = 2/1RBu(z, Z)p(z,u)du =2 /IRp(Z, u)du = 2m .

Integrating this first identity with respect to the normalized volume measure %% gives
immediately the second identity of the lemma. <
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14.2 From geodesics to Brownian paths

We perform here the substitution of the Brownian paths for the geodesics. Our first
aim is to establish the following.

Proposition 3  Ast — oo, Jf (defined just before Section 14.1) behaves as

K= / /2” E (exp \/_ /th e /th ) g drdy

42 y?

Our forms being closed, we have the following expression for J :

2m —1 Zhy Zhy 2 dz dy
[ ([ [ )« () 2

/D /0 i (exp [ t o+ sqrtt( W Zp, )] 472 y?
Applymg the isometry f, o of IH? which maps ¢(1,0) to g(z,6), we see that the law
of [ " w under P’ is the same as the law of / fiow , where e, :=+/—1 ¢ and Zj,

z
Zn,
is the point at which the Brownian motion (Z?) started from /—1 and conditionned to
exit at oo hits the horizontal horocycle having equation y = e’.

Now (Z)) is the h-process of the unconditionned Brownian motion, with h(z) =
p(z,00) = y, so that its infinitesimal generator is %y‘lA oy = %A + y0, , A denot-
ing the Laplacian of JH?, and then we have Z° =+/—1 e**/? ¢ /t eVsts2qw, | for two
independent standard real Brownian motions (w;) and (W;). "

As a consequence, using the boundedness of w, we have
et inf{s|ws+s/2=t}
/ frow = (’)(e‘t X ‘/ ew8+3/2dW5D .
z9 """ 0

The technical Brownian behavior we need now and after is given by the following.

_ ew8+s/2d

Lemma 9 Ast— oo, €

; inf{s | ws+s/2=t}
/ W, converges in law, and

0
inf{s|ws +s/2 =t} =2t +0(t?) almost surely, for any q €]1/2,1].

Proof Fix ¢ € IR, and look for a C? function f on IR, such that
t

R, = e @2 s (82)%ds £(19) be a martingale, with g0 = e®++t/2

(y7) having generator 3y°d; + yd, , we have by It6’s formula

R, = f(1) + mart + § /Ot e @RIV o (402 5 [£7(40) +2(40) 7 ' (82) — A F(uD)]ds

28



whence the equation :  f"(y) + 2y~ f'(y) — A f(y) = 0. Setting fi(y) = /yf(y), this
gives  f'(y)+y ' fi(y)—(c2+(2y)~?) fi(y) = 0. Since f; must be bounded near 0, we have,

(cy)?*

up to some multiplicative constant :  f(y) = (cy)’l/zfl/z(cy) => i ,
k>0 222 KID(2k + 2)

where I, denotes the usual modified Bessel function.

The optional sampling theorem then gives

e (VT e [ et < e (5 [ tras)] - £

Changing c into ce*

E[exp(\/—_l cet

,wegetast— o0

inf{s|ws+s/2= * -
/ £{s | wets/2 t}ew8+3/2dWs] R (Z I'(3/2)c )) 1 € L*(R, dc)

0 iso 22K (2K + i

which proves the first sentence of the lemma.
Finally, the second sentence of the lemma is straightforward from the following obser-
vation : setting again h; = h,?/j O —inf{s|w, +s/2 =t} = 1nf{s |42 = €'}, we have
t =log ygt = 2hy + wp, = $hy + o((he)?) .

ZH
As a consequence of this lemma and of the above, we see that ¢~'/2 / "W goes to 0 in
Zn,

IP? -probability. This proves half of Proposition 3.

z&
We have now to deal with the law of ¢~* / ‘ wy under IPY, or equivalently by the same

Zn,

reason as above for w, with the law of ¢ * / flowy . This cannot be further handled as

above, since the form wy is not bounded, Whereas w was. We only have now the following
estimate, by integrating along the horizontal horocycle y = ¢! containing ey, Z,‘Zt :

e ' i [ e ™
‘/ frowgl < ‘e’ / e lz] < ‘e* / evs
zp, 0 0

where again hy = hY " ° = inf{s| y? =e'} = inf{s|ws; + s/2 =t}.

i

s| X Sup {|f;,0 w6|(\/j1 +z)et

Fix any r > 0.

hy
Lemma 9 shows that the laws of e™* / Vs tS2qW, | ¢ large, are tight, and then provides
0

h
some R > 0 such that ]PHe_t/ t evs
0

We deduce from these last two estimate that

(A 1 [ e
t / Wo ] :PHt /0 fowo
th th

s| > R] < r for any large enough positive t.

iod

]Sr-l—l{

I
t*lsup{‘f:’ewak\/j +z)et ‘$‘§R}>T‘/R}
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and then by integrating against ¢ and using Lemma 8 :

20
IPNHt_1 /tht wy

> r} <r+ ,u[t_l sup{|w6|Hz(zf) lz| < R} > r/R]

— r+ uft~ sup {luplm.o|le] < B} > r/R],

where (H,, z € IR) denotes the positive horocycle flow. For the last equality, we used the
invariance of the Liouville measure pu under the geodesic flow.

By continuity of |wy|, sup {|w(’)\ Ho(2)||T] < R} is finite for every z, and thus we just proved :

Ppﬂt_l /sz wp

ht

> r] < 2r for large enough t.

Since in the last expression above for Jf (immediately after Proposition 3), we were
not only under the law IP?, but indeed under the law P, = [ IP? du(z, ), we have so far
proved Proposition 3.

14.3 End of the proof of Theorem 3

Section 7 allows to denote also by P, the stationary Wiener measure on G/I", since
the Brownian motion of G projects on the Brownian motion of JH? (and similarly for the
volume measures). Let us recall also that our forms wf,w;,ws come from H?/T" : they
are defined on G/T" and on IH?/T’ as well, in other words are invariant under pull back
by the canonical projection 7*. Hence the joint laws of their integrals along the Brownian
paths are the same, no matter whether they are understood on G/I" or on IH?/T".

Moreover we have seen in Section 7 also that the angular Brownian component 6,
is a mere one-dimensional Brownian motion. As a consequence, it is immediate that

1 / 0 df = (6, — 6,)/t goesto0 IP,-almost surely. Therefore we can replace in Theorem
gl0,t
2 the form wy by the form wj = wy — db.

These remarks show that the following is simply a second version of Theorem 2 (with
the notations of Section 14.1 and of Theorem 2).

Corollary 4  We have for any £ € IR® :

dm B (eXp [? /z[o,t] wo + % /Z[O,t] w]) = B (exp [V=T1 (€ + 6N + LA)]).

Now Lemma 9 asserts that the time-change h; = h 0 appearing in K{ of Proposition
3 satisfies h; = 2t + o(t) IP%-almost surely, uniformly with respect to (z,6). Indeed,

the law under IP? of this h; equals the law of the h; = hF ¥ in Lemma 9. So that with
arbitrary large probability we can write h; = 2t + o(t) with a uniform deterministic o(t) .
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This allows to replace t by h; in the formula of Corollary 4 above, and likewise to
insure that

lim sup ‘]E‘ exp / / - K fl

t—o00

=0,

with ¢ := (y/2,41/v/2,€5/v/2). Therefore using Corollary 4 and Proposition 3 we have
proved that

lim Jf = B (exp [V=T (26C + V2 LN +V2607)]) .

This concludes the proof, since by Lemma 7 and by the very definition of Jf (just
before Section 14.1) this formula is equivalent to Theorem 3.
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