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Abstract

The cross sections of e+e− annihilation into hadrons were measured
with CMD-2 detector at VEPP-2M collider in the energy range from
0.37 to 1.39 GeV with the systematic uncertainty about 0.6%. Monte
Carlo Generator with Photon Jets (MCGPJ) was created to simulate
Bhabha scattering events, production of two charged pions (kaons) and
muons. Radiative corrections (RC) in the first order of α are taken into
account exactly. By means of structure function formalism the leading
logarithmic contributions with photon jets emission in collinear region
are calculated in higher orders. Changes in kinematics due to collinear
jets emission are preserved. The theoretical cross sections accuracy
with RC is estimated to be better than ∼ 0.2%. The numerous tests
of the program, comparison with other MC generators and CMD-2
experimental data are presented.
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1 Introduction
Experimental studies of e+e− annihilation into hadrons at low energies are
very important in various problems of particle physics. The recent measure-
ment of the muon anomalous magnetic moment

aµ = (g − 2)µ/2

at BNL [1] led to a new world average, differing by 2.6 standard deviation
from its theoretical evaluation [3]. One of the main ingredients in the the-
oretical prediction for aµ is the hadronic vacuum polarization contribution
related via a dispersion integral with the cross section of e+e− annihilation
into hadrons. The ratio

R(s) = σ(e+e− → hadrons)/σ(e+e− → µ+µ−)

is dominated by the e+e− → π+π− channel at low energies. In the case
of aµ the energy range covered by the VEPP-2M collider gives the major
contribution both to the hadronic vacuum polarization contribution itself
and to its uncertainty [2].

This uncertainty is mainly driven by the systematic and statistical errors
of the experimental values of R(s) which one has to use as an input to the
integral with the proper kernel function [4]:

ahad
µ =

(
αmµ

3π

)2
∞∫

4m2
π

R(s)K(s)
s2

ds.

As for high energy region,
√
s > 10 GeV, this integral can be evaluated

within the perturbative QCD framework. A numerical value of this integral
approximately is equal to ∼ 70 ppm [3].

The aim of the new BNL experiment [5] is to measure the muon anomalous
magnetic moment with the relative accuracy ∼ 0.25 ppm in order to improve
the previous result [1] by a factor of two. To calculate with the same accuracy
the hadronic contribution to the value ahad

µ , the required theoretical precision
of the cross sections with radiative corrections (RC) has to be achieved with
the accuracy better than 0.3% (70ppm ×0.3% ∼ 0.2 ppm).
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The detection efficiency, background conditions, kinematic distributions
differ for specific e+e− annihilation modes. Therefore different selection cri-
teria are required to extract events from the raw data. So the expressions
for the cross sections with RC must have a completely differential form with
respect to the kinematic variables. In this case the influence of the selec-
tion criteria as well as the detector resolution and trigger efficiency can be
naturally incorporated in MC generator.

In this paper we describe the MCGPJ generator which simulates processes
e+e− → e+e−, µ+µ−, π+π−, K+K− and KLKS . The accuracy of the
formulae for the cross sections is estimated to be about 0.2% [6, 7]. As it will
be shown below this precision mainly determines the systematic error of the
integrated luminosity as well as the systematic error of the hadronic cross
sections.

The vacuum polarization effects in the virtual photon propagator are
treated as in Ref [6] for the lepton channels. These effects are not included in
RC for the hadronic modes according to the generally accepted agreement [8].
In this case the cross section value at a resonance peak directly determines
the leptonic width.

The radiatively corrected cross sections for annihilation channels with
accuracy about 0.1% were obtained in [9]. Unfortunately, expressions for
these cross sections do not contain the angular distributions for the emitted
photons and, as a result, it is not possible to reconstruct the kinematics of
final particles correctly. The differential cross sections were derived in [10],
but their relative accuracy is about 1%, since only O(α) corrections were
taken into account.

The considerable efforts were devoted to elucidate the theoretical under-
standing of the cross section accuracy with RC, especially for the case of low
energy e+e− and π+π− pairs production. The work [6] is based in part on a
combination of the approaches of the two last papers mentioned above. To
achieve the accuracy 0.2% higher order corrections were taken into account
by means of the Structure Function (SF) formalism [9]. It involves a convo-
lution of the shifted Born cross section with the electron (positron) Structure
Function - D(x, s). SF describes the leading effects due to emission photon
jets in collinear region as well as e+e− pairs radiation off the incoming and
out coming electron and positron. These enhanced contributions are propor-
tional to (α/π)n lnn(s/m2

e), where n = 1, 2, ... and are referred to as leading
ones. Moreover, in the smoothed representations of the SF [9] a certain part
of the corrections is exponentiated and evaluated in all orders in α. The first
order non-leading terms proportional to (α/π) are embedded in RC exactly.
The next-to-leading terms of the second order, (α/π)2 ln(s/m2

e) ∼ 0.01%,
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are fortunately small and can be omitted, keeping in mind the present preci-
sion tag. The emission of one hard photon at large angles is described by a
differential formula, which allows to take into account specific experimental
conditions and cuts.

The MCGPJ code is the MC generator for Bhabha scattering events and
it is described in detail below. A generator for production of muons, pions,
charge and neutral kaons is also presented. The program has a modular
structure that simplifies the implementation of additional hadronic modes as
well as the replacement of matrix elements of the current cross sections by
a new one. The effects of the final state radiation (FSR) for the channels
µ+µ−, π+π−,K+K− have been incorporated into the program. The pions
were assumed to be point-like, and scalar QED was applied to calculate
virtual, soft and hard photon emission by charged pions (kaons).

2 Monte-Carlo generator for events Bhabha
scattering at large angles

The shifted Born cross section of the process

e−(z1p−) + e+(z2p+) → e−(p1) + e+(p2)

corrected by vacuum polarization factors in s and t channels, when initial
particles lose some energy by radiation of photon jets in collinear region, has
a well known form [6] in the center-of-mass system and reads as

dσ̃e+e−→e+e−
0 (z1, z2)

dΩ1
=

4z1z2α2

a2s̃

(
s̃2 + ũ2

2t̃2|1 − Π(t̃)|2 +
t̃2 + ũ2

2s̃2|1 − Π(s̃)|2

+�e
{
ũ2

s̃t̃

1
(1 − Π(s̃))(1 − Π(t̃))

})
, (1)

where z1 and z2 are the electron and positron reduced energies after photon
jets radiation (z1,2 = ε1,2/εbeam), Π(s̃) and Π(t̃) - vacuum polarization op-
erators in the virtual photon propagators in s and t channels, respectively.
The Mandelstam variables in the Lab and c.m.s. are defined as usual:

s = 2p−p+, t = −2p−p1, u = −2p−p2,

s̃ = sz1z2, t̃ = −sz1Y1
1 − c1

2
, ũ = −sz2Y1

1 + c1
2

,

where c1 = cos θ1, θ1 is a polar angle between direction of the electron mo-
tion and the electron beam direction, Y1 and Y2 are the reduced energies of
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final particles. The energy-momentum conservation laws allow to find these
energies and the positron polar angle θ2:
z1 + z2 = Y1 + Y2 is the energy conservation law,
z1−z2 = Y1 cos θ1+Y2 cos θ2 is the momentum conservation law along Z-axis,
Y1 sin θ1 = Y2 sin θ2 is the momentum conservation law in the plane perpen-
dicular to the Z-axis. From these equations one can find

Y1 =
2z1z2
a

, Y2 =
(z2

1 + z2
2) − (z2

1 − z2
2)c1

a
,

c2 =
(z2

1 − z2
2) − (z2

1 + z2
2)c1

(z2
1 + z2

2) − (z2
1 − z2

2)c1
, where a = z1 + z2 − (z1 − z2)c1. (2)

In order to calculate the cross section using simulated events, the crucial
point is to construct the final particles kinematics as close as possible to the
real events when RC are embedded in the MC generator. The expression for
the differentional cross section with one hard photon emission in the reaction,

e−(p−) + e+(p+) → e−(p1) + e+(p2) + γ(k),

was obtained in Ref. [10] (see references therein) and reads

dσhard =
α3

2π2s
Re+e−→e+e−γdΓ, (3)

where dΓ is a phase-space volume of the three final particles:

dΓ =
d3p1

ε1

d3p2

ε2

d3k

ω
δ(4)(p− + p+ − p1 − p2 − k), (4)

where ε1, ε2, and ω are the energies of the final state electron, positron and
photon, respectively; δ-function provides the energy-momentum conserva-
tion.

The expression for the Re+e−→e+e−γ dealing with vacuum polarization
effects in photon propagators was derived in paper [6] and it is given by:

Re+e−→e+e−γ =
(WT )Π

4
(5)

−m2
e

χ′
+
2

(
s2 + (s+ t)2

2t2(1 − Π(t))2
+

t2 + (s+ t)2

2s2|1 − Π(s)|2 + �e
{

(s+ t)2

st(1 − Π(s))(1 − Π(t))

})

−m2
e

χ′−2

(
s2 + (s+ t1)2

2t21(1 − Π(t1))2
+
t21 + (s+ t1)2

2s2|1 − Π(s)|2 + �e
{

(s+ t1)2

st1(1 − Π(s))(1 − Π(t1))

})

6



−m
2
e

χ2
+

(
s21 + (s1 + t)2

2t2(1 − Π(t))2
+

t2 + (s1 + t)2

2s21|1 − Π(s1)|2 + �e
{

(s1 + t)2

s1t(1 − Π(s1))(1 − Π(t))

})

−m
2
e

χ2−

(
s21 + (s1 + t1)2

2t21(1 − Π(t1))2
+

t21 + (s1 + t1)2

2s21|1 − Π(s1)|2 + �e
{

(s1 + t1)2

s1t1(1 − Π(s1))(1 − Π(t1))

})
,

where the invariants and χ±, χ′
± are defined as: s = 2p−p+, s1 = 2p1p2,

t = −2p−p1, t1 = −2p+p2, χ± = kp±, χ′
± = kp1,2. (WT )Π describes the

process with one hard photon emission outside the collinear region [6] and
reads

(WT )Π =
SS

|1 − Π(s)|2sχ′−χ′
+

+
S1S1

|1 − Π(s1)|2s1χ−χ+
− TT

|1 − Π(t)|2tχ+χ′
+

− T1T1

|1 − Π(t1)|2t1χ−χ′−
+ �e

[
TT1

(1 − Π(t))(1 − Π(t1))tt1χ−χ′−χ+χ′
+

− SS1

(1 − Π(s))(1 − Π(s1))∗ss1χ−χ′−χ+χ′
+

+
TS

(1 − Π(t))(1 − Π(s))tsχ′−χ+χ′
+

+
T1S1

(1 − Π(t1))(1 − Π(s1))t1s1χ−χ′−χ+
− T1S

(1 − Π(t1))(1 − Π(s))t1sχ−χ′−χ′
+

− TS1

(1 − Π(t̃))(1 − Π(s̃1))ts1χ−χ+χ′
+

]
, (6)

where the following notations are used:

SS = S1S1 = t2 + t21 + u2 + u2
1,

TT = T1T1 = s2 + s21 + u2 + u2
1,

SS1 = (t2 + t21 + u2 + u2
1) × (tχ+χ

′
+ + t1χ−χ′

− − uχ+χ
′
− − u1χ−χ′

+),
TT1 = (s2 + s21 + u2 + u2

1) × (uχ+χ
′
− + u1χ−χ′

+ + sχ′
−χ

′
+ + s1χ−χ+),

TS = −1
2
(u2 + u2

1)(s(t+ s1) + t(s+ t1) − uu1),

TS1 = −1
2
(u2 + u2

1)(t(s1 + t1) + s1(s+ t) − uu1),

T1S =
1
2
(u2 + u2

1)(t1(s+ t) + s(s1 + t1) − uu1),

T1S1 =
1
2
(u2 + u2

1)(s1(s+ t1) + t1(s1 + t) − uu1). (7)

The main contribution to the cross section with photon radiation comes
from the collinear region where the cross section exhibits a very steep be-
havior. Therefore it is necessary to consider it carefully as it was done in
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Ref. [11]. The collinear region is a part of the angular phase-space with four
narrow cones surrounding the directions of motion of the initial and final
charged particles. The emitted photon should be inside these cones with an
open angle 2θ0. The angle θ0 should obey the restrictions, 1/γ � θ0 � 1
(γ = εbeam/me). It serves as an auxiliary parameter, but in certain situation
it can be related with the experimental angular resolution of the detector.
Usually its value is taken about ∼ 1/

√
γ.

The cross section integrated inside these narrow cones takes the form [6]:

dσee→ee+γ
coll

dΩ1
=
α

π

1∫
∆

dx
x

{
2

dσ̃0(1, 1)
dΩ1

[(
z +

x2

2

) (
L− 1 + ln

θ20z
2

4

)
+
x2

2

]

+
[
dσ̃0(z, 1)

dΩ1
+

dσ̃0(1, z)
dΩ1

] [(
z +

x2

2

)(
L− 1 + ln

θ20
4

)
+
x2

2

]}
, (8)

where L = ln(s/m2
e), z = 1−x and the shifted Born cross section is defined in

Eq. (1). The auxiliary parameter ∆ =∆ε/ε (∆ � 1) serves as a separator of
hard and soft photons, where ε is the beam energy. The terms proportional
to (α/π)(L − 1) are contained in SF [9] and therefore should be removed
from this expression. The remaining four terms can be interpreted as the
four so-called compensators. One can see below the remarkable phenomena
- these compensators provide independence of the total cross section with
respect to the auxiliary parameter θ0 when they are summed with the last
term in Eq. (9). It allows to superpose exactly the cross section with one
hard photon inside and outside narrow cones.

The formalism dealing with the SF approach provides the essential ac-
curacy improvement of the Bhabha cross section calculation by taken into
account the radiation of photon jets in collinear regions. Let us enumerate
these improvements:

• the photon jets radiation (enhanced contributions) is taken into account
by means SF formalism;

• to combine the cross sections with radiation of one hard photon inside
and outside narrow cones the four compensators are embedded into the
master formula (Eq. 9);

• the shifted Born cross section contributes to the total one according to
the SF weights in (Eq. 9);

• the vacuum polarization effects are inserted in all photon propagators
exactly;
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• the expression for one hard photon emission is decomposed into three
parts which represents initial and final state radiation as well as their
interference;

• the non-leading contribution of the first order of α, proportional to the
Born cross section is taken into account by so-called K-factor.

The master formula, discribing e+e− production can be found in paper [6]
and it is given by

dσe+e−→e+e−(nγ)

dΩ1
=

1∫
0

dx1

1∫
0

dx2

1∫
0

dx3

1∫
0

dx4
dσ̃0(z1, z2)

dΩ1

×D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)
(
1 +

α

π
K̃SV

)
Θ(cuts)

+
α

π

1∫
∆

dx1

x1

[(
z1 +

x2
1

2
)
ln
θ20
4

+
x2

1

2

]
dσ̃0(z1, 1)

dΩ1
Θ(cuts)

+
α

π

1∫
∆

dx2

x2

[(
z2 +

x2
2

2
)
ln
θ20
4

+
x2

2

2

]
dσ̃0(1, z2)

dΩ1
Θ(cuts)

+
α

π

1∫
∆

dx3

x3

[(
z3 +

x2
3

2
)
ln
θ20z

2
3

4
+
x2

3

2

]
dσ̃0(1, 1)

dΩ1
Θ(cuts)

+
α

π

1∫
∆

dx4

x4

[(
z4 +

x2
4

2
)
ln
θ20z

2
4

4
+
x2

4

2

]
dσ̃0(1, 1)

dΩ1
Θ(cuts)

+
4α
π

dσ̃0(1, 1)
dΩ1

ln
u

t
ln ∆ +

α3

2π2s

∫
k0>∆ε
θγ >θ0

(WT )Π
4

dΓ
dΩ1

Θ(cuts), (9)

where x1,2.3,4 are the relative energies emitted photon jets along motion of
the initial and final particles; z1,2,3,4 = 1 − x1,2,3,4 are the energy fractions
of the initial and final particles after photon jets radiation; Θ(cuts) is a Θ-
function equal to 1 or 0 if the kinematics variables meet the demands or not
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selection criteria (cuts); K̃SV (θ̃1) is defined in Ref. [10, 6] and it is:

K̃SV (θ̃1) = −1 − 2Li2(sin2 θ̃1
2

) + 2Li2(cos2
θ̃1
2

) +
1

(3 + c̃21)2
·

[
π2

3
(2c̃41 − 3c̃31 − 15c̃1) + 2(2c̃41 − 3c̃31 + 9c̃21 + 3c̃1 + 21) ln2(sin

θ̃1
2

)

−4(c̃41 + c̃21 − 2c̃1) ln2(cos
θ̃1
2

) − 4(c̃31 + 4c̃21 + 5c̃1 + 6) ln2(tan
θ̃1
2

) +

2(c̃31 − 3c̃21 + 7c̃1 − 5) ln(cos
θ̃1
2

) + 2(3c̃31 + 9c̃21 + 5c̃1 + 31) ln(sin
θ̃1
2

)
]
,

where electron scattering angle should be taken in c.m.s. The cosine of this
angle according to Lorenz transformation is equal to:

c̃1 = [−(z1 − z2) + (z1 + z2)c1]/a.

The integration limits in each integral of the first term in Eq. (9) were
divided in two parts from 0 to ∆ and from ∆ to the maximal jet energy. As a
result, the four-fold integral splits into sixteen separate parts. Those of them
with one photon jet radiation are merged in a proper way with compensators
in the master formula.

The first contribution takes into account the effects due to soft and virtual
radiative corrections and it is given by

dσe+e−→e+e−(nγ)
1

dΩ1
=

∆∫
0

∆∫
0

∆∫
0

∆∫
0

dx1dx2dx3dx4D(z1, s)D(z2, s)D(z3, s̃)

×D(z4, s̃)
(
1 +

α

π
K̃SV

)dσ̃0(z1, z2)
dΩ1

− 4α
π

ln
(
u

t

)
ln ∆

dσ̃0(1, 1)
dΩ1

. (10)

The photon jets emitted by each charged particles can have energy up to ∆ε.
This part also contains the contribution due to production of virtual and soft
real e+e− pairs if 2me < ∆ε.

The next four terms represent contribution to the cross section with emis-
sion of one hard jet along motion of any charged particles, supplied with the
virtual and soft leading logarithmic corrections of the remaining legs. The
relevant compensators are included. The jet energy is greater than ∆ε and
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its maximal value is defined by energy-momentum conservation.

dσe+e−→e+e−+nγ
2

dΩ1
=

1∫
∆

∆∫
0

∆∫
0

∆∫
0

dx1dx2dx3dx4D(z2, s)D(z3, s̃)D(z4, s̃)

×
[
D(z1, s)

(
1 +

α

π
K̃SV

)
+
α

π

1
x1

((
z1 +

x2
1

2
)
ln
θ20
4

+
x2

1

2

)]

×dσ̃0(z1, z2)
dΩ1

Θ(cuts), (11)

dσe+e−→e+e−+nγ
3

dΩ1
=

∆∫
0

1∫
∆

∆∫
0

∆∫
0

dx1dx2dx3dx4D(z1, s)D(z3, s̃)D(z4, s̃)

×
[
D(z2, s)

(
1 +

α

π
K̃SV

)
+
α

π

1
x2

((
z2 +

x2
2

2
)
ln
θ20
4

+
x2

2

2

)]

×dσ̃0(z1, z2)
dΩ1

Θ(cuts), (12)

dσe+e−→e+e−+nγ
4

dΩ1
=

∆∫
0

∆∫
0

1∫
∆

∆∫
0

dx1dx2dx3dx4D(z1, s)D(z2, s)D(z4, s̃)

×
[
D(z3, s̃)

(
1 +

α

π
K̃SV

)
+
α

π

1
x3

((
z3 +

x2
3

2
)
ln
θ20z

2
3

4
+
x2

3

2

)]

×dσ̃0(z1, z2)
dΩ1

Θ(cuts), (13)

dσe+e−→e+e−+nγ
5

dΩ1
=

∆∫
0

∆∫
0

∆∫
0

1∫
∆

dx1dx2dx3dx4D(z1, s)D(z2, s)D(z3, s̃)

×
[
D(z4, s̃)

(
1 +

α

π
K̃SV

)
+
α

π

1
x4

((
z4 +

x2
4

2
)
ln
θ20z

2
4

4
+
x2

4

2

)]

×dσ̃0(z1, z2)
dΩ1

Θ(cuts). (14)

The next six terms represent the contribution to the cross section with
emission of two jets along momenta of any two charged particles. The both

11



jet energies are greater than ∆ε and their maximal values are defined by the
energy-momentum conservation.

dσe+e−→e+e−+nγ
6

dΩ1
=

1∫
∆

1∫
∆

∆∫
0

∆∫
0

dx1dx2dx3dx4D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)

×dσ̃0(z1, z2)
dΩ1

(
1 +

α

π
K̃SV

)
Θ(cuts), (15)

dσe+e−→e+e−+nγ
7

dΩ1
=

1∫
∆

∆∫
0

1∫
∆

∆∫
0

dx1dx2dx3dx4D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)

×dσ̃0(z1, z2)
dΩ1

(
1 +

α

π
K̃SV

)
Θ(cuts), (16)

dσe+e−→e+e−+nγ
8

dΩ1
=

1∫
∆

∆∫
0

∆∫
0

1∫
∆

dx1dx2dx3dx4D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)

×dσ̃0(z1, z2)
dΩ1

(
1 +

α

π
K̃SV

)
Θ(cuts), (17)

dσe+e−→e+e−+nγ
9

dΩ1
=

∆∫
0

1∫
∆

1∫
∆

∆∫
0

dx1dx2dx3dx4D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)

×dσ̃0(z1, z2)
dΩ1

(
1 +

α

π
K̃SV

)
Θ(cuts), (18)

dσe+e−→e+e−+nγ
10

dΩ1
=

∆∫
0

1∫
∆

∆∫
0

1∫
∆

dx1dx2dx3dx4D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)

×dσ̃0(z1, z2)
dΩ1

(
1 +

α

π
K̃SV

)
Θ(cuts), (19)

dσe+e−→e+e−+nγ
11

dΩ1
=

∆∫
0

∆∫
0

1∫
∆

1∫
∆

dx1dx2dx3dx4D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)

×dσ̃0(z1, z2)
dΩ1

(
1 +

α

π
K̃SV

)
Θ(cuts). (20)
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The following four terms represent contribution to the cross section with
emission of three jets along momenta of any three charged particles. The jet
energies are greater than ∆ε and their maximal values are defined again by
the energy-momentum conservation.

dσe+e−→e+e−+nγ
12

dΩ1
=

1∫
∆

1∫
∆

1∫
∆

∆∫
0

dx1dx2dx3dx4D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)

×dσ̃0(z1, z2)
dΩ1

(
1 +

α

π
K̃SV

)
Θ(cuts), (21)

dσe+e−→e+e−+nγ
13

dΩ1
=

1∫
∆

1∫
∆

∆∫
0

1∫
∆

dx1dx2dx3dx4D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)

×dσ̃0(z1, z2)
dΩ1

(
1 +

α

π
K̃SV

)
Θ(cuts), (22)

dσe+e−→e+e−+nγ
14

dΩ1
=

1∫
∆

∆∫
0

1∫
∆

1∫
∆

dx1dx2dx3dx4D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)

×dσ̃0(z1, z2)
dΩ1

(
1 +

α

π
K̃SV

)
Θ(cuts), (23)

dσe+e−→e+e−+nγ
15

dΩ1
=

∆∫
0

1∫
∆

1∫
∆

1∫
∆

dx1dx2dx3dx4D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)

×dσ̃0(z1, z2)
dΩ1

(
1 +

α

π
K̃SV

)
Θ(cuts). (24)

The cross section with the emission of four jets along the momenta of
each initial and final particles is written below,

dσe+e−→e+e−+nγ
16

dΩ1
=

1∫
∆

1∫
∆

1∫
∆

1∫
∆

dx1dx2dx3dx4D(z1, s)D(z2, s)D(z3, s̃)D(z4, s̃)

×dσ̃0(z1, z2)
dΩ1

(
1 +

α

π
K̃SV

)
Θ(cuts). (25)
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The cross section with one hard photon emission outside the collinear
region reads

dσe+e−→e+e−+γ
17

dΩ1
=

α3

2π2s

∫
k0>∆ε
θγ >θ0

(WT )Π
4

dΓ
dΩ1

Θ(cuts), (26)

where the phase-space volume can be represented as

dΓ
dΩ1

=
sx1xdxdΩγ

8(1 − x sin2 ψ/2)
, (27)

where ψ is the angle between momenta directions of the photon and final
electron. The energy-momentum conservation laws allow to find the final
particle energies and positron polar angle θ2 if we assume that the electron
and photon directions are known with photon energy:

ε1 = ε
1 − x

1 − x sin2 ψ/2
; ε2 = ε

cos2 ψ/2 + (1 − x)2 sin2 ψ/2
1 − x sin2 ψ/2

,

θ2 = arccos
(
−ε1c1 + ω cos θγ

ε2

)
. (28)

A particular value of ∆ε has to be chosen for the simulation. The soft
photon approximation requires ∆ε to be small. But a very small value of
∆ε could even produce unphysical negative cross sections for those terms
in the master formula which are merged with compensators. The particular
value of ∆ε chosen to perform the MC generation should therefore arise
from a compromise between these two requirements. As a result, the cutoff
energy ∆ε was chosen at ten electron masses to optimize the events simulation
efficiency (∆ε/ε ∼ 1%). All seventeen parts of the cross section show a
logarithmic ∆ε-dependence, whereas their sum does not depend on ∆ε as it
will be demonstrated below.

The calculation of cross section is performed by Monte-Carlo method.
Since the master formula depends very strongly on the some variables and to
increase the simulation efficiency the main singularities have been isolated.
Namely: photon energy and emission angle were generated according to func-
tions 1/ω(ε− ω) and 1/(1− β2

e cos2 θγ), respectively. The main contribution
to the Bhabha cross section comes from the t-channel and it was generated
by the function 1/(1 − cos θ1)2.

The following selection criteria are applied to the events kinematic to
calculate the cross section (the same as for CMD-2 collinear events):

14



• |∆θ| < 0.25 rad, where ∆θ = θ1 + θ2 − π,

• |∆φ| < 0.15 rad, where ∆φ = |φ1 − φ2| − π,

• 1.1 < θaver < π − 1.1, where θaver = (θ1 − θ2 + π)/2,

• p⊥1,2 > 90 MeV/c.

The body of the MCGPJ program consists of the two main cycles. At the
first cycle the majorants are defined, at the second cycle the cross sections
with the experimental selection criteria are determined. MCGPJ generator
simulates an event according to weights for each cross section and fills the
proper histograms, which can be compared with the experimental distribu-
tions.
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Figure 1: The dependence of cross section on the auxiliary parameter ∆ε.

The numerous tests have been performed for the c.m.s. energy of
900 MeV. The cross section dependence on the auxiliary parameter ∆ε is
shown in Fig. 1 after integration over the remaining kinematic variables. It
is seen that cross section variations are inside the claimed precision while ∆ε
changes by a factor of 104. The cross section variations with an auxiliary
parameter θ0 do not exceed ±0.1% level as it is seen in Fig. 2.

The contributions of different parts with the similar kinematics are
summed and their weights in the total cross section are presented below:
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Figure 2: The dependence of cross section on the auxiliary parameter θ0.

• ∆σ1 ∼ 55%: the Born cross section with virtual and soft radiative
corrections;

• ∆σ2 +∆σ3 +∆σ4 +∆σ5 ∼ 30%: relative contribution with one photon
jet;

• ∆σ6 + ∆σ7 + ∆σ8 + ∆σ9 + ∆σ10 + ∆σ11 ∼ 3%: with two jets;
• ∆σ12 + ∆σ13 + ∆σ14 + ∆σ15 ∼ 0.3%: with three jets;
• ∆σ16 ∼ 0.03%: with four jets;
• ∆σ17 ∼ 10%: relative contribution with one hard photon emitted at

large angles.

Comparison of the different kinematic distributions simulated by MCGPJ
generator and BHWIDE [12] was performed. BHWIDE generator is based
on formulae with RC the accuracy of which is about ∼ 0.5%. The event
distributions with the parameters θ1 + θ2 − π and |φ1 − φ2| − π are plotted
in Figs. 3, 4. Good agreement between both distributions can be seen while
∆θ and ∆φ vary in wide limits.
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Figure 3: The events distribution with acollinearity polar angle. The solid
line – MCGPJ, the dashed line – BHWIDE.
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Figure 4: The events distribution with acollinearity azimuthal angle. The
solid line – MCGPJ, the dashed line – BHWIDE.

17



The event distributions produced by both generators are presented in
Fig. 5 as a function of missing energy. As one can see the spectrum shape for
both distributions is close to each other except for the cutoff energy where
soft and hard photons are merged. A sizable bump is observed in this point.
The reason of origin this bump is slightly different dependence on the cutoff
energy of the compensators and of the cross section with one hard photon.
This fact produce a bump, but its contribution to the total cross section is
negligible for our selection criteria.

Missing energy, MeV
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Missing energy, MeV
0 5 10 15 20 25 30 35 40 45

10
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Figure 5: The events distribution with the total energy radiated by electrons
and positrons. The solid line – MCGPJ, the dashed line – BHWIDE.

The relative difference of the cross sections calculated by MCGPJ code
and BHWIDE with the default selection criteria is shown in Fig. 6. For
the VEPP-2M energy range the difference is less than 0.1%. The visible
systematic difference at 0.1% level near ρ-meson energy range is explained
by the different vacuum polarization parameterization used in MCGPJ code
and in BHWIDE.

The relative cross sections difference versus acollinearity angle is plotted
in Fig. 7. As one can see, the size and sign of the difference depend on the
particular choice of the angle ∆θ. The difference about of 0.5% for the angles
|∆θ| ∼ 0.05 rad arises from the fact that photons inside jets should have an
angular distribution, while in our code they are treated being exactly collinear
to the given charged particle. The difference of about 0.3% for the large angles
|∆θ| ∼ 1 rad due to the fact that BHWIDE code simulates one hard photon
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Figure 6: The relative cross sections difference calculated by MCGPJ code
and BHWIDE as a function of the c.m.s. energy.
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Figure 7: The relative difference between cross sections calculated by MCGPJ
code and BHWIDE versus the acollinearity angle |∆θ|.

only. It is worth noting that for the soft selection criteria MCGPJ code more
correctly describes the tails shape of the different kinematic distributions.
So, we can conclude the MCGPJ code is preferable when the soft cuts are
imposed to calculate the cross section.
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The crucial point to be considered is the estimate of the theoretical accu-
racy of this approach. In order to quantify a theoretical error, the indepen-
dent comparison has been performed with the generator based on Ref. [10],
where the first order corrections in α are treated exactly. It was found that
the relative difference of cross sections is more than 1% for small acollinearity
angles ∆θ < 0.1 rad (Fig. 8) and it is less than ∼ 0.2% for acollinearity angles
∼ 0.25 rad. From that it immediately follows that the radiation of two and
more photons (jets) in the collinear region contributes to the cross section
by amount ∼ 0.2% only. Therefore we can conclude that the theoretical ac-
curacy of the cross section with RC certainly is better than ∼ 0.2% for the
selection criteria mentioned above.
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Figure 8: The relative difference between cross sections calculated by MCGPJ
code and the generator based on Ref. [10] versus the acollinearity angle |∆θ|.

The EM-calorimeter of the CMD-2 detector allows to separate Bhabha
scattering events with a high confidence level. The dependence of the event
distributions on the acollinearity angles ∆θ and ∆φ is presented in Figs. 9, 10.
To increase the experimental statistics all data with energies greater than
1040 MeV are collected on these plots. The number of simulated events ex-
ceeds the number of the experimental events by two orders of magnitude. The
momentum and angular resolutions, interaction with the detector material
were added to the events kinematic parameters. The histograms were fitted
by two Gaussian functions. Their relative weights and widths were the free
parameters of the fit. Good agreement between experiment and simulation
is clearly seen in a large scale.
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Figure 9: The event distributions versus acollinearity angle ∆θ in the scat-
tering plane. Solid line - simulation, histogram - experiment. All data with
energy above 1040 MeV are collected on this plot.
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Figure 10: The event distributions versus acollinearity angle ∆φ in the az-
imuthal plane. Solid line - simulation, histogram - experiment. All data with
energy above 1040 MeV are collected on this plot.
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The agreement between experiment and simulation becomes significantly
worse when the MC generator based on paper [10] with O(α) corrections
is used. It can be seen in Fig. 11, Fig. 12 where two dimensional plots
are presented. The points on these plots correspond to the electron and
positron energies. Different population of events is observed far aside from
the area where semi-elastic events are concentrated. About ∼ 1% events
have correlated low energies and they are distributed predominantly along
the corridor which streches from right upper angle to the left bottom angle
of this plot. The appearance of these events due to simultaneous radiation of
two jets with close energies along or initial or final particles. The condition,
p⊥1,2 > 90 MeV/c, is very soft and only owing to this fact the integrated cross
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Figure 11: Two dimensional plot of
the simulated events (MCGPJ) is
shown. The points on this plot cor-
respond to the electron and positron
energies. The condition ∆θ <
0.25 rad can be recognized by a wide
border which looks like an arc. The
requirement on transverse momen-
tum, p⊥ > 250 MeV/c, cuts off about
∼ 1% events.
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Figure 12: Two dimensional plot of
the simulated events is shown. The
generator is based on Ref. [10]. The
points on this plot correspond to
the electron and positron energies.
The condition ∆θ < 0.25 rad cler-
arly seen by the arc of curve which
divedes the field of plot on two parts
(with and without events). The re-
quirement on transverse momentum,
p⊥ > 250 MeV/c, cuts off about
∼ 0.2% events.
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sections are equal to each other within ∼ 0.2%. If this condition changes
to the value, p⊥1,2 > 250 MeV/c, the relative difference increases up to ∼
1% as it is seen in Fig. 13, where this difference is presented as a function
of the transverse momentum p⊥1,2. For the large value p⊥1,2 > 350 MeV/c
the difference changes a sign and quickly grows up. The cross section with
photon jets becomes smaller than with one photon. This feature has a simple
explanation. The distribution width of the semi-elastic events on the first
plot is broader than for the second one due to many soft photons radiation
and, as a result, these events are smeared more broadly near the peak area.
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Figure 13: The difference between cross sections calculated with MCGPJ
code and Ref. [10] as a function of the cut imposed on the transverse momenta
of the final particles.

At the end of this section it is worth to stress that the QED radiative cor-
rections, coming from collinear region and proportional to (α/π) ln(s/m2

e),
are included by means of Structure Function formalism in several orders of
α1. The exact O(α) matrix element describing hard photon emission beyond
the collinear region is implemented in the master formula together with com-
pensators. One loop virtual corrections and due to soft photons emission are
treated in the first order of α exactly. The vacuum polarization effects are
inserted into photon propagators for all amplitudes describing this process.
The theoretical accuracy of this approach is estimated to be 0.2% for the soft
selection criteria.

1We can get a complete result for leading logarithmic RC up to the fifth order in α plus
exponentiation of a certain part of terms.
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3 Monte-Carlo generator for production
of muon pairs

The same approach was used to build the MC generator to simulate muon
pairs production in the reaction,

e−(z1p−) + e+(z2p+) → µ−(p1) + µ+(p2),

when the initial particles lose some energy by photon jets emission in the
collinear region. The shifted Born cross section dσ̃(z1, z2), modified by vac-
uum polarization effects in the photon propagator, according to Ref. [6] has
the form

dσ̃e+e−→µ+µ−
0 (z1, z2)

dΩ1
=
α2

4s
1

| 1 − Π(z1z2s) |2

×y1
[
z2
1(Y1 − y1c1)2 + z2

2(Y1 + y1c1)2 + 8z1z2m2
µ/s

]
z3
1z

3
2

[
z1 + z2 − (z1 − z2)c1Y1/y1

] , (29)

where y2
1,2 = Y 2

1,2 − 4m2
µ/s; x1,2 = ω1,2/ε are the relative energies of photon

jets; z1,2 = 1 − x1,2 are the relative energies of electron and positron; Y1,2 =
ε1,2/ε are the relative energies of muons; c1 = cos θ1, θ1 is the polar angle
of negative muon with respect to the electron beam direction. The energy-
momentum conservation laws,

z1 + z2 = Y1 + Y2, z1 − z2 = y1c1 + y2c2, y1
√

1 − c21 = y2
√

1 − c22,

allow to determine Y1, Y2 and positron polar angle θ2 (c2 = cos θ2):

Y1 =
2m2

µ

s

(z2 − z1)c1
z1z2 + [z2

1z
2
2 − (m2

µ/s)((z1 + z2)2 − (z1 − z2)2c21)]1/2

+
2z1z2

z1 + z2 − c1(z1 − z2)
, c2 =

z1 − z2 − y1c1
y2

(30)

The charge-even part of the cross section in the first order of α arises as
one-loop virtual and soft radiative corrections and according to Ref. [6] it is
convenient to present in the next form:

dσS+V
even

dΩ1
=

dσ̃e+e−→µ+µ−
0 (1, 1)

dΩ1

2α
π

(Ae +Aµ),

Ae = (L− 1) ln
∆ε
ε

+
3
4
(L− 1) +

π2

6
− 1

4
,

Aµ =
(

1 + β2

2β
ln

1 + β

1 − β
− 1

)
ln

∆ε
ε

+Kµ
even. (31)

24



The expression for the value Kµ
even was derived in papers [13, 6] and it

reads

Kµ
even = −1 + ρ

(
1 + β2

2β
− 1

2
+

1
4β

)
+ ln

1 + β

2

(
1
2β

+
1 + β2

β

)
(32)

− 1 − β2

2β
lβ

2 − β2(1 − c21)
+

1 + β2

2β

[
π2

6
+ 2Li2

(
1 − β

1 + β

)
+ lβ ln

1 + β

2β2

]
,

lβ = ln
1 + β

1 − β
, ρ = ln

s

m2
µ

, L = ln
s

m2
e

, Li2(x) ≡ −
x∫

0

dt
t

ln(1 − t).

The charge-odd part of the cross section comes from the interference of the
Born amplitude and box-type diagrams and with amplitudes describing soft
photon emission by the initial and final particles [13]. According to Ref. [6]
the corresponding expression is given by

dσS+V
odd

dΩ1
=

dσe+e−→µ+µ−
0 (1, 1)

dΩ1

2α
π

(
2 ln

∆ε
ε

ln
1 − βc1
1 + βc1

+Kµ
odd

)
, (33)

where

Kµ
odd =

1
2
l2− − L−(ρ+ l−) + Li2

(
1 − β2

2(1 − βc1)

)
+ Li2

(
β2(1 − c21)

1 + β2 − 2βc1

)

−
1−β2∫
0

dx
x
f(x)

(
1 − x(1 + β2 − 2βc1)

(1 − βc1)2

)− 1
2

+
1

2 − β2(1 − c21)

×
{
−1 − 2β2 + β2c21

1 + β2 − 2βc1
(ρ+ l−) − 1

4
(1 − β2)

[
l2− − 2L−(l− + ρ)

+2Li2
(

1 − β2

2(1 − βc1)

)]
+ βc1

[
− ρ

2β2
+

(
π2

12
+

1
4
ρ2

)(
1 − 1

β
− β

2
+

1
2β3

)

+
1
β

(−1 − β2

2
+

1
2β2

)
(
ρ ln

1 + β

2
− 2Li2

(
1 − β

2

)
− Li2

(
−1 − β

1 + β

))

−1
2
l2− + L−(ρ+ l−) − Li2

(
1 − β2

2(1 − βc1)

)]}
− (c1 → −c1), (34)

f(x) =
(

1√
1 − x

− 1
)

ln
√
x

2
− 1√

1 − x
ln

1 +
√

1 − x

2
,

l− = ln
1 − βc1

2
, L− = ln

(
1 − 1 − β2

2(1 − βc1)

)
.
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The muons cross section production with one hard photon emission was
studied in detail elsewhere [14, 15, 6]. This cross section in the differen-
tial form, keeping the relevant information about the kinematics of the final
particles, can be written according to [6]:

dσe+e−→µ+µ−γ
hard =

α3

2π2s2
Re+e−→µ+µ−γ

hard dΓ,

dΓ =
d3p1

ε1

d3p2

ε2

d3k

ω
δ(4)(p− + p+ − p1 − p2 − k)

=
sβ1dΩ1xdxdΩγ

4(2 − x(1 − cosψ/β1))
, (35)

where dΓ is a phase-space volume of the three particles in the final state,
β1 is a velocity of negative muon, δ-function provides the energy-momentum
conservation.

The quantity Re+e−→µ+µ−γ
hard consists of three terms and describes one hard

photon emission outside the narrow cones. It includes photon emission by
the initial and final particles as well as their interference:

Re+e−→µ+µ−γ
hard =

s

16(4πα)3
∑

spins

|M |2 = Ree +Reµ +Rµµ, (36)

Ree =
1

|1 − Π(s1)|2
[
C

s

χ−χ+
+
m2

µ

s21
∆s1s1

− m2
e

2χ2−

(t21 + u2
1 + 2m2

µs1)
s21

− m2
e

2χ2
+

(t2 + u2 + 2m2
µs1)

s21

]
,

Reµ = �e
1

(1 − Π(s1))(1 − Π(s))∗

×
[
C(

u

χ−χ′
+

+
u1

χ+χ′−
− t

χ−χ′−
− t1
χ+χ′

+

) +
m2

µ

ss1
∆ss1

]

Rµµ =
1

|1 − Π(s)|2
[

s1
χ′−χ′

+

C +
m2

µ

s2
∆ss

]
, C =

u2 + u2
1 + t2 + t21
4ss1

,
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∆s1s1 =
(t+ u)2 + (t1 + u1)2

2χ−χ+
,

∆ss = −u
2 + t21 + 2sm2

µ

2(χ′−)2
− u2

1 + t2 + 2sm2
µ

2(χ′
+)2

+

+
1

χ′−χ′
+

(
ss1 − s2 + tu+ t1u1 − 2sm2

µ

)
,

∆ss1 =
s+ s1

2

(
u

χ−χ′
+

+
u1

χ+χ′−
− t

χ−χ′−
− t1
χ+χ′

+

)

+
2(u− t1)
χ′−

+
2(u1 − t)
χ′

+

.

Mandelstam variables and new introduced quantities in these notations are
defined as:

s = 2p+p−, s1 = (p1 + p2)2, t = −2p−p1, t1 = −2p+p2,

u = −2p−p2, u1 = −2p+p1, χ± = p±k, χ′
± = p1,2k.

As well as for Bhabha scattering events the main contribution to the cross
section is connected with photons emission in the collinear region [11, 6].
The muon’s cross section integrated inside narrow cones around motion of
the initial particles is presented by two terms:

dσe+e−→µ+µ−γ
coll =

α

π
(L − 1)

1∫
∆

dx
1 + (1 − x)2

x

[
dσ̃0(1 − x, 1) + dσ̃0(1, 1 − x)

]

+
α

π

1∫
∆

dx
(
x+

1 + (1 − x)2

x
ln
θ20
4

)[
dσ̃0(1 − x, 1) + dσ̃0(1, 1 − x)

]
. (37)

The first term in this expression, proportional to (α/π)(L − 1), is taken
into account in D-functions. The remaining term is a so-called compensator.
These two compensators provide the cross section independence in Eq. (38)
with an auxiliary parameter θ0. Similar to Bhabha cross section the construc-
tion of the master formula describing the process of muon pairs production
reads
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dσe+e−→µ+µ−+nγ

dΩ1
=

=

1∫
0

1∫
0

dx1dx2D(z1, s)D(z2, s)
dσ̃0(z1, z2)

dΩ1

(
1 +

2α
π
K̃

)
Θ(cuts)

+
α

π

1∫
∆

dx1

x1

[(
z1 +

x2
1

2
)
ln
θ20
4

+
x2

1

2

]
dσ̃0(z1, 1)

dΩ1
Θ(cuts)

+
α

π

1∫
∆

dx2

x2

[(
z2 +

x2
2

2
)
ln
θ20
4

+
x2

2

2

]
dσ̃0(1, z2)

dΩ1
Θ(cuts)

+
α3

2π2s2

∫
k0>∆ε
θγ >θ0

Re+e−→µ+µ−γ
hard

dΓ
dΩ1

Θ(cuts)

+
2α
π

[
1 + β2

2β
ln

1 + β

1 − β
− 1 + 2 ln

1 − βc1
1 + βc1

]
ln(

∆ε
ε

) · dσ̃0(1, 1)
dΩ1

, (38)

where K̃ = π2/6 − 1/4 + Kµ
even(s̃, θ̃1) + Kµ

odd(s̃, θ̃1); θ̃1 is a negative muon
polar angle in center-of-mass system,

c̃1 =

√
z1z2 − Y 2

1 (1 − c21) − c21(1 − β2)
z1z2 − (1 − β2)

;

Θ(cuts) is a step-function equal to 1 or 0 if kinematic variables meet the
demands or not to selection criteria; condition, θγ > θ0, means that the
photon angle must be outside of the narrow cones with respect to the beam
axis.

Let us enumerate some essential improvements which are contained in the
master formula and which provide the cross section accuracy ∼ 0.2%:

• the cross section contains the enhanced contributions with photon jets
emission in the collinear region together with two compensators;

• two compensators are incorporated into master formula to exclude the
cross section dependence with the auxiliary parameter θ0;

• the cross section with one-loop virtual and soft corrections are taken
into account exactly;
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• the cross section with one hard photon emission outside the narrow
cones [6] contains all terms proportional to m2

µ/s;
• the vacuum polarization effects are inserted into photon propagators

for the all Feynman diagrams.

In order to build MC generator, simulating the process e+e− →
µ+µ−(nγ), the integration limits of the first term in Eq. (38) were divided
into two parts from 0 to ∆ε and from ∆ε to the maximal jet energy. As
a result, two-fold integral splits into four separate contributions. Those of
them describing one photon jet radiation are combined in a proper way with
compensators in the master formula as it was done for the events of Bhabha
scattering. The total cross section does not depend on the auxiliary parame-
ters ∆ε and θ0.

The first contribution includes the effects due to soft and virtual radiative
corrections and it is:

dσe+e−→µ+µ−(nγ)
1

dΩ1
=

∆∫
0

∆∫
0

dx1dx2D(z1, s)D(z2, s)
(
1 +

2α
π
K̃

)dσ̃0(z1, z2)
dΩ1

+
2α
π

[
1 + β2

2β
ln

1 + β

1 − β
− 1 + 2 ln

1 − βc1
1 + βc1

]
ln

∆ε
ε

dσ̃0(1, 1)
dΩ1

. (39)

The contribution of a single jet emission along the electron beam is given
by

dσe+e−→µ+µ−+nγ
2

dΩ1
=

1∫
∆

∆∫
0

dx1dx2D(z2, s)
[
D(z1, s)

(
1 +

2α
π
K̃

)

+
α

π

1
x1

((
z1 +

x2
1

2
)
ln
θ20
4

+
x2

1

2

)]
dσ̃0(z1, z2)

dΩ1
Θ(cuts), (40)

where the compensator is included to describe exactly the angular distribution
of one hard photon inside and outside of the narrow cones.

The analogous contribution with a hard jet along the incoming positron
reads

dσe+e−→µ+µ−+nγ
3

dΩ1
=

∆∫
0

1∫
∆

dx1dx2D(z1, s)
[
D(z2, s)

(
1 +

2α
π
K̃

)

+
α

π

1
x2

((
z2 +

x2
2

2
)
ln
θ20
4

+
x2

2

2

)]
dσ̃0(z1, z2)

dΩ1
Θ(cuts). (41)
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The cross section with emission of two hard jets along motion of the both
initial particles is presented below,

dσe+e−→µ+µ−+nγ
4

dΩ1
=

=

1∫
∆

1∫
∆

dx1dx2D(z1, s)D(z2, s)
(
1 +

2α
π
K̃

)dσ̃0(z1, z2)
dΩ1

Θ(cuts). (42)

The last part is the cross section with one hard photon emission outside
narrow cones and is given by

dσe+e−→µ+µ−+γ
5

dΩ1
=

α3

2π2s2

∫
k0>∆ε
θγ >θ0

Re+e−→µ+µ−γ
hard

dΓ
dΩ1

Θ(cuts). (43)

The numerical tests have been performed for the c.m.s. energy of
900 MeV. Figs. 14, 15 show the independence of the cross section with respect
to the auxiliary parameters ∆ε and θ0 in a broad range of their values. The
cross section deviations do not exceed ±0.1% when ∆ and θ0 change their
values more than four orders of magnitude.

Comparison with the KKMC [16] generator was performed. The theore-
tical accuracy of the formulae on which KKMC based on is about ∼ 0.1%.
The existing code in KKMC does not provide the correct description of the
vacuum polarization effects in photon propagator at low energies, so it was
switched off in both generators. The cutoff energy of the soft photons was
chosen to be 0.1 MeV. The relative difference between cross sections produced
by MCGPJ generator and KKMC in the VEPP-2M energy range is presented
in Fig. 16. Good agreement at the level of our precision ±0.2% is seen.

Comparison with the experimental data has been done too. The results
for the double ratio are presented in Fig. 17 for the low energy range, where
the CMD-2 detector resolution is enough to distinguish pions, muons and
electrons. The ratio of the number of selected muons to that of electrons
divided by the ratio of the theoretical cross sections, σ(ee → µµ)/σ(ee→ ee),
in average does not exceed 1.4 % with the statistical and systematic errors
about ∼ 1.4 % and ∼ 0.7 %, respectively. Unfortunately a scare experimental
statistics in this energy range does not allow to evaluate the comparisons with
a better accuracy.

30



, MeVε∆
10

-2
10

-1
1 10

C
ro

ss
 s

ec
tio

n,
 n

b

39.35

39.4

39.45

39.5

39.55

39.6

39.65

39.7

Figure 14: Dependence of the µ+µ− cross section on the auxiliary parameter
∆ε.
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4 Monte-Carlo generator for production of
pion pairs

The same ideas and technique were applied for the processes e+e− → π+π−,
K+K−, KSKL to build the MC generator with the RC considering pseudo-
scalar mesons as point-like objects. For the precise accounting of RC results
of Refs. [7, 9] were used. As it was described before the leading contributions,
which are proportional to (α/π)n lnn(s/m2

e), are taken into account by means
of SF formalism. The one loop virtual corrections and those due to the
emission of real soft photons as well as one hard photon emission outside the
collinear region are included in the first order of α exactly.

According to the paper [7] the shifted Born cross section is given by the
expression

dσ̃e+e−→π+π−
0 (z1, z2)

dΩ1
=

α2

4s
(Y 2

1 −m2
π/ε

2)3/2

z2
1z

2
2

(44)

× (1 − c21)|Fπ(sz1z2)|2
z1 + z2 + (z2 − z1)(1 −m2

π/(ε2Y 2
1 ))−1/2c1

,

where z1,2 are the energy fractions of the electron and positron after pho-
ton jets radiation in the collinear region, |Fπ(sz1z2)|2 is a pion form factor
squared, c1 = cos θ1, θ1 is a polar angle of the negative pion momentum with
respect to the direction of the electron beam. The energy fractions Y1,2 of
the final pions and a polar angle of the positive pion, θ2, can be found from
the following kinematic relations:

z1 + z2 = Y1 + Y2, z1 − z2 = y1c1 + y2c2, y1

√
1 − c21 = y2

√
1 − c22,

where y2
1,2 = Y 2

1,2 − 4m2
π/s. From these equations we can obtain:

Y1 =
2z1z2

z1 + z2 − c1(z1 − z2)

− 2m2
π

s
· (z1 − z2)c1
z1z2 +

√
z2
1z

2
2 − (m2

π/s)((z1 + z2)2 − (z1 − z2)2c21)
,

Y2 = z1 + z2 − Y1, c2 = −(z1 − z2 − y1c1)/y2. (45)

The formulae with charge-even and charge-odd parts of the cross sections
due to soft and virtual photons radiation [17, 18] were rewrited according to
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paper [7]. The charge-even part is convenient to present in the following way:

dσS+V
even

dΩ1
=

dσee→ππ
0 (1, 1)

dΩ1
· 2α
π

(Ae +Aπ), (46)

where Ae and Aπ are given by [7]

Ae = (L− 1) ln
∆ε
ε

+
3
4
(L − 1) +

π2

6
− 1

4
,

Aπ =
(

1 + β2

2β
ln

1 + β

1 − β
− 1

)
ln

∆ε
ε

+Kπ
even. (47)

The expression for the quantity Kπ
even can be found in [7, 18],

Kπ
even = −1 +

1 − β

2β
ρ+

2 + β2

β
ln

1 + β

2

+
1 + β2

2β

[
ρ+

π2

6
+ lβ ln

1 + β2

2β2
+ 2Li2

1 − β

1 + β

]
. (48)

The corresponding contribution to the charge-odd part is the interference
result of the Born amplitudes with the amplitudes describing box-type dia-
grams and soft photons emission by electrons and pions [19]. According to
paper [7] this expression can be presented in the following form:

dσS+V
odd

dΩ1
=

dσee→ππ
0 (1, 1)

dΩ1
· 2α
π

(
2 ln

∆ε
ε

ln
1 − βc1
1 + βc1

+Kπ
odd

)
, (49)

where Kπ
odd, in one’s turn, is equal to

Kπ
odd =

1
2
l2− − Li2

(
1 − 2βc1 + β2

2(1 − βc1)

)
+ Li2

(
β2(1 − c21)

1 − 2βc1 + β2

)
(50)

−
1−β2∫
0

dx
x
f(x)

(
1 − x(1 − 2βc1 + β2)

(1 − βc1)2

)− 1
2

+
1

2β2(1 − c21)

{[
1
2
l2− − (L + l−)L− + Li2

(
1 − β2

2(1 − βc1)

)]
(1 − β2)

+ (1 − βc1)
[
−l2− − 2Li2

(
1 − β2

2(1 − βc1)

)
+ 2(L+ l−)L−
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− (1 − β)2

2β

(
1
2
L2 +

π2

6

)
+

1 + β2

β

(
L ln

2
1 + β

− Li2
(
−1 − β

1 + β

)

+ 2Li2
(

1 − β

2

))]}
− (c1 → −c1),

f(x) =
(

1√
1 − x

− 1
)

ln
√
x

2
− 1√

1 − x
ln

1 +
√

1 − x

2
, (51)

l− = ln
1 − βc1

2
, L− = ln

(
1 − 1 − β2

2(1 − βc1)

)
.

The cross section of the pion pairs production with one hard photon emis-
sion in the reaction, e+e− → π+π−γ, was studied in [17]. In the differential
form preserving the complete kinematics of the final state particles, it is
convenient to write it according to Ref. [7]:

dσe+e−→π+π−γ
hard

dΩ1
=

α3

32π2s
Re+e−→π+π−γ

hard

dΓ
dΩ1

,

dΓ
dΩ1

=
∫

d3p1

ε1

d3p2

ε2

d3k

ω
δ(4)(p− + p+ − p1 − p2 − k)

=
sβ1xdxdΩγ

4(2 − x(1 − cosψ/β1))
, (52)

where dΓ is a phase space of the three particles in the final state, δ-function
provides the energy-momentum conservation low. Quantity Re+e−→π+π−γ

hard

consists of three terms which describe the initial state radiation, final state
radiation, and their interference:

Re+e−→π+π−γ
hard = Ree +Rππ +Reπ, (53)

Ree = |Fπ(s1)|2
{
A

4s
χ−χ+

− 8m2
e

s21

(
t1u1

χ2−
+
tu

χ2
+

)

+
8m2

em
2
π

s1

(
1
χ2−

+
1
χ2

+

)
+m2

π∆s1s1

}
,

Rππ = |Fπ(s)|2
{
A

4s1
χ′−χ′

+

− 8m2
π

s2

(
tu1

χ′
+
2

+
t1u

χ′−2

)
+m2

π∆ss

}
,

Reπ = �e(Fπ(s)F ∗
π (s1))

{
4A

(
u

χ−χ′
+

+
u1

χ+χ′−

− t

χ−χ′−
− t1
χ+χ′

+

)
+m2

π∆ss1

}
,
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A =
tu+ t1u1

ss1
, ∆s1s1 = − 4

s21

(t+ u)2 + (t1 + u1)2

χ+χ−
,

∆ss =
2m2

π(s− s1)2

s(χ′−χ′
+)2

+
8
s2

(tt1 + uu1 − s2 − ss1),

∆ss1 =
8
ss1

[
2(t1 − u) + u1 − t

χ′−
+

2(t− u1) + u− t1
χ′

+

+
u1 + t1 − s

2χ−

(
u

χ′
+

− t

χ′−

)
+
u+ t− s

2χ+

(
u1

χ′−
− t1
χ′

+

)]
.

The Mandelstam variables and χ±, χ′
± are defined as: s = 4ε2, s1 = 2p1p2,

t = −2p−p1, t1 = −2p+p2, u = −2p−p2, u1 = −2p+p1, χ± = kp± and
χ′
± = kp1,2.

The same approach (as for muons) was applied to construct the master
formula and to implement the compensators into it. When the compensators
are added the cross section dependence on the both auxiliary parameters θ0
and ∆ disappears. The final expression describing production of pion pairs
(master formula) reads

dσe+e−→π+π−(nγ)

dΩ1
=

=

1∫
0

1∫
0

dx1dx2D(z1, s)D(z2, s)
dσ̃0(z1, z2)

dΩ1

(
1 +

2α
π
K̃

)
Θ(cuts)

+
α

π

1∫
∆

dx1

x1

[(
z1 +

x2
1

2
)
ln
θ20
4

+
x2

1

2

]
dσ̃0(z1, 1)

dΩ1
Θ(cuts)

+
α

π

1∫
∆

dx2

x2

[(
z2 +

x2
2

2
)
ln
θ20
4

+
x2

2

2

]
dσ̃0(1, z2)

dΩ1
Θ(cuts)

+
α3

32π2s

∫
k0>∆ε
θγ >θ0

Re+e−→π+π−γ
hard

dΓ
dΩ1

Θ(cuts)

+
2α
π

[
1 + β2

2β
ln

1 + β

1 − β
− 1 + 2 ln

1 − βc1
1 + βc1

]
ln

∆ε
ε

· dσ̃0(1, 1)
dΩ1

, (54)

where K̃ = π2/6−1/4+Kπ
even(s̃, θ̃1)+Kπ

odd(s̃, θ̃1), θ̃1 is a negative pion polar
angle in center-of-mass system; Θ(cuts) is a theta-function with the kinematic
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restrictions applied to pions by selection criteria. The above formula consists
of the following parts:

• the cross section with emission of jets collinear to the the beam axis
with two compensators;

• the cross section with one hard photon emission outside the narrow
cones was derived in the first order of α exactly keeping the all terms
proportional to m2

π/s;
• the cross section with soft and virtual photon emission by the initial

and final particles;
• non-leading terms proportional to the Born cross section are taken into

account by means so-call K-factor.

To simulate the events of the process e+e− → π+π−+nγ and to calculate
the cross section numerically, the integration limits with energy in the first
term in Eq. (54) were again divided in two parts from 0 to ∆ε and from
∆ε to the maximal jet energy. As a result, the two-fold integral splits into
four separate integrals. Those of them which describe one jet radiation are
combined by a proper way with the compensators in the master formula. The
contribution due to soft and virtual corrections together with the Born cross
section reads

dσe+e−→π+π−(nγ)
1

dΩ1
=

∆∫
0

∆∫
0

dx1dx2D(z1, s)D(z2, s)
(
1 +

2α
π
K̃

)dσ̃0(z1, z2)
dΩ1

+
2α
π

[
1 + β2

2β
ln

1 + β

1 − β
− 1 + 2 ln

1 − βc1
1 + βc1

]
ln

∆ε
ε

dσ̃0(1, 1)
dΩ1

. (55)

The cross section with a hard jet emission along the electron momentum
(with the condition that one hard photon is inside the narrow cone) reads

dσe+e−→π+π−+nγ
2

dΩ1
=

1∫
∆

∆∫
0

dx1dx2D(z2, s)
[
D(z1, s)

(
1 +

2α
π
K̃

)

+
α

π

1
x1

((
z1 +

x2
1

2
)
ln
θ20
4

+
x2

1

2

)]
dσ̃0(z1, z2)

dΩ1
Θ(cuts). (56)

The analogous contribution with one jet along the positron momentum is
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given by

dσe+e−→π+π−+nγ
3

dΩ1
=

∆∫
0

1∫
∆

dx1dx2D(z1, s)
[
D(z2, s)

(
1 +

2α
π
K̃

)

+
α

π

1
x2

((
z2 +

x2
2

2
)
ln
θ20
4

+
x2

2

2

)]
dσ̃0(z1, z2)

dΩ1
Θ(cuts). (57)

The cross section with two jets along motion of the initial particles is
described by

dσe+e−→π+π−+nγ
4

dΩ1
=

=

1∫
∆

1∫
∆

dx1dx2D(z1, s)D(z2, s)
(
1 +

2α
π
K̃

)dσ̃0(z1, z2)
dΩ1

Θ(cuts). (58)

Emission of a single hard photon outside the narrow cones is given by

dσe+e−→π+π−+γ
5

dΩ1
=

α3

32π2s

∫
k0>∆ε
θγ >θ0

Re+e−→π+π−γ
hard

dΓ
dΩ1

Θ(cuts). (59)

Numerical tests have been done for the c.m.s. energy of 900 MeV. Figs. 18,
19 show the cancellation of cross section dependence on the auxiliary parame-
ters ∆ε and θ0 in the broad range of its values. The cross section variations
are inside the corridor with the width about ∼ 0.1%.

A comparison with the BABAYAGA [20] generator was performed. The
theoretical accuracy of the formulae, used in BABAYAGA program, is about
1%. BABAYAGA code doesn’t include the photon emission by pions. There-
fore this term was removed from our code (just for comparisons). The differ-
ence of the cross sections calculated by MCGPJ generator and BABAYAGA
is shown in Fig. 20 with the same selection criteria as for events of Bhabha
scattering. A systematic shift between cross sections is seen at the ∼ 1% level
in conformity with the BABAYAGA code precision. The observable differ-
ence is explained by the different fit functions which are used for the cross
section approximation. The distributions produced by both generators have
very similar shapes as close as it was for muons with the precise KKMC event
generator. It can serve as an indirect confirmation that some constant term
was missed in formulae for the BABAYAGA code (it is only our assumption).
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Figure 18: Dependence of the π+π− cross section on the auxiliary parameter
∆ε.
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Figure 19: Dependence of the π+π− cross section on the auxiliary parameter
θ0.

The distributions with the average momentum of pion, muon and electron
pairs are presented in Fig. 21 at the c.m.s. energy of 390 MeV for experi-
mental and simulated events. The number of simulated events exceeds the
experimental one at least by a factor of one hundred. The momentum and
angle resolutions, decays in flight, interaction with the detector matter and
many other factors were smeared with the simulated events parameters to cre-
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Figure 20: The relative difference between cross sections calculated by
MCGPJ and BABAYAGA versus the c.m.s. energy.
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Figure 21: Distributions of pion, muon and electron pairs as a function of
average momentum. The left, middle and right peaks corespond to π/µ/e
events. The upper curve represents a common fit, bottom curve - background.

ate the events as close as possible the real ones. The histograms for each type
of particles were fitted by two Gaussian functions. Their relative weights and
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widths were free parameters under the fit. Good agreement between experi-
ment and simulation is seen. It follows that the assumption about point-like
pions is a reasonable approximation.

The enveloping curve, extracted from the fit, allows to describe the shape
of the all three histograms at the peaks as well as at the tails. It permits to
determine the number of events inside each histogram and to estimate the
number of muon and electron events under the pion peak and thereby to
extract the systematic error dealing with the procedure of events separation.

It is worth noting that the shape of the histogram tops of the simulated
events is not described well, if the MC generator, based on the formulae in
the first order in α, is used. The shape of the histogram tops is mainly
driven by the soft photon emission spectrum and the apparatus resolution.
The fit parameters are kept by the peaks shape where the main statistics are
collected. Thus the number of events in the tail area is defined by the shape
of the peaks. Hence, the approach with photon jets emission is absolutely
necessary.

The MC generator simulating production of charged kaons in the reaction,

e−(z1p−) + e+(z2p+) → K−(p1) +K+(p2),

is created in the same way as for pions. The pion mass mπ must be replaced
in the above expressions by the mass of charged kaon and the Coulomb inter-
action in the final state near the threshold production should be taken into
account by the common Sakharov-Zommerfeld factor [7]:

f(z) =
z

1 − exp(−z) − z/2, z =
2πα
v

v = 2

√
s− 4m2

K

s

(
1 +

s− 4m2
K

s

)−1

, (60)

where v is the relative velosity of kaons. The term z/2 is subtracted from
this factor since it is already included in the O(α) RC to the final state. In
addition, the pion form factor must be replaced by the corresponding one for
kaons.

The MC generator simulating neutral kaons production in the reaction,

e−(z1p−) + e+(z2p+) → KL(p1) +KS(p2),

is significantly simpler since there are no Coulomb interaction and photons
emission in the final state. The shifted Born cross section has the same
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analytic form like for charged kaons. The master formula for neutral kaons
production, according to the given above, reads

dσe+e−→KLKS(nγ)

dΩ1
=

=

1∫
0

1∫
0

dx1dx2D(z1, s)D(z2, s)
dσ̃0(z1, z2)

dΩ1

(
1 +

2α
π
K̃

)
Θ(cuts)

+
α

π

1∫
∆

dx1

x1

[(
z1 +

x2
1

2
)
ln
θ20
4

+
x2

1

2

]
dσ̃0(z1, 1)

dΩ1
Θ(cuts)

+
α

π

1∫
∆

dx2

x2

[(
z2 +

x2
2

2
)
ln
θ20
4

+
x2

2

2

]
dσ̃0(1, z2)

dΩ1
Θ(cuts)

+
α3

32π2s

∫
k0>∆ε
θγ >θ0

R
e+e−→KLKS(γ)
hard

dΓ
dΩ1

Θ(cuts), (61)

where K̃ = π2/6− 1/4, Θ(cuts) imposes the relevant kinematic (and experi-
mental) cuts, Re+e−→KLKS(γ)

hard consists of the one term which describes initial
state radiation only.

5 Conclusion
MC generator to simulate the processes e+e− → e+e−, µ+µ−, π+π−, K+K−

and KLKS in the low energy range is described in ditail. An extended treat-
ment of radiative corrections is implemented in the generator to get a high
level of theoretical precision. The soft and virtual photons radiation is taken
into account in the first order of α exactly as well as one hard photon emis-
sion outside of narrow cones. All terms in the matrix elements which are
proportional to the muon or pion mass squared are kept. By means the
SF formalism dealing with radiation of photon jets in the collinear region
(so-called enhanced contributions) are included in the current version of the
program - Monte Carlo Generator Photon Jets. As a result, the theoretical
accuracy of the approach is estimated to be at 0.2%. It is better at least by
a factor of two compared with the accuracy 0.5 − 1% achieved in the ear-
lier works. Comparison with the well known codes, BHWIDE and KKMC,
showed good agreement for many distributions simulated by the generators.
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The event distributions with given acollinearity angles ∆θ and ∆φ show
good agreement with CMD-2 experimental data. The double ratio of the
number of muon events to that of electrons divided on the ratio of the theo-
retical cross sections was found to be 0.986± 0.014. The deviation from unit
is −1.4±1.4%. Unfortunately the scare experimental statistics in this energy
range does not allow to check the theoretical approach accuracy applied here
with better precision. It is the first direct comparison of the experimental
data with the theoretical calculation at the accuracy about ∼ 1% level. The
comparison of the momenta distributions in the lowest energy point showed
that simulation with photon jets radiation describes the experimental spectra
pretty well.

The theoretical uncertainties of the cross sections with RC are defined by
the unaccounted higher order corrections and are estimated to be at 0.2%
level. Let us list the main sources of uncertainties in the current formulae:

• The weak interaction contributions are omitted in our approach. The
numerical estimations show that for energies 2ε < 10 GeV these contri-
butions do not exceed 0.1%.

• We omitted a part of the second order next-to-leading radiative correc-
tions proportional to (α/π)2L ∼ 10−4. Among these contributions we
have: the effect due to double photon emission (one inside the narrow
cones and one outside them); soft or virtual photon emission simulta-
neously with one hard photon emission, and so on. Even if we assume
that a coefficient in front of these terms will be of the order of ten, their
contribution can not exceed 0.1%.

• The third source of uncertainty is related with the calculation of
the hadronic vacuum polarization contribution to the virtual photon
propagator. Numerical estimations show that the systematic error of
hadronic cross sections in 1% changes the leptonic cross section about
∼ 0.04%.

• The fourth source of uncertainty about 0.1% is related with the models
which are used to describe the energy dependence of the hadronic cross
sections.

• The last source of uncertainty is mainly driven by the collinear kine-
matics approximation - several terms proportional to (α/π)θ20 and to
(α/π)(1/γθ0)2 were omitted. Indeed the photons inside jets have an
angular distribution. Numerical evaluations show that a contribution
of these factors is about ∼ 0.1%.
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Considering the uncertainty sources mentioned above as independent, we
can conclude that the total systematic error of the cross sections with RC
is less than 0.2%. An indirect confirmation of the correct evaluation of the
accuracy is the cross sections comparison with RC calculated in the first order
of α only. The corresponding difference does not exceed 0.2%. It follows that
the higher orders enhanced contributions, coming from collinear regions with
emission of two and more photons, contribute to the cross section only ∼ 0.2%
for our selection criteria. Since the accuracy of this contribution is certainly
known better than 100%, therefore the systematic theoretical error for the
cross sections with RC is better than 0.2%.
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