
1

The Monitoring Program for the ATLAS Tile Calorimeter
P. Adragna, A. Dotti, C. Roda

Abstract— The Tile Calorimeter is a steel-scintillator device which
constitutes the central hadronic section of the ATLAS Calorimeter. About
12% of the Tile Calorimeter has been exposed to test beams, at CERN,
in order to determine the electromagnetic scale and to evaluate its
uniformity. During the 2003 calibration periods, an online monitoring
program has been developed to ease the setup of correct running
condition and the assessment of data quality. The program, developed
in C++ and based on the ROOT framework, has been built using the
Online Software Service provided by the ATLAS Online Software group
and is equipped with a graphical user interface. This application has
been intensively used throughout the calibration sessions in 2003 and also
during the setup and test with cosmic rays carried out, at the beginning
of 2004, on a few modules of TileCal during the pre-assembly of the
extended barrel. After a brief overview of ATLAS DAQ and Services,
the architecture and features of the Tile Calorimeter monitoring program
are described in detail. Performances and successive integrations are
discussed in the last part of the paper.

Index Terms— ATLAS, Tile Calorimeter, hadronic calorimeter, online
monitoring program, test beam

I. INTRODUCTION

THE monitoring program described in this paper has been de-
veloped in the framework of the calibration periods with beams

carried out on the ATLAS Tile Calorimeter [1] along the CERN H8
SPS line. The ATLAS calorimetric system is a composite detector,
which exploits different techniques inside different rapidity regions
to optimize the calorimeter performances while maintaining a high
enough radiation resistance. The Tile sampling calorimeter (TileCal)
is the central hadronic section of this system. It is composed by
one central barrel and two lateral (extended) barrels consisting of 64
wedges each. Every wedge consists of three longitudinal samplings
of steel plates and scintillating tiles. Two edges of the tiles are air
coupled to wavelength shifting fibers, which collect the scintillating
light and bring it to photomultiplier tubes. The signal generated
by each tube is shaped and amplified. The amplified signal is then
sampled and digitised. The final output of the overall procedure are
9 signal samples for each photomultiplier. During the three-year-long
calibration program, about

�����
of TileCal has been exposed to test

beams.
A picture of the setup exploited during the test performed along

the H8 beam line is shown in fig. 1: four calorimeter wedges were
placed on a movable table and exposed to beam. The bottom module
(referred as Module 0) is the prototype barrel module and has been
a reference throughout all data taking periods. On top of Module
0, one barrel module and two extended barrel modules are stacked;
the extended barrel wedges are placed one next to the other. This
configuration assure a complete containment of the lateral shower
produced by pions interacting inside the central barrel module. The
movable table allows the beam to impinge on the modules in any
point of the lateral side or of the inner edge of the wedge, as it will
happen with particles produced by beam interactions in ATLAS.

The monitoring program here described has been developed for
the 2003 test beam period and has been in operation until the spring
of 2004. This application, based on ROOT [2] and on the software
developed by the ATLAS Online Software group [3], monitors both
Tile Calorimeter modules and detectors equipping the beam line. The

P. Adragna, A. Dotti, C. Roda are with Università di Pisa and INFN Sezione
di Pisa, Via Buonarroti 2, Edificio C, 56127, Pisa, Italy.

Fig. 1. Tile Calorimeter setup during standalone test beam. The beam
impinges on the modules from the left side.

aim of the monitoring program was to allow people in the control
room to verify the functionalities of the employed instrumentation,
both from the operational (through a simple inspection of system
work) and from the physical (through a cross check of acquired data)
point of view. To achieve these objectives, sampled data from beam
detectors and calorimeter modules are decoded and summarized into
histograms, to be displayed in a simple way.

A. Simplified Architecture of the Acquisition System

A simplified outline of the data flow through the ATLAS DAQ
chain is shown in fig. 2 [4].

Detector readout electronics produces digitised data. If the Level 1
Trigger accepts them, they enter the Read Out Driver (ROD), first
stage of the data flow chain. At this stage simple calculations are
performed on the data inside the ROD (for example calibration
constants are applied); then the data are formatted with an header and
a trailer enclosing additional information (source identifier, trigger
type, ...). This block of data is moved to the Read Out Buffer (ROB),
where it is buffered while the Level 2 Trigger decides if data are
acceptable. In this case, the Read Out System (ROS) sends the data
fragment to the Event Builder, which assembles a complete event.
The last stage in the data flow is the Event Filter, where an event
is reconstructed and a final selection is applied. If the Event Filter
selection is satisfied, the event is recorded on disk.

B. The Event Monitoring Service

The ATLAS Online Software provides a number of services which
can be used to build a monitoring program [4]. Their main task
is to carry requests about monitoring data (e.g. request of event
blocks, request of histograms...) from monitoring destinations to
monitoring sources and then the actual monitored data (e.g. event
blocks, histograms...) back from sources to destinations.

Our application exploits the Event Monitoring Service (EMS),
which is responsible for the transportation of physics events or event
fragments, sampled from well-defined points in the data flow chain.

A
T

L
-T

IL
E

C
A

L
-2

00
4-

01
1

19
 N

ov
em

be
r

20
04

2

Fig. 2. A simplified outline of the ATLAS Acquisition System. Only one
ROD/ROB/ROS is shown. Both ROS and EB can receive multiple inputs.

It is necessary to implement two interfaces with the Event monitor-
ing Service to gain physical access to sampled data: the EventSam-
pler and the EventReceiver. The first interface samples the events
from a certain point of the data flow, the second one accounts for
handling the events delivered by the EMS. An event sampler is a
separate process: one sampler must be up and running in every node
where events are requested.

II. REQUIREMENTS

Our program fulfils the following requirements:

1) the program is able to retrieve information produced by every
detector plugged into the Data Acquisition System;

2) his configuration is fully transparent to the end user;
3) his execution does not overload the Data Acquisition System;
4) the program provides the intermediate user with some basic

function while the expert can have the possibility to extend the
application’s functionalities;

5) the application is easily extendable, to monitor different detec-
tors;

6) the information collected is represented through a graphical
user interface.

III. PROGRAM ARCHITECTURE

The TileCal Monitoring Program [5] is an object oriented ap-
plication developed in C++. It is based on the ROOT framework:
in particular the data storage, the graphical user interface and the
event handling fully exploit ROOT classes and methods. The program
has been developed under the Linux operating system for the i686
architecture. Our program workflow is illustrated in the chart of fig. 3.

Input data can be either a raw data file, saved on disk, or real time
sampled events provided by an event sampler. In both cases data are
expected to be in the standard ATLAS format [6].

Events are copied inside a buffer, where they are unpacked and
interpreted. Event unpacking proceeds through detector independent
methods up to the localization of the Read Out Driver (ROD)

 Disk Data Event Sampler

Unpacking

Interpreting

ROOT Tree

ROOT File

Histogramming

Fig. 3. Flow chart of the TileCal monitoring program execution.

fragments. Detector dependent methods are implemented to extract
the data inside this fragment. The events, produced during all the
tests, contains both Tile Calorimeter and beam detectors (Cerenkov
counters, scintillator counters and wire chambers) data. All relevant
information is extracted, event by event, and stored in a ROOT Tree
residing in memory, while raw data are discarded and the buffer is
freed. From this point on, the analysis is performed using only the
data stored inside the ROOT Tree. Histograms produced during the
analysis can be immediately displayed using the presenter included
with the Graphical User Interface (GUI).

The possibility of reading raw data files from disk not only greatly
simplifies the debugging process, but also allows to run simple
analysis tasks on just acquired data.

As shown in the dependency diagram of fig. 4, the abstract structure
of the program is divided into three blocks1:

� Data Source, responsible for retrieving an event from the
selected data source; it consists of two classes, TC DataFile
and TC Consumer;

� Unpacking and Decoding, interfaced with data source through
the class TC DataConnection, which transfers the memory
address where the event is stored; the task of this block is
extracting and interpreting the requested fragments;

� Presenter, responsible for displaying the histograms produced
by the class TC DataBase, organizing them inside multiple win-
dows; this block is also responsible for handling user requests.

The classes in the central part of the diagram perform manage-
ment tasks and serve as a connection among the different parts
of the program. The main class is TC MainFrame. The class
TC DataConnection is responsible for the transmission of informa-
tion among the various blocks and TC MainFrame. TC DataBase
contains all the produced histograms. Finally, an istance of TTree
(shown in fig. 4 with the name ROOT Tree) is the storage for the
information extracted from the events.

1All our classes are recognizeable from the TC prefix (omitted in fig. 4)
from the name of the adronic calorimeter (TileCal).

3

DataConnection

DataFile Consumer

Main

DataBase

ScrollingTabFrame

CanvasUpdateAsynch

DisplayWindow
RawData

RawAtlasEvent

SubDetectorFragment

ROSFragment

ROBFragment

RODFragment

PMTChannel

Drawer

BeamADCData

AddrADCData

BeamTDCData

LaserADCData

DigiParData

Unpacking and Decoding

ROOT Tree

Presenter

Test Beam DAQ System

Data Source

Local File IPC Partition

Fig. 4. Dependency diagram for the classes composing the monitoring program. A label, indicating the general role of a particular group of classes, identifies
each block.

IV. THE INTERFACE WITH THE EVENT MONITORING SERVICE

The main purpose of our application is to examine raw data pro-
duced by the Acquisition System in real time; these data are sampled
from the data flow [4]. The EventReceiver interface implementation
is the class TC Consumer. TC Consumer traces the events through
an iterator, making them available.

After the creation of an istance of IPCPartition, which is neces-
sary to connect and to interact with the Inter Process Communication
system [7], an object of class Monitoring [8] is created. This object
is the agent between our program and the monitoring service. The
operation is completed through a choice of suitable event selection
criteria, of the address where data are sampled2 and of the iterator
type. These components uniquely determine the interface status
(represented by the class Monitoring::Status). At this point it is
possible to start examining the events. For example, the user can
ask for events produced by a single detector section by defining the
appropriate ROD Crate’s sampling address. On the other hand, he can
ask for a completely formatted event: in this case he must submit the
Event Builder address.

V. READING DATA FROM DISK

As previously discussed, besides retrieving online sampled events
it is possible to read raw data file from disk. The dedicated class is
TC DataFile.

It exploits the EventStorage library [9], provided by ATLAS
DataFlow group, to read bytestream raw data from disk. This happens
through an istance of the class DataReader.

The function TC DataFile::NewEvent retrieves the events, iden-
tifying the correct region of memory through DataReader::getData.
At the end, the program can access a complete event with a pointer
to his first 32 bit word.

2In a distributed system different information providers can coexist, each
with his specific address. Inside ATLAS DAQ systen, the address is composed
by three fields: the name of the detector, the name of the dedicated electronics
and the name of a particular electronic module.

VI. DATA UNPACKING

Each event is structured according to the ATLAS event format:
the detector data are encapsulated into 5 layers of headers, all having
similar structure. In order to easily reach these data, five classes have
been developed, one for each hierachy level:

� TC RawAtlasEvent;
� TC SubDetectorFragment;
� TC ROSFragment;
� TC ROBFragment;
� TC RODFragment.

The algorithms of the mentioned classes allow to identify
the corresponding blocks of data and their fields. These classes
are implemented in such a way that a call to the method
TC RawAtlasEvent::ReadFromMem triggers the complete event
decoding, calling in cascade the corresponding ReadFromMem
function of all the nested Fragment classes, up to the ROD level.

At the end of the unpacking chain, all the blocks are mapped inside
a tree structure3, as depicted in fig. 5. Among the data fields of each
class there is a vector of pointers to the blocks of the lower level;
for example, TC RawAtlasEvent has a member SubDetectorFrag-
ment, a vector of pointers to TC SubDetectorFragment istances.

The unpacking methods up to the ROD fragment are general and
do not contain any reference to the particular detector that created
the data.

VII. DETECTOR DATA INTERPRETATION

Once the unpacking chain is succesfully executed, pointers to all
ROD fragments are stored in a vector. Detector specific data are then
decoded by the function TC RawData::Decode, which determines
the correct algorithm for every subsystem on the basis of the ROD
identifier value. Every ROD, and consequently every data block type,

3More than one SubDetector, ROS and ROB fragments may be nested
inside an event.

4

SubDetectorFragment

RawAtlasEvent

ROSFragment

RODFragment

ROBFragment

RODFragmentRODFragment

Fig. 5. Tree structure of unpacked data blocks.

is identified by a unique number, the source identifier, member of the
class TC RODFragment.

The class that traces Tile Calorimeter information is TC Drawer.
It contains methods that allow to calculate, for each electronic
channel, the amplitude of the 9 time samples of the signal, and
correlated quantities such as the instant of the signal peak or the
estimate of the corresponding energy deposit.

VIII. THE ROOT TREE AND THE INTEGRATION

The possibility of easily extending our application to monitor
different detectors is one of the fulfilled requirements. For this
purpose, it was necessary to plan the data decoding and the storage
with the largest possible flexibility.

Since the decoding phase is detector-dependent, it is natural to
create appropriate functions to extract ROD blocks from an event.
The data contained in each ROD block are interpreted and temporarily
stored, to be used in the analysis phase. The implementation requires
a class for the decoding and a structure to hold the reconstructed data.
While for the first step some expertise is necessary, for the second
step we found a simple solution, exploiting the ROOT Tree [10].

Using the ROOT Tree as an interface between different parts of our
program, and not as a simple mass storage, is one the most important
feature of the program we developed. Thanks to this structure, a
new detector is integrated inside the program writing a class, with
decoding functions and member data to store temporaly physical
quantities, and creating a branch with the indication of the object
type; whenever the method TTree::Fill is called, the Tree is filled.

The Tree is created on the basis of the event structure. Since this
is not known in detail before the start of a run (i. e. the number of
modules in a detector can be different from run to run) Branches and
Leaves [10] are automatically built following the structure of the first
event identified.

If the Tree is used only as an interface, it is possible to reset it
as soon as the interesting data have been analysed. For example,
the user is usually not interested in cumulating the events inside the
structure. In this case it is possible to erase Tree’s content after having
filled the suitable histograms. However, the user can always choose
to cumulate the events inside the Tree and to save the entire Tree on
a file at the end of the run, in order to carry a more in-depth analysis
on.

If the events are accumulated, the contents of the structure can be
examined through a graphical interface provided by ROOT (Tree-
Viewer), while the data acquisition is still in progress. The interface
allows straight away booking and filling of histograms, in one or
more dimensions, with every variable stored: this makes possible the
study of simple correlations.

IX. THE DATABASE

Event by event, the data stored inside the ROOT Tree are used to
fill all the necessary histograms. The class TC DataBase manages

the creation, the filling and the updating of these histograms. The
class acts as a container of pointers to the single plots. The various
graphs are created through the function BookHistos and filled, event
by event, through the function FillHistos.

The total number of plots, as well as their type, is fixed and it is
not possible to change them at run time. The only way of adding or
removing the creation or the filling of a plot is acting on the source
code and then recompile the modified class.

This feature did not greatly limit the performance of our appli-
cation, since the experience with previous data taking allowed to
know the histograms needed to monitor the TileCal performance in
advance. However, in view of a more general use of our application,
we would like to avoid this limitation. Therefore a dynamical creation
and filling of histograms is currently under study.

We would like to point out that our architecture does not prevent
the user from creating an histogram on the fly: when the data
are organized inside a ROOT tree, it is possible to create an
histogram using the TTree::Draw method. However, a plot created
with TTree::Draw cannot be organized inside our graphical interface
but it must be displayed as a separate window.

X. THE SIGNAL-SLOT MECHANISM

The user can interact with our program through a graphical user
interface (GUI). The GUI is built with ROOT graphical classes. User
actions, required through various panels, are executed through the
Signal-Slot Mechanism [11], [12].

The Signal-Slot Mechanism manager is the ROOT class TQOb-
ject. If we want a user defined class to benefit from this mechanism,
it must inherit from TQObject. Whatever public function of whatever
instance of whatever class derived from TQObject can be called, as
a slot, in answering an event: it is sufficient to connect the signal to
the slot using the method TQObject::Connect.

XI. THE PRESENTER

Histograms are displayed by a simple graphical window. Different
sections, containing related information, are enclosed inside the
same frame and organized into tabs. Tabs allow cohexistence of
different drawing surfaces inside the same window, subdividing it
into graphical pages. Thanks to the double buffering tecnique, images
drawn inside tabs are stored in memory also when they are not on
focus, so that, when selected, their appearence is extremely fast.

The graphical section, among which histograms are divided, are:
� Beam, where the transverse profile of the beam, as provided by

multiwire proportional chambers, is shown (fig. 6);
� Counters, which contains the histograms of signal amplitude

from the scintillating counters placed on the beam line;
� Cerenkov, which contains the histograms of signal amplitude

from Cerenkov threshold counters;
� Drawer, which contains seven histograms for the total energy

deposit inside the modules exposed to the beam (fig. 7). The two
barrel modules (cp. I) are divided into two parts, one laying in
the region of negative pseudorapidity (indicated with N0 and N1)
and one laying in the region of positive pseudorapidity (indicated
with P0 and P1); the histograms N2 and P2 refer to the two
extended barrel modules; the last plot shows the total charge
collected inside the whole apparatus;

� Event Display, which shows the energy deposited inside every
cell of the three calorimeter modules. Every calorimeter module
is represented by a bidimensional histogram, while every cell is
depicted by a parallelepiped with the height proportional to the
energy deposit; the pseudorapidity is reported on the horizontal
axis. As an example, in fig. 8 is represented a 300 GeV electron,

5

Fig. 6. Horizontal and vertical coordinates of beam impact point (top plots)
and their correlation (bottom plot).

Fig. 7. Distributions of the charge collected inside the various calorimeter
modules exposed to a beam impinging on the central module, at positive
pseudorapidity.

while fig. 9 shows the energy release of a pion: both particles
are impinging on the central module;

� Samples, where the nine signal samples from each photomulti-
plier tube can be examined.

XII. MAIN CONTROL

The class TC MainFrame is responsible for the global adminis-
tration of program functions. This class, besides drawing the main
command panel (fig. 10) is also responsible for event handling and
for triggering the actions connected with the events.

Fig. 8. Example of Event Display. The plot shows a representation of energy
released inside calorimeter modules by an electron, impinging with ������� �	�

and an energy of 300 GeV, with signal production in cells A5, BC5.

Fig. 9. Example of Event Display. The plot shows a representation of energy
released inside calorimeter modules by a pion, impinging with �
����� �� , with
signal production inside the cells A4, BC4, D4.

From the main panel the user can completely drive the application:
choosing the data source, the data trigger type; opening the histogram
presenter; etc. The main panel contains twelve buttons and one
combo box for trigger selection. When the buttons are pushed a
signal clicked() is emitted. Instead, the combo box emits a signal
Selected(Int t) when the trigger type is changed; the signal argument
is an integer and identifies the required trigger type.

The signal clicked() is connected with the member function
HandleButton of TC MainFrame, as highlighted in fig. 11. This
function determines which button sent the signal and triggers the
proper actions.

6

Fig. 10. The main control panel of the program.

StartButton

NewDisplayButton

ResetHistoButton

StopButton BrowserButton

OpenFileButton NewEventButton

ConnectProducerButton

MainFrame

clicked()

clicked()

clicked()

clicked()

clicked()

clicked()

clicked() clicked()

Fig. 11. Collaboration diagram for the acquisition of clicked() signal.

The buttons New Display and New Browser of the group Display
open the presenter and the ROOT Class Browser, respectively. The
combo box is useful to select the trigger type of the acquired events.
It is possible to choose physics events (produced with particles),
calibration events (laser beam or charge injection) or pedestal events.

The buttons of the group Data Connection allow the user to drive
event retrieving. Open a file opens a dialog window, where it is
possible to choose the raw data file; Connect to a producer starts
the interface with the Data Acquisition System. The other buttons
starts and stops the sampling action.

XIII. REAL TIME UPDATE

One of the main feature of our program is the continuos updating
of histograms as soon as the data are acquired. To perform this task,
our program relies on signal-slot mechanism, introduced in section
X. Histogram updating is not performed at every event, because this
would be too much CPU time consuming, lowering the performances;
the updating is performed at fixed time interval.

When the phase of decoding and histogram filling is finished,
the class TC DataBase emits a signal Update (fig. 12). The signal
is catched by the class TC MainFrame, which checks how much
time is elapsed from the last update. If the elapsed time is greater
than a certain, user-defined amount, then TC MainFrame emits an
UpdateAll signal. This signal, catched by the presenter, will trigger
the updating of all the plots who are displayed on the currently
selected pad. This simple but effective mechanism allows to monitor
the data acquisition as it goes on. A similar mechanism is used to
update histograms when, for example, the user decides to change
their scale: in this last case the signal UpdateAll is emitted directly,
so the updating is immediate.

Update()

:DataBase :MainFrame :Presenter

UpdateAll()

[update=True]

Fig. 12. Sequence diagram for the actions connected with real time updating.

XIV. PROGRAM PERFORMANCE

The monitoring program has been extensively tested to check the
usage of CPU and memory during the data taking at test beam. An
excessive resource exploitation implies a decreasing functionality of
DAQ system, since in our setup the monitoring and the acquisition
tasks shares, during the test beam, the same machines.

The test has been performed on a PentiumIII-class machine at
1 GHz with 256 MB of RAM running Linux RedHat 7.3 (CERN
version).

Our program can read and completely decode 250 events per
seconds on average, with a mean charge of 41% on the CPU, while
the mean memory usage is of 18%.

The total memory (physical plus swap) usage is shown in fig. 13
as a function of running time. The steep increase of used memory,
shown on the plot around 550 seconds, represents the opening of the
presenter GUI.

Time (s)
0 100 200 300 400 500 600 700 800 900

M
em

o
ry

 (
K

B
)

25000

30000

35000

40000

45000

Fig. 13. Memory usage (physical plus swap) as a function of running time.

The memory usage watch has been revealed an important tool
to find and correct memory leaks during the development of the
program. Thanks to this kind of check we succeded in reducing
remarkably the amount of physical memory used.

The memory usage is rather high but this can be understood: our
application must manage, at the same time, large events, a high
number of histograms and a composite graphics. On the other hand
the CPU load is a little bit too much demanding. We solved the last
problem through a fine tuning of process priority with the system
command nice. In this way the program mantains a good functionality
without loading excessively the acquisition system.

XV. SUCCESSIVE INTEGRATIONS

The first upgrade to our program to monitor a larger set of detector
has been tried during the combined test beam runs of September

7

2003. The first detectors to be monitored after TileCal were the muon
spectrometer (Monitored Drift Tubes chambers, MDT) [13] and the
central tracker (SemiConductor Tracker, SCT) [14].

The unpacking and interpreting of MDT and SCT were simply
included using their standard data decoding routines. Adding new
branches inside ROOT tree was equally simple. Last, a new graphical
page was added inside the presenter to organize the new produced his-
tograms. The availability of data from different subdetectors allowed
to obtain online histograms showing the correlated information from
different detectors. An example is shown in fig. 14.

Fig. 14. Plot of the hits recorded by the first MDT chamber versus the total
energy deposited inside the Tile Modules, obtained from data recorded during
the Combined test beam 2003. The two populated regions (top left and bottom
right) corresponds to muons and pions respectively.

The plot shows the number of hits recorded by the first MDT
chamber versus the total energy deposited in the module of the
hadronic Tile Calorimeter obtained from data recorded during the
Combined test beam. Along the beam line, where tests are performed,
the MDT chambers are separated from TileCal modules by a thick
shield of cement, impenetrable for pions. A beam of pions and muon
with energy of 180 GeV interacts first with the TileCal modules and
then, after the cement shield, with the MDT chambers. The top left
region of the plot is populated by muons, that have a low energy
release inside the calorimeter and can also penetrate the shield; the
bottom right region is populated by pions, that cannot pass over the
shield and do not hit the chambers.

Once the data acquisition with test beams was finished, our
application was further used during the set up and test with cosmic
rays carried out, at the beginning of 2004, on a few modules of
TileCal during the pre-assembly of the extended barrel. The three
barrels composing the calorimeter are pre-assembled in surface to
check the strict geometrical tolerance (a few millimiters over a few
meters) and the integration with services (cables, crates, ...) and othe
detectors. During the pre-assembly, a system has been set up using
scintillating counters to trigger on cosmic muons traversing three
of the TileCal modules. Our monitoring program has been slightly
modified to account for the different electronic mapping and for the
different list of histograms to be filled and displayed. The program
was then used to monitor both physics and calibration data.

XVI. CONCLUSIONS

The online monitoring program we developed has succesfully run
throughout the calibration sessions of 2003. It has proved to be a
powerful tool, helping the shift crews to identify faulty detector states.

Its modular design has permitted to easily extend its use to include,
besides TileCal and beam-line detectors, modules of the vertex tracker
SCT and chambers of the muon spectrometers MDT. Our application
was usefully exploited during the pre-assembly of the extended barrel
at the beginning of 2004, when few modules of the pre-assembled
Extended Barrel of TileCal were tested with cosmic rays.

The experience gained during the tests with beams and with cosmic
rays have allowed to evaluate the characteristics of our program in a
realistic environment posing the bases for the design of an upgraded
version of the monitoring program.

ACKNOWLEDGMENTS

We would like to thank all the Tile Calorimeter group for their
advices and useful comments as first users of our application. We
are also grateful to the tecnicians who helped with the calorimeter
assembly, to the Test Beam Coordinator B. Di Girolamo and to the
SPS staff for allowing us to collect test beam data. Finally, we would
like to thank Lorenzo Santi for giving us the code he wrote for the
monitoring of the pixel detector, which was the starting point of our
project, and J. E. Garcia Navarro, S. Gonzalez, R. Ferrari, W. Vandelli
for helping us with the integration of SCT and MDT detectors in the
monitoring program during September 2003 Combined Test Beam.

REFERENCES

[1] ATLAS Collaboration. (1996). ATLAS Tile Calorimeter Techni-
cal Design Report. CERN. Genève, CH. [Online]. Available:
http://atlas.web.cern.ch/Atlas/SUB DETECTORS/TILE/TDR/TDR.html

[2] R. Brun, F. Rademakers. (1997). ROOT – An Object Oriented Data
Analysis Framework. Nucl. Inst & Meth. in Phys. Res. A 389, pp. 81 –
86.

[3] S. Kolos et al. (2003). Online Monitoring software framework in
the ATLAS experiment. CERN. Genève, CH. [Online]. Available:
http://cdsweb.cern.ch/?c=ATLAS

[4] ATLAS Collaboration. (2003). ATLAS High-Level Trigger, Data Ac-
quisition and Controls Technical Design Report. CERN. Genève,
CH. [Online]. Available: http://atlas-proj-hltdaqdcs-tdr.web.cern.ch/atlas-
proj-hltdaqdcs-tdr

[5] P. Adragna, A. Dotti, C. Roda. (2004). The ATLAS Tile Calorimeter Test
Beam Monitoring Program. CERN. Genève, CH. [Online]. Available:
http://cdsweb.cern.ch/?c=ATLAS

[6] C. Bee, D. Francis, L. Mapelli, R. McLaren, G. Mornacchi, J.
Petersen, F. Wickens. (2003). The Raw Event Format in the AT-
LAS Trigger & DAQ. CERN. Genève, CH. [Online]. Available:
http://cdsweb.cern.ch/?c=ATLAS

[7] S. Kolos. (2001). Inter Process Communication Design and
Implementation. CERN. Genève, CH. [Online]. Available:
http://cdsweb.cern.ch/?c=ATLAS

[8] S. Kolos. (2000). Online Monitoring User’s Guide. CERN. Genève, CH.
[Online]. Available: http://cdsweb.cern.ch/?c=ATLAS

[9] A. Dos Anjos. (2003). Event Format Library Analysis
and Design. CERN. Genève, CH. [Online]. Available:
http://cdsweb.cern.ch/?c=ATLAS

[10] S. Panacek ed. (2004), ROOT User Guide. [Online]. Available:
http://root.cern.ch/root/doc/RootDoc.html

[11] Trolltech. (2003). Qt White Paper. Trolltech., Oslo, N. [Online]. Avail-
able: http://www.trolltech.com/products/whitepapers.html?cid=20

[12] V. Onuchin. TQObject Class in R. Brun et al. (2004) ROOT Reference
Guide. [Online]. Available: http://root.cern.ch/root/Reference.html

[13] ATLAS Collaboration. (1998). ATLAS Muon Spectrometer Tech-
nical Design Report. CERN. Genève, CH. [Online]. Available:
http://atlas.web.cern.ch/Atlas/GROUPS/MUON/TDR/Web/TDR.html

[14] ATLAS Collaboration. (1997). ATLAS Inner Detector Techni-
cal Design Report. CERN. Genève, CH. [Online]. Available:
http://atlas.web.cern.ch/Atlas/GROUPS/INNER DETECTOR/TDR

