
Portable Gathering System for Monitoring and Online Calibration at ATLAS.

P. Conde Muı́ño on behalf of the ATLAS TDAQ HLT group ∗[1]

Abstract

During the runtime of any experiment, a central moni-
toring system that detects problems as soon as they appear
has an essential role. In a large experiment, like ATLAS,
the online data acquisition system is distributed across the
nodes of large farms, each of them running several pro-
cesses that analyse a fraction of the events. In this architec-
ture, it is necessary to have a central process that collects
all the monitoring data from the different nodes, produces
full statistics histograms and analyses them. In this paper
we present the design of such a system, called the gath-
erer. It allows to collect any monitoring object, such as
histograms, from the farm nodes, from any process in the

∗S. Armstronga, A. dosAnjosr , J.T.M. Bainesc , C.P. Beed, M.
Bigliettie , J.A.Bogaertsf , V. Boisvertf , M. Bosmang , B. Caronh , P.
Casadog , G. Cataldii , D. Cavallij , M. Cervettok , G. Comunel, P. Conde
Muı́ñof , A. De Santom , M. Dı́az Gómezn , M. Dosilg , N. Ellisf , D.
Emeliyanovc , B. Eppo, S. Falcianop , A. Farillaq , S. Georgem , V. Gheteo ,
S. Gonzålezr ,M. Grothef , S. Kabanal , A. Khomichs, G. Kilvingtonm ,
N. Konstantinidiss , A. Kootzt, A. Lowem , L. Luminarip, T. Maenof ,J.
Masikv , A. Di Mattiap , C. Meessend, A.G. Mellob , G. Merinog , R.
Mooreh , P. Morettinik , A. Negriw , N. Nikitinx ,A.Nisatip, C. Padillaf ,
N. Panikashviliy , F. Parodik , V. Pérez Realel , J.L. Pinfoldh , P. Pintof ,
Z. Qiand, S.Resconij , S. Rosatif , C. Sánchezg , C. Santamarinaf ,
D.A. Scannicchiow , C. Schiavik , E. Segurag , J.M. de Seixasb, S.
Sivoklokovx , Solukh, E. Stefanidist , R. S. Sushkovg , M. Suttont ,
S. Tapproggez , E. Thomasl, F. Touchardd, B. Venda Pintoaa, V.
Vercesiw , P.Wernerf , S. Wheelerh bb, F.J.Wickensc, W. Wiedenmannr ,
M. Wielerscc, G.Zobernigr .aBrookhaven National Laboratory (BNL),
Upton, New York, USA. bUniversidade Federal do Rio de Janeiro,
COPPE/EE, Rio de Janeiro, Brazil. cRutherford Appleton Laboratory,
Chilton, Didcot, UK. d Centre de Physique des Particules de Mar-
seille, IN2P3-CNRS-Université d´ Aix-Marseille 2, France eUniversity
of Michigan, Ann Arbor, Michigan, USA. fCERN, Geneva, Switzer-
land. g Institut de Fı́sica d´ Altes Energies (IFAE), Universidad Autónoma
de Barcelona, Barcelona, Spain. hUniversity of Alberta, Edmonton,
Canada. iDipartimento di Fisica dell´ Università di Lecce e I.N.F.N.,
Lecce, Italy. jDipartimento di Fisica dell´ Università di Milano e I.N.F.N.,
Milan, Italy. kDipartimento di Fisica dell´ Università di Genova e
I.N.F.N., Genova, Italy. lLaboratory for High Energy Physics, Univer-
sity of Bern, Switzerland. mDepartment of Physics, Royal Holloway,
University of London, Egham, UK. nSection de Physique, Université
de Genève, Switzerland. oInstitut für Experimentalphysik der Leopald-
Franzens Universität, Innsbruck, Austria. pDipartimento di Fisica dell´
Universit di Roma ´ La Sapienza´ e I.N.F.N., Rome, Italy. qDipartimento
di Fisica dell´ Università di Roma ´ Roma Tre´ e I.N.F.N., Rome, Italy.
rDepartment of Physics, University of Wisconsin, Madison, Wisconsin,
USA. sLehrstuhl für Informatik V, Universität Mannheim, Mannheim,
Germany. tDepartment of Physics and Astronomy, University College
London, London, UK. uFachbereich Physik, Bergische Universitat Wup-
pertal, Germany. vInstitute of Physics, Academy of Sciences of the Czech
Republic, Prague, Czech Republic. wDipartimento di Fisica Nucleare e
Teorica dell´ Università di Pavia e INFN, Pavia, Italy. xInstitute of Nu-
clear Physics, Moscow State University, Moscow, Russia. yDepartment of
Physics, Technion, Haifa, Israel. zInstitut für Physik, Universität Mainz,
Mainz, Germany. aaCFNUL - Universidade de Lisboa, Faculdade de
Ciências, Lisbon, Portugal.bbUniversity of California at Irvine, Irvine,
USA. ccUniversity of Victoria, Victoria, Canada.

DAQ, trigger and reconstruction chain. It also adds up the
statistics, if required, and processes user defined algorithms
in order to analyse the monitoring data. The results are sent
to a centralized display, that shows the information online,
and to the archiving system, triggering alarms in case of
problems.

The innovation of this system is that conceptually it ab-
stracts several underlying communication protocols, being
able to talk with different processes using different proto-
cols at the same time and, therefore, providing maximum
flexibility. The software is easily adaptable to any trigger-
DAQ system.

The first prototype of the gathering system has been im-
plemented for ATLAS and has been running during this
year’s combined test beam. An evaluation of this first pro-
totype will also be presented.

REQUIREMENTS
The monitoring system for the ATLAS experiment has

very strong requirements, focusing on user friendliness and
flexibility. A scheme showing the general idea of the sys-
tem in depicted in figure 1.

From the user1 point of view, the gathering system
should be completely transparent. Their aim is to pro-
duce the histograms or monitoring quantities using their
standard software environment and tools, without worry-
ing about the data transfer or the communication protocol.

From the point of view of the gatherer itself, the require-
ments can be summarized in the following way:

• It should be able to work in push or pull mode. This
means that either the gatherer is waiting until the dif-
ferent processes send the monitoring data to it, or it
requests the data from each one of the processes that
are producing monitoring information.

• For each of the monitoring variables, it should be pos-
sible to choose if the gatherer has to sum up statistics
or just publish single event quantities.

• The gatherer must be capable of using different com-
munication protocols, being able to receive data using
one protocol and send it using a different one. It may
also be possible to receive data from different sub-
systems using different protocols at the same time or
change the protocol used for the communications in a
new run.

1Users here are any developer that wants to monitor something on
the system, either software of hardware. The majority of users, however,
come from the software developers community.

111

Figure 1: Scheme of the monitoring system for ATLAS. Any process in the Trigger DAQ chain can produce monitoring
information that is distributed between the nodes of the corresponding farm. A central process, called gatherer, collects all
the monitoring information, adds up statistics and sends the full statistics monitoring data to the online display and archiv-
ing. It provides also the infrastructure for the intelligent monitoring, that produces alarms and data quality assessments.

• The gatherer should react to state transitions
(start/stop of run, configure, unconfigure, or any other
one) since it should take certain actions at given times,
like saving the histograms at the end of the run.

• It should be possible to send/receive not only his-
tograms but also any user defined data structure.

• The gatherer should have a dynamic configuration, in
such a way that new histograms or monitoring quanti-
ties are automatically taken into account, without the
need of modifying the system configuration.

• The monitoring system should provide the framework
for a more intelligent monitoring, executing user-
defined algorithms that further analyse the monitoring
data to produce alarms and data quality statements or
new monitoring quantities, more meaningful and eas-
ier to understand for the shift crew.

DESIGN

The monitoring system can be divided in two very dif-
ferent parts: the first one corresponds to the infrastructure
that makes the gatherer an online application to be run at
the DAQ system of ATLAS. The other one consist of all
the software that deals with the communications and the
manipulation of the monitoring data. In the two follow-
ing subsections the design of each of this parts will be ex-
plained in more detail.

Data transfer and communications

The design of the software to deal with the monitoring
data and the communications has been done taking advan-
tage of object oriented techniques, using the UML model-
ing language, since the implementation of the monitoring
system had to be done in C++.

In order to fulfill all the requirements, each monitoring
object should be handled in an independent way. There-
fore, it is logical to define an object whose main purpose
is to keep a copy of the monitoring data and deal with it.
This object is called MonObject and it plays a central role
in the monitoring system. According to the second and
third requirements, it must be possible to configure each
MonObject in a different way so each piece of monitoring
data is treated according to its specifications. Thus, each
MonObject configures itself at creation time.

To perform the data transfer two other objects were de-
fined: a communications client object and a server object.
They are tools that the MonObject uses to send or receive
data whenever it is necessary. They have been designed as
abstract interfaces, that can be implemented in many dif-
ferent ways according to the different protocols, but are al-
ways handled in the same way. Since the MonObject does
not know about communication protocols, the server and
client objects are created through a factory class pattern[3].
In this way, all the code dealing with communication proto-
cols and data transfer is hidden inside the implementation
of the server and client objects, and in the factory class.
This allows to easily introduce new protocols without mod-

112

MonObject
+ m_clientComm : IMonComClient *
- m_config : MonObjectConfig *
- m_data : Type *
+ m_serverComm : IMonComServer *
+ addData(NewData : Type *) : void
+ collectData() : void
+ declData() : void
+ getData() : Type *
+ resetData() : void
+ sendData() : void
+ subsData() : void
+ undeclData() : void
+ unsubsData() : void
+ ~MonObject()

Type

MonObjectConfig
- m_broadcastingMode : broadcastingMode
- m_clientProtocol : protocolMode
- m_infoTreatment : infoTreatment
- m_retrievalMode : retrievalMode
- m_serverProtocol : protocolMode
+ getBroadcMode()
+ getClientProtocol()
+ getInfoTreatment()
+ getRetrievalMode()
+ getServerProtocol()
+ setBroadcMode()
+ setClientProtocol()
+ setInfoTreatment()
+ setRetrievalMode()
+ setServerProtocol()
+ ~MonObjectConfig()

1

1

IMonComClient

+ collectData() : void
+ collectServicesList(MatchingChar : std :: string) : void
+ getDataType(ServiceName : std :: string) : std :: string
+ getServicesList() : std :: vector < std :: string >
+ subsData() : void
+ unsubsData() : void

IMonComServer

+ collectClientList() : void
+ declData() : void
+ getClientList() : std :: vector < std :: string >
+ sendData() : void
+ undeclData() : void

EngineFactory

+ createIMonComClient()
+ createIMonComServer()
+ deleteIMonComClient()
+ deleteIMonComServer()

MonClientProtocol1 MonClientProtocol2 MonServerProtocol1MonServerProtocol2

Implementation

1

Figure 2: UML scheme showing the classes defined to handle the monitoring data and the communications.

ifications in the existing code.
The UML scheme representing these objects and the re-

lations between them is shown in figure 2. The central ob-
ject is the MonObject that has a configuration object con-
taining all the information about how to deal with the moni-
toring data and two communication objects, one server and
one client. The MonObject is implemented as a template,
allowing to reuse the same code for different data types.

Infrastructure

The gatherer infrastructure was designed as an applica-
tion belonging to the Data Flow software[4] of ATLAS.
A scheme showing how the gatherer works is shown in
figure 3.

At configuration time, the gatherer reads its configu-
ration from a data base. The configuration is written in
terms of groups of MonObjects that have common char-
acteristics: client and server communication protocol, in-
formation treatment (sum up or substitute), retrieval mode
(pull/push), broadcasting mode (wait for request or send af-
ter a certain time) and frequency to broadcast. The name
of the monitoring variables is specified with wildcards, in
such a way that the gatherer has to find out (usually contact-
ing the name server) which monitoring variables are avail-
able that match the wildcard. In this way, the gatherer can
automatically get new monitoring data that has been added,
without the need of changing the data base for any single
histogram that is included in a certain monitoring package.
The gatherer has, in this sense, dynamic configuration.

Once the MonObjects have been created, the gatherer
performs actions on them: configure, send data, collect
data, ... The monitoring information is collected with a
certain frequency, it is sum up (if required) and published
in the online display or sent to the archiving system.

The gatherer reacts to state transitions, receiving orders
from a controller. At the end of the run, for instance, the

data is collected and it is sent to the archiving system.

IMPLEMENTATION: FIRST PROTOTYPE
The first prototype of the monitoring system has been

implemented for the ATLAS combined test beam this year
(summer 2004). The focus has been to provide a robust
and user friendly monitoring system. The implementation
was simplified with respect to the design due to the time
constraints: the gatherer was configured only at start up,
providing minimal interaction with the users once started
(i.e., sending commands to the gatherer was not allowed),
and only one protocol was implemented since there was no
need to have more.

The communication protocol used is the standard one for
the online applications at ATLAS, called Information Sys-
tem (IS)[2] and based on CORBA. In IS, all the information
is stored in a central repository server. Each process sends
its monitoring data to an IS server and the gatherer gets it
from there. This method avoids slowing down the online
processes by having too many requests coming from other
processes.

To simplify the task of the software developers, an algo-
rithm is executed at the Event Filter (the last trigger level)
after all the reconstruction and monitoring packages. It gets
the monitoring data, that in this case is only histograms,
from the process memory and sends it to the gatherer. This
procedure ensures that all the communications and data
transfer is completely transparent for the users. It also en-
sures that new histograms are automatically received from
the gatherer, without changing the databases.

Other processes from the Trigger DAQ[4] chain by de-
fault publish their information in one of the IS servers and
therefore the users do not have to do anything special to
get their information collected and summed up by the gath-
erer2.

2There is only one restriction concerning the name of the published in-

113

Gatherer

Controller
load

Configure

run

stop

unconfigure

create process

one per monit. variable

newMonObject

Read/set
Configuration

Wait

Request mode?

Request data

LVL2/EF

protocol 1

protocol 2

send data
protocol 1

protocol 2

Process data
(add up/substitute)Online

Display
send Data

protocol 2

R
ep

it

Request data

send data

LVL1 ...

Process data
protocol 2

protocol 1

send dataprotocol 2

 read DB

Figure 3: Scheme showing how the Gatherer works.

Performance

The gatherer has been running stably at the test beam
since the beginning of August. Due to the fast evolution
of the test beam software, new algorithms were added very
frequently, so the average number of histograms and infor-
mation transfered was increasing with time. The final size
of data transfered was about 90 MB when the full Event
Filter farm was running. In 2007, when ATLAS will start
the commissioning, it is expected at least a factor 10-100
larger data size, since some of the detectors are planning to
fill occupancy plots per detector channel3 and the size of
the Event Filter farm will also be larger.

The CPU consumption during the test beam was about
30 %, in a Xeon machine with a 3.2 GHz processor and
1 GB of memory, when the data is being transfered. The
gatherer is idle about 30 % of the time, waiting some time
before collecting and sending the data. The memory con-
sumption was about 10 %, also during data transfer.

Since the IS server is not a real time system, when there
are many processes sending large amounts of data at the
same time, the data transfer may become slow. The flex-
ible configuration of the gatherer, however, allows to im-
prove the performance of the system by simply distributing
the data within more servers or introducing more gatherers
running in parallel. A tree of gatherer processes could be
introduced if necessary.

SUMMARY AND CONCLUSIONS

The first prototype of a gathering system for the ATLAS
monitoring has been designed and implemented for the AT-
LAS 2004 combined test beam, and it has been running

formation: the name of the monitoring information should follow a stan-
dard, to allow the gatherer having dynamic configuration.

3There will be of the order of few hundreds million channels.

stable for more than one month. The system has been de-
signed to have maximum flexibility and user friendliness. It
abstracts the communication layer, allowing transparency
for the user and the possibility to use different protocols for
the data transfer. It also makes the gatherer easily adaptable
to any new experiment.

Having dynamic configuration and the possibility to use
different communication protocols allows to tune the sys-
tem in order to optimize the performance during the data
taken.

REFERENCES
[1] ATLAS TDAQ HLT group,

http://atlas.web.cern.ch/Atlas/GROUPS/DAQTRIG/HLT/
AUTHORLISTS/chep2004.pdf

[2] http://atddoc.cern.ch/Atlas/DaqSoft/components/is/
Welcome.html

[3] E. Gamma, R. Helm, R. Johnson, J.Vlissides, Design Pat-
terns, Addison Wesley, 2003.

[4] The Atlas Collaboration, Atlas High Level Triggers,
Data Acquisition and Controls, Technical Design Report,
CERN/LHCC/2003-022, 2003.

114

