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Lagrangian formulation of relativistic particle average motion in a laser field of
arbitrary intensity
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The Lagrangian and Hamiltonian functions describing average motion of a relativistic particle
under the action of intensive high-frequency electromagnetic radiation are obtained. In weak, low-
frequency background fields, such a particle on average drifts with an effective, relativistically in-
variant mass, which depends on the intensity of the electromagnetic field.

PACS numbers: 52.35.Mw, 52.20.Dq, 52.27.Ny, 45.20.]j

Recent advances in high-power laser technology have
resulted in the development of laser systems capable
of accelerating charged particles up to relativistic and
even ultra-relativistic oscillatory velocities (see, e.g., Ref.
[1, 2]). This progress motivated the interest in theoreti-
cal models describing particles motion under the action
of intense electromagnetic radiation. Particle motion is
well-understood when the only forces present are those
from the wave of uniform intensity [3]. However, in order
to study the guiding center dynamics under the action
of the forces arising from inhomogeneity of the laser field
or from the presence of low-frequency background fields,
additional analysis 1s needed.

The dynamics of a particle moving in a high-frequency
field 1s often described in terms of so-called ponderomo-
tive approach. In nonrelativistic ponderomotive descrip-
tion, the effect of high-frequency electromagnetic forces
on a particle is replaced by interaction with an average
potential, linear on the intensity of laser radiation [4, 5].
When ultra-intense lasers are employed, the conventional
ponderomotive description needs to be generalized to rel-
ativistic motion. Contrary to the degenerate case of a
circularly polarized field, in which high-frequency varia-
tions of the relativistic mass can be neglected [6, 7], the
problem of particle motion in the case of a linear or el-
liptic polarization represents a certain challenge, but still
can be studied analytically, as shown below.

In order to describe the average particle dynamics in
such fields, a number of analytical studies have been per-
formed, which resulted in the development of the guid-
ing center effective mass concept [8-12]. Namely, under
different approximations, it was shown that the guiding
center of an oscillating particle drifts in nonuniform laser
field as a particle with an effective mass, which depends
on the intensity of the electromagnetic field. The Hamil-
tonian treatment of the relativistic particle drift under
the action of an intense laser radiation has been proposed
in Ref. [13], though the problem of interaction with low-
frequency background fields has not been studied. The
first steps towards including such interaction in the pic-
ture of particle drift motion in intense laser field were
made in Ref. [9]. However, only large-scale (compared

to the amplitude of oscillations) background fields were
taken into consideration, the drift motion equations were
generalized to the case of relativistic drifts without jus-
tification, and an incorrect expression was given for the
relativistic ponderomotive potential.

These shortcomings are overcome in the present pa-
per, which major emphasis is twofold. First, we pro-
pose a general, fully relativistic Lagrangian formulation
of ponderomotive description of particle motion under
the action of a monochromatic laser wave. The proposed
approach 1s more systematic and simple in comparison
with those discussed previously, and naturally allows to
include particle interaction with weak background forces,
additional to those from the laser field. The discussion
of the guiding center motion in background fields con-
stitutes the second emphasis of the paper. We show the
effective mass concept to be applicable to ponderomotive
description of relativistic drift motion in low-frequency
background fields, including even ones of small spatial
scale compared to the amplitude of particle oscillations.
The latter application, for example, can be especially use-
ful for studying the electron-ion scattering process in the
presence of intense laser radiation, when oscillating elec-
trons scatter on small-scale ion Coulomb potential [14-
16].

To proceed, consider particle motion under the action
of a plane electromagnetic (laser) wave propagating in
vacuum with vector potential given by

A(r, 1) = (mc*/e) a(n), (1)

where = wt — k - v stands for the phase of the wave,
w is the wave frequency, and k = 2%/c represents the
wavevector. The polarization of the wave will be as-
sumed fixed though arbitrary. The magnitude of a,
a = eF//mecw (where E is the laser electric field), can
be understood as the ratio of the momentum imparted
by the wave field in a single oscillation to me, meaning
that relativistic effects become important at a > 1. (For
the wavelength of the laser radiation equal to 1 pm, the
intensity corresponding to a ~ 1 for electrons is about
108 W /em?2.)

In a certain, unique, frame of reference, in such a



field the particle undergoes stationary oscillatory “figure-
eight” motion in a linearly polarized wave or circular mo-
tion in a wave with circular polarization [3]. Averaging
over the oscillations, one comes to the concept of the
guiding center motion, which we study below. First, let
us consider the variational principle that states the min-
imum value of the action

ta
5:/ Ldt, 2)
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where L stands for the Lagrangian function of the particle
motion, to be realized on the true trajectory. On time
scales t5 — t; large compared to the oscillation period,
the major contribution to the action S (linear on t5 — 1)
is provided by the time-averaged part of the Lagrangian,
(L), while the contribution of the oscillatory Lagrangian
into the integral (2) remains small. Thus, the action S
is approximately given by S = tt12<L>dt, from where it
follows that (L) can be treated as the Lagrangian of the
average, guiding center motion.

To obtain the form of the drift Lagrangian Lo = (L),
let us consider the latter in the frame of reference where
the guiding center rests. In the new frame, the guid-
ing center Lagrangian Ly can be nothing but a constant,
which we put in the form

Lo = —megc?, (3)

in analogy with the Lagrangian of a true particle with
zero velocity. The formally introduced quantity meg
playing a role of a new, effective mass is yet to be de-
fined. The action (2) is relativistically invariant and can
be written as S = f: Lqg dr, where the time dr represents
the proper time of the guiding center. Since dr is invari-
ant by definition (and thus, so is the Lagrangian Lg),
the quantity meg must also be relativistically invariant.

Using
dr = dt /1 —v2/c?,

where vy is the velocity of the guiding center in the orig-
inal frame of reference, one gets the Lagrangian of the
guiding center motion

Lo = —megc®y /1 —v3/c2, (5)

which formally coincides with the Lagrangian of a rela-
tivistic particle with mass meg moving with velocity vg.
Since the original frame was chosen arbitrarily, the above
expression represents the general form of Ly, and what
is left 1s to express meg through the parameters of the
laser field.

Such calculation is instructive to perform in a frame of
reference where the particle has a nonzero average veloc-
ity vp. To proceed, consider the Lagrangian of particle
true motion given by

L—wv?/e2 4 (efe)(v-A(n),  (6)

[,0 dr = Lo dt, (4)

L = —mc?

which is a known periodic function of the phase 5 rather
than time ¢. Thus, in order to average L over time, one
needs to derive a relation connecting time averaged and
phase averaged quantities. For an arbitrary quantity f,
its time and phase averaged values given by

1 t+A 1 n+2m
=y [ra. T=o [ @
t n

where the limits of integration over the phase correspond
to the limits of integration over the time (i. e. n = n(t)),
and the time interval A is defined as one on which the
total phase change equals 27:

77+27Tdt

A= — dn.
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The time interval A coincides with the wave period 27 /w
only if particle motion is nonrelativistic, so that dn/dt ~
w, but, generally, the phase time-derivative is given by

O

Here v = (1 — vz/cz)_l/2 is the normalized relativistic
energy (€ = myc?) and p = myv it the particle kinetic
momentum.

Because of the fact that the original Lagrangian de-
pends on 7 (that is, on the combination z — ct, rather
than z and ¢ separately), there exists an invariant of mo-
tion given by

u =5 — p,;/me = const. (10)
Substituting the above expressions into Eq. (7), one gets

(fy=7F/7. (11)

Note that the obtained expression 1s valid only in case
when the electromagnetic wave (1) is propagating in vac-
uum. If the refraction index of the medium differs from
unit, Egs. (9) and (10) need to be modified, and the re-
lation between time- and phase-averaged quantities be-
comes more complicated [13].

By using Egs. (10) and (11), one gets

where v5 = (1 — v2/c?) , and vy = (v) = p/m7 is
the drift velocity. Thus, the Lagrangian Ly can be put
in the form (5) with meg given by

Mef = m\/l—i—ezﬁ/mzc‘l. (13)

The guiding-center Lagrangian (5) with the expression
(13) for the effective mass was also obtained in Ref. [12]

¥ = \/1+(ﬁ/m6)2+a_2,

—1/2



by a similar, though not a straightforward procedure.
However, in the cited work, Eq. (13) was supposed to
be valid only in the frame of reference where vg = 0. In
fact, as shown above, it remains applicable for arbitrary
vg, and, more than that, the actual value of m.g must be
relativistically invariant. To express the effective mass in
the invariant form, let us notice that, in the laboratory
frame where we chose the electric potential ¢ = 0 (see
Eq. (6)), V/A? coincides with the norm of the 4-vector
potential /A, A%, A% = (¢, A). The latter is Lorentz-
invariant [17], and remains such after being averaged over
relativistically invariant phase 7. Thus, the expression
for meg, invariant to relativistic transformations, can be
put in the following form:

e2
Mer = m\/l + W (AO(AOC) (14)

The expression (14) for the effective mass was also given
in Refs. [8-10] where the average particle motion was
studied otherwise.

Reverting to the formula for the drift Lagrangian (5)
with the effective mass given by (13), the canonical mo-
mentum of the guiding center motion Py equals the
phase-averaged kinetic momentum p = megyovg, and
thus the Hamiltonian function of the guiding center mo-
tion can be put in the form

Hy = y/mZzc* + Pic?, (15)

where meg may smoothly depend on the guiding center
location Rg and time ¢ if the wave envelope, the particle
interacts with, is slightly nonuniform or time-dependent:

I>r., T>A, (16)

where [ and T are the spatial and the temporal scales of
the wave envelope inhomogeneity.

The Hamiltonian function (15) was previously derived
in Ref. [13] by performing a sequence of canonical trans-
formations of the original motion equations. In the
present paper, we showed how this complicated proce-
dure can be avoided. In addition, the proposed approach
allows easy generalization of the drift Lagrangian and
Hamiltonian formalism on the case when the oscillating
particles undergo weak acceleration by large-scale low-
frequency forces satisfying (16). TInteraction with addi-
tional forces of such kind enters the expression for I
additively and, what is most important, can still be con-
sidered 1n the framework of the effective mass concept.

To show this, consider an oscillating relativistic parti-
cle interacting with a field governed by the 4-vector po-
tential Aj, = (¢bg, Abg), where the subindex “bg” stands
for a background field, additional to the one of the laser
wave. Assume that the field is weak in the sense that

eFyg [Yomege K w, eBrg /Yomerc < w, (17)

where Ey; and By, are the corresponding electric and
magnetic fields. In this case, the background fields do

not impact the oscillatory motion significantly. Thus,
averaging of the kinetic term mec? /v in the Lagrangian
leads to the same expression as in Eq. (5) with meg given
by Eq. (14). In the zeroth-order approximation with
respect to the small parameters (17), the average part
of the Lagrangian corresponding to particle interaction
with the background field can be expressed in terms of
the quantity A = (¢o, Ag) given by

A = <Agg (Ro +7.) > (18)

The time-averaging procedure is invariant with respect
to changing the drift frame of reference, i. e. does not
alter the Lorentz transformation properties of the quan-
tity being averaged. Thus, A§ represents a true 4-vector
and can be considered as a new, effective electromag-
netic field. In terms of this field’s potentials, the drift
Lagrangian can be put in the following form

Lo = —megc®y /1 — v/ + (e/c) (vo - Ag) — edo. (19)

In certain applications, it is of interest to consider the
interaction with background fields having spatial scale [
comparable or small compared to the amplitude of par-
ticle oscillations r.. If the drift velocity 1s small, such
that the drift displacement on a single period vgA is small
compared to [, the ponderomotive description still can be
applied. However, in this case the difference between the
time-averaged potential A§ and the true potential Ag‘g
taken at the location of the guiding center Ry, is crucial.
For example, this situation is realized in the problem of
Coulomb scattering in intense laser fields when r. ex-
ceeds the radius of effective interaction — see, e. g., Refs.
[14-16]. For the latter, the considered Lagrangian ap-
proach represents a unique tool for studying both pon-
deromotive and even stochastic behavior of particles be-
ing scattered. This problem, however, deserves detailed
consideration and will be discussed in future works. The
important thing we would like to emphasize about Eq.
(18) in the present context is that the amplitude of the
effective potentials for a relativistic particle is the same
than for a nonrelativistic one, and the only difference is
provided through the change in the oscillatory trajectory
7. to be averaged over.

Since, in the case of relativistic drift, . depends
on vq, the expression for canonical momentum Py =
0Ly /dvy becomes complicated and so do the drift motion
equations. However, in two special cases of interest, those
can be simplified. In a large-scale background field satis-
fying the conditions (16), locally, Apg can be treated as
a linear function of r. Therefore, the velocity-dependent
part averages out when calculating the potential Af, and
one gets Af & Ag,. Thus, the drift canonical momentum
equals Py = megyovo + (e/¢) Apg, and the Hamiltonian
function is given by

Hy = \/mzﬂc4 + (Po — (6/C)Abg)2 c? + €Phg, (20)



where the potentials are assumed to be slow functions of
Ry and t. The guiding center motion equations can be
put in the covariant form

dRg _ pg dpy
dr ~ meg’ dr

e
= EFg‘gﬁ Us — ¢
where Ry = (ct, Rg) is the 4-coordinate of the guid-
ing center, p§ = (&o/c, Meryovo) is the drift kinetic
4-momentum, £ = megyoc’ is the energy of the guid-
ing center motion, ngﬁ is the electromagnetic field ten-
sor corresponding to the potential Af, [17], and U* =
Yo(e, vo) is the guiding center 4-velocity. Without deriva-
tion, the above equations were also given in Ref. [9].

From Eq. (20), it follows that in low-frequency large-
scale background field, the guiding center of a relativistic
particle moving under the action of intense laser radia-
tion behaves as a particle with the effective mass meg
drifting in the same background field. For example (and
in coincidence with the results obtained in Ref. [9]),
in static magnetic field By, the guiding center under-
goes Larmor motion with cyclotron frequency given by
wp = eBbg/'yomeﬁvc. Conventional expression for the
drift velocity in nonuniform magnetic field [17] also read-
ily applies to the average motion if the particle true mass
is replaced with the one given by Eq. (14).

In addition to the case of large-scale background fields,
the guiding center motion equations can also be put in a
simple intuitive form in the case of nonrelativistic drift
motion. Since the drift velocity enters the expression for
A§ only through relativistic dependence of #. on vg/e,
then, in the case vg < ¢, AT /vy can be neglected.
In this case, the drift canonical momentum is given by
Py = megvo+ (e/c) Ag, and the Hamiltonian can be put
in the form

1
B Qmeff

e 2
Hq (Po—ZA0) +merc® 6o, (22)

where the effective mass meg and the potential energy
Ve = Megc? + edp may slowly depend on the guid-
ing center location Ry and time ¢. Note that even in
uniform laser field, Vieg may differ significantly from
eV ¢rg when the amplitude of particle oscillations r. ex-
ceeds the spatial scale of the background field I [14, 15].
The regime of slow drift motion superimposed on rela-
tivistic oscillations is the one, which is actually realized
in many current experiments on intensive laser pulses in-
teraction with rare plasmas. This fact makes the above
analysis especially useful from the practical point of view,
as 1t represent a simple tool for studying the actual ex-
perimental data. Finally, the well-known nonrelativistic
ponderomotive potential [4] can be readily derived from
Eq. (22) by keeping the correction to the effective mass,
linear with respect to the wave intensity (see also Ref.

[12]).

In summary, we showed that oscillating particles im-
mersed into low-frequency background fields behave ex-
actly like drifting particles with effective mass depending
on the intensity of the laser field. The intuitive expec-
tation that, by the order of magnitude, the drift motion
equations must coincide with those without the laser field
if the appropriate relativistic correction of particle mass
is introduced, can now be considered proven for various
types of background fields. The proposed formulation
can be useful for studying a number of plasma phenom-
ena taken place under the action of intense laser radia-
tion.
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