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Abstract

The purpose of this paper is to show that recent data on the ground—state
band and excited states based on the 03 level in *°Nd and '*2Sm, especially
the measured B(E2) values, can be well described by including a AK=0 cou-
pling between rotational bands. This is contrary to recent statements in the
literature. The experimental data are compared with models which have sup-
ported the widely differing interpretations of these transitional nuclei. These
interpretations include describing excited states as rotational excitations of
single—phonon states, the multiphonon ‘phase coexistence’ picture, and the

X(5) critical-point description.
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The N=90 nuclei, '*°Nd and '**Sm, are often called transitional nuclei. Lighter isotopes
display vibrational-like spectra while heavier isotopes show more rotational-like behavior.
In particular, ¥?Sm has been the focus of many theoretical and experimental investigations.
Historically, excited states in this nucleus were described as rotational excitations of single—
phonon states (# and + vibrations) with deformations similar to that of the ground-state
band [1-6]. An alternative description reinterpreted the non—yrast states in terms of multi-
phonon configurations based on near—spherical shapes [7-11]. This has been called the shape
‘phase-coexistence’ description. Interest in *Nd and '*?Sm has been heightened with the
suggestion that they represent the ‘empirical realization of a critical-point description’ of
a ‘first—order phase transition’ (denoted as X(5)) from a spherical to an axially deformed
shape [12-14].

The issues raised in the interpretation of the excited level structure of these nuclei has
spurred several new experimental studies which have yielded extensive new data, including
accurate B(E2) values [9,11,14]. It has been claimed that the ‘level spacings and B(E2)
values cannot be the result of simple mixing of pure rotational bands’ [10] and that the
multiphonon or X(5) interpretations give a more accurate description. In this paper, we
will show that the available data on °Nd and '"2Sm, especially the B(E2) values, can be
well described by mixing between rotational bands as discussed by Bohr and Mottelson
[15]. Specifically, we will consider the rotational-coupling effects in the AK=0 transitions
between the ground-state rotational band and the excited K*=07 ‘3-vibrational’ band. A
microscopic justification of the parameters we extract for '%2Sm is found in the Pairing-
Plus-Quadrupole model of Kumar [4,5].

We start by assuming that the structures based on the 03 states in *°Nd and '*2Sm are
rotational bands with deformations very similar to those of their respective ground—state
bands, as would be expected if the 0F states were B-vibrational levels. We now follow
the prescription found in [15] for describing the effects from mixing the two bands by an
effective AK=0 coupling. The amplitudes for the E2 transitions between the excited band

and ground—state band deviate significantly from the leading—order intensity relation:



B(E2;I; — 1) =< 1,020|1;0 >* M} (1)

where My is the intrinsic matrix element for the transition. This is shown in Fig. 1, where
the data points would lie on a horizontal line if Eqn. 1 held. If one allows a coupling between

the two bands, the interaction leads to mixed states such that:

|6I >= Oé|01 > —6|02 > (2)

0 >= a0, > +5]0; > (3)

where [0; >, |0, > (|0; >, |0, >) are the unperturbed (perturbed) wavefunctions and

a?+3%=1. The amplitude, 3, may be written as:
B=(+ R+ VR 1)) (4)

with, R = AE/2V where AE represents the difference in energy between the unperturbed
states and V is the interaction matrix element. The interaction matrix element may be

expanded [15] as':
Vi=h (I +1) + hoIP(1 4+ 1) + ... (5)

The h,, coefficients are matrix elements related to intrinsic (rather than rotational) operators.
Taking the principal term, and in the limit where V< AE, we find the mixing amplitude

may be written as:

V hq
Brip gl +1)=clll+1) (6)

With 3% <1 then we may rewrite the coupling of the two bands in the form given by Bohr

and Mottelson [15]:

0, >~ |0y > —eol (I 4 1)|0, > (7)

0 >~ |05 > +eol (I +1)]0; > (8)

LA constant term in the expansion renormalizes the intrinsic matrix element, M;.

3



This mixing will affect the E2 transition strengths between the bands such that they obey

the relationship:
B(EQ, ]2 — ]f) =< ]2020|]f0 >2 (Ml + MQ(]Z(]Z + 1) - ]f(]f + 1)))2 (9)

where My is the contribution to the transition matrix element which we attribute to the

[ 5
M2 = 16—77606620 (10)

The data in Fig. 1 are consistent with the generalized intensity rule given by Eqn. 9. The

AK=0 coupling and is given by:

fact that the data in Fig. 1 can be fitted with a straight line immediately reveals that
mixing between these two rotational bands can provide a consistent picture of the transition
strengths between the two bands. Deviations from a straight line would indicate effects that
we have not included such as unequal quadrupole moments of the two bands or multiple
band mixing. We can extract values of My and My from the data and these are also given
in Fig. 1. Using the values of My extracted from the data in Fig. 1, and the quadrupole
moments as deduced from the B(E2; 2f — 0f) values for the ground-state bands [11,14],
from Eqn. 10 we estimate values of ¢y ~ —0.012(3) and ~ —0.007(1) for "°Nd and '*?Sm,
respectively. Note, Eqn. 9 is only valid if the mixing amplitude, 3, is sufficiently small and
we find that this approximation begins to break down for I>6. The data points in Fig. 1 do
not reach beyond this limit.

The band mixing also implies corrections to the E2 matrix elements within the ground-

state band which can be written as:

5
B(E2I; — I;) = FJQ@ < 1;020]1;0 >* (1 + o(L(L; + 1) + [;(1; +1))? (11)
™

/1
o= — 67T 60M1 (12)
5 elo

The parameter « is usually called the stretching parameter since it is a measure of the

where the « is given by:

increasing deformation of the ground-state rotational band due to mixing with the K™=07
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band. Using the values of the matrix element M; (from Eqn. 9 and Fig. 1), the mixing
amplitude, ¢ (from Eqn. 10), and the measured quadrupole moments from the ground-
state-band B(E2; 2 — 0f) values, we find values of a ~2.3(7)x107% and o ~1.1(2)x 1073
for °Nd and '°2Sm, respectively. We can now see how well these values compare with those
extracted from the measured ground—state-band B(E2) values. This is shown in Table I.
The second column gives the experimentally measured B(E2) values for transitions up to
the I=6 state in the ground-state bands of '"*Nd and '"?Sm. 1In the third column we
present the B(E2) values calculated assuming that the quadrupole moment throughout the
band is a constant and has the same value as that extracted from the B(E2; 2 — 07) value
(Qo=5.23(4) eb and Qp=5.90(6) eb for **Nd and '**Sm, respectively). In the fourth column,
we give the value of the parameter « required by Eqn. 11 to reproduce the measured values.
The values of « extracted in this way are in fair agreement with the value as determined
from Eqn. 12. It is interesting to note that the change in the quadrupole moment in %2Sm
which results from the mixing is consistent with the measured isomer shift between the 27
and 07 levels [16].

We now look at the effect of the mixing on the state energies. In general it is possible to

express the energies of states in a rotational band in terms of an expansion of the form:
E=AII+1)+BI*(I1+1)*+ .. (13)

In Fig. 2, we show such fits for the ground-state bands in '**Nd and '*?Sm including only
the first two principal terms (the extracted values of A and B are shown). It is well known
that, for nuclei in this region, including higher terms in the expansion does not give a rapid
convergence and the expansion coefficients are rather poorly defined. (The energy can be
expanded in powers of the rotational frequency rather than angular momentum [17] and
such an expansion typically has a more rapid convergence). Within our approximations, the
mixing should give rise to a correction of the energies in the ground—state band proportional
to I*(I+1)%. The constant of proportionality (the change in the expansion parameter, B)
will be approximately ABa—e2(E(03)-E(07)), yielding values of ABa-97(34) eV and ABa—
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34(7) eV for *°Nd and "*Sm, respectively. We should also see a correction to the energies of
the 0 ~band equal in magnitude but opposite in sign. The data do not show such shifts and
our simple two—band-mixing picture fails. As can be seen in Fig. 2 (from the plot for the
03 band in '»2Sm which is known to much higher angular momentum than the analogous
band in "°Nd), the 0§ -band is clearly rotational like, but has a moment of inertia 10—
15% larger than the ground-state band. It is not so surprising that additional physics is
required to explain the exact state energies since we know that the parameters in the energy
expansion of Eqn. 13 are very sensitive to deformation and pairing effects. However, the
‘phase coexistence’ picture (which regards the states based on the 03 levels as near spherical
multiphonon excitations) and the X(5) critical point description, fare considerably worse in
their estimate of the level spacings of the excited states (see below).

In Fig. 3 we compare the experimental values for the interband E2—transition strengths
in 2Sm (which over the years has received far more theoretical attention than *°Nd) with
calculated values from the Pairing-Plus—Quadrupole (PPQ) model [4,5], the Interacting Bo-
son Approximation (IBA) [9], the Geometric Collective Model (GCM) [10], and the X(5)
critical-point description [12,13]. In Fig. 4 we compare the experimental level scheme with
those calculated from each of these theoretical approaches. In order to get a more quanti-
tative comparison of theory and experiment we follow the prescription in [6] and deduce a

figure of merit, y2, for each model where:

1 B(EQ)ex t B(EQ)model
2 P
Xy - N —v—-1 Z(

)* (14)

Oexpt

In this expression, .., is the experimental uncertainty in the measured B(E2) value, N
is the number of data points (we use a total of 10 data points corresponding to transtions
between the states as shown in Fig. 4), and v is the number of free parameters for each
model. We have used values of v=2, 2, 4, and 1 for the PPQ, IBA, GCM, and X(5)
models, respectively, as described in the relevant papers [4,5,9,10,12,13]. In Table II we

compare the experimental and calculated B(E2) strengths, give the deviation (which we

define as D= L2E2eapi=B(E2)moder )

Texpt

, and present the resulting figures of merit. The PP() model



most closely reproduces the inter- and intra-band B(E2) values and provides a reasonable
microscopic justification for the parameters we have extracted from the band—mixing analysis
as can be seen in Fig. 3. The IBA and GCM have evident problems in accurately reproducing
all the B(E2) values especially for some of the interband transitions. The X(5) description
does the worst job, particularly in reproducing the interband B(E2) values.

From Fig. 4, it can be seen that there is a large variation between different model
predictions of the state energies. The PP(Q) best reproduces the experimental state energies.
The IBA and X(5) models are able to reproduce the yrast energies and the position of the
excited 07 state reasonably well. However, the GCM, IBA, and X(5) descriptions fail to
reproduce the energies of the 23 and 47 states.

The differences between the theoretical models can be understood in terms of their
derived potentials. The PP(Q model describes the excited states as a rotational band based
on a ( vibration with a deformation very similar to that of the ground-state band. The
03 B-vibrational band-head is confined within the same deformed minimum as the ground-
state. The IBA and GCM approaches have been used to justify the shape ‘phase coexistence’
picture. The yrast states are described as a deformed rotational structure while the excited
states are more spherical and are regarded as multiphonon excitations built on the 0F state.
The wavefunction of this state is not confined to the deformed minimum and is spread over
a range of [ deformation. The X(5) critical point description approximates the potential as
a square well and its one free parameter (energy scale) is adjusted to reproduce the yrast
energies. From the discussions above, it is clear that the ‘rotational-like’ description (PPQ)
does well in reproducing both the transition strengths and state energies. The ‘phonon—
like” descriptions (IBA, GCM, and X(5)) are generally worse in describing the interband
transition strengths and are especially poor in reproducing the intraband energy spacings of
the excited states.

In summary, we have shown that the available data on the ground—state band and excited
states based on the 07 state in '**Nd and '**Sm, including measured B(E2) values, can be well

described by a coupling between rotational bands as expected if the 0F is predominantly a /3



vibration. This is contrary to recent statements in the literature. A microscopic justification
of the parameters extracted is found in the Pairing—Plus—Quadrupole model. While it is
likely that 0F is not a pure 3-vibration (see, ref. [18] for a recent review of 03 states in
deformed nuclei and their characterization as § vibrations), describing the level sequence
based on this state as rotational, and including an effective AK=0 coupling to the ground-
state band, reproduces salient features rather well and provides the best presently available

description of states in these transitional nuclei.



TABLES
TABLE I. Comparison between the measured B(E2)’s in the ground-state band, the B(E2)’s

extracted assuming a constant quadrupole moment and no mixing (a=0), and the values of «

required to reproduce the experimental values.

150Nd B(EQ)EXPT (eb)2 B(EQ)Q0:5.23(4) (eb)2 « (><103)
2—0 0.544(9) 0.544(9) -
4—2 0.862(9) 0.778(12) 2.0(2)
6—4 0.994(9) 0.857(13) 1.2(1)
1528m B(EQ)Q0:5.90(6) (eb)2

20 0.693(14) 0.693(14) -
4—2 1.007(14) 0.990(20) 0.4(3)
6—4 1.180(24) 1.091(22) 0.7(2)




TABLE II. Comparison between the B(E2) values (in W.u.) in '3*Sm and the predictions of

the different models. The deviation, D,,,4¢;, between the model prediction and experimental value

is given for each transition and is defined as:

DI B(E2)ea:pt_B(E2)mOdel

Texpt

, where 0., is the uncertainty

on the experimental B(E2) value. A figure of merit, x2, is also given where v is the number of free

parameters for each model (v=2, 2, 4, 1 for the IBA, PPQ, GCM, and X(5), respectively — see

text). The figure of merit is defined as y?2

L__ 5" D2, where N is the number of data points.

-~ N—-v-1

Transition| EXPT | IBA| Dipa || PPQ| Dppo | GCM| Deon || X(5)] Dy
2; —04 144(3) || 144 0 134 3.33 138 2 144 0
4y —2 209(3) | 216| 2.33 206 1.00 208 0.33 228 6.33
2, —0y || 111(27)|| 89 0.81 154 1.59 93 0.67 114 0.11
4y —29 || 204(38)| 140|  1.68 230 0.68 163 1.08 173 0.82
0, —2¢ || 32.7(22)| 55| 10.14 43 4.68 44 5.14 91 26.5
27 —04 0.92(8) | 0.1| 10.25 0.7 2.75 3 26.0 3 26.0
27 =21 5.5(5) || 10 9.00 6.0 1.00 9 7.00 13 15.0
27 —41 || 19.0(18)| 20 0.56 29 5.56 25 3.33 52 18.3
4y —24 0.7(2) || 0.1 3.00 0.04|  3.30 2 6.50 1 1.50
4o —dy 54(13)| 8 2.00 5.6 0.15 9 2.77 9 2.77

X5=44.4 X3=12.5 X3=163.6 X3=248.6
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FIGURES
FIG. 1. Plots of M = (B(E2;I; —1;)/<1;020[1;0>2)"/2 as functions of 1;(I;41)-1;(T;+1). The
linear fits to the data are shown by the straight lines and the values of the parameters My and My

(see Eqn. 9) are given.

FIG. 2. Plots of the excitation energy versus I(I41) for states in the ground state bands (open
circles) in '"°Nd and '52Sm. The solid lines are fits including all the levels in the bands. The
parameters A and B (see Eqn. 13) from these fits are also given (in keV). For *2Sm we also show
the excited states (open squares) based on the 0] state (the 3—vibrational band) and the result of

a similar fit to this sequence.

FIG. 3. Plots of I(Is4+1)-I;(I;4+1) versus M (defined in the caption of Fig. 1) for %2Sm. The
experimental points are shown as solid circles, the solid line is the fit to the data using Fqn. 9.
Each panel then compares these values against predictions from the various theoretical calculations
of the PPQ model [4,5] (top left), the IBA [9] (top right), the GCM [10] (bottom left), and the

X(5) description [12,13] (bottom right).

FIG. 4. Comparison between the experimental partial level scheme for !%2Sm and those calcu-
lated from the theoretical models discussed in the text. The widths of the arrows are proportional

to the B(E2) strengths of the transitions.
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