Developing for the Oracle Internet Platform

BUILDING A HIGH PERFORMANCE JAVA SERVLET E-BUSINESS
APPLICATION USING JSERVER AND ORACLE WORKFLOW

Dereke Mathieson, CERN
James Purvis, CERN

INTRODUCTION

It is estimated that business-to-business E-commerce will reach US$2.8 trillion by 2003. Attracted by dramatic returns
on investment, E-commerce is a key component of nine out of ten companies’ business plans. At CERN, in the heart
of Europe, we believe that the first step and key to successful business-to-business E-Commerce is the
implementation of organization-wide E-commerce. This is precisely what has been achieved and built using Java
Setvlet technology and Oracle Workflow.

SETTING THE SCENE

Imagine you are an employee of an organization and you need to purchase some goods. You open up an electronic
catalogue, select your items and make the purchase. You are told that all of the goods will be delivered to your office
within 24 hours, except one item that will be delivered to you direct from the Swiss supplier within 48 hours. While
your browser is open you decide to also apply for the ‘Oracle 8/’ training course that is currently being run, and to
register your holidays that you will be taking next month. All this is achieved in the matter of a few mouse-clicks.
Minutes later you receive confirmation that a place has been reserved for you on the training course and that your
holiday request has been approved by your supervisot’s deputy (since your direct supervisor was absent today). Gone
are the days of paper purchase requisitions and other forms circulating around the organization, now all you need to
purchase, apply for training, obtain manpower, import/expott goods, go on vacation and much more is a browser.
All of these tools atre electronically available on the Web. If you can paint this picture in your mind then you have just
painted a picture of the current working

environment and the E-commerce tools ‘E-commerce is a key component of

available in CERN. . . , .
CERN nine out of ten companies’ business

CERN is the world’s leading particle physics research laboratory. Some 6,500 scientists, half of the world’s particle
physicists, use CERN’s facilities. CERN’s business is pure science, exploring nature’s most fundamental questions.
The laboratory’s tools, particle accelerators and detectors, are amongst the world’s largest and most complex scientific
instruments. CERN is currently working on the construction of a new 27-kilometre accelerator, the Large Hadron
Collider (LHC) which will not complete until 2005. When CERN was established in the 1950s it set the standard for
European Collaboration in science, with the LHC it is set to become the world’s first truly global laboratory.
However like many businesses in the current economic climate, CERN is expected to continue growing while staff
numbers are planned to fall in the coming years, in essence achieving higher productivity with less resources. One way
of achieving this is with the use of fast, efficient and streamlined organization-wide electronic workflow.

WORLD WIDE WORKFLOW

Amongst computer scientists, CERN is more often remembered as being the birthplace of the World Wide Web
(Tim Berners-Lee & Robert Cailliau), than an organization where several Nobel Prizes of Physics have been achieved.
In this context, it is important to remember that the World Wide Web was developed in order to meet the needs of
CERN physicists, collaborating and exchanging information in a global physics community. Similarly, an
organization-wide E-commerce system at CERN must be available and meet the requirements of the physicists and
engineers working or collaborating with CERN, whether they are on the CERN site in Geneva or working from their
home institutes in California, Moscow or Delhi. Currently, CERN collaborates with over 500 such institutes around

Paper #517

Developing for the Oracle Internet Platform

the world. To provide a concrete example, an engineer working on a design in Finland may order some material from
a British suppliet, to be delivered to CERN in Switzerland, but to be paid for by a US — European collaboration. This
requires the purchase requisition to be initiated in Finland, authorized simultaneously in Europe and in the US, and
the goods delivered in Switzerland. With the worldwide workflow system that has been implemented, this can easily
be accomplished in less than 24 hours from goods request to delivery.

MULTI-LINGUAL

In the previous example, we omitted to mention that while the Finnish engineer working in Helsinki would more
than likely look through the catalogue and complete his information in an English version of the system, when the
request came to say France for authorization, the French counterpart would like to see the component details, the
form and everything in their web browser in French. Thus the system must not only be worldwide, but it must be
multi-lingual.

EDH

EDH (Electronic Document Handling) is the three-letter acronym given to CERN’s internal E-business application.
EDH currently has over 5000 active users with over 1000 different users a day. An electronic document is processed
every 20 seconds. The system is multilingual, web-based using a Java Setrvlet architecture, and runs Oracle Workflow
as the routing engine. Using EDH one may:

* Purchase any of 16,000 standardized items from the CERN Stores Catalogue.

* Make a purchase requisition that will be processed and transmitted to any of CERN’s 20,000 suppliers.
* Make a purchase requisition for any new supplier in the world.

* Request for the importing or exporting of goods.

* Request to attend a course from our on-site training catalogue.

* Request to attend external training, conference or other event.

* Request and plan your vacations.

* Request overtime compensation.

* Request additional human resources for a project or activity.

The above procedures cover most of the large administrative areas resulting in electronic-forms only (i.e. no paper
forms are used any longer for the above procedures). This equals approximately 100,000 electronic forms a year.
Other smaller, low-volume procedures are also under consideration for integration into EDH.

EDH understands the organization’s structure, roles and responsibilities and may hence use this knowledge to
streamline procedures even further. For example, EDH will never send a document to somebody who is absent. If a
person does not sign a document within a given timeframe, then the document may automatically be routed to a
deputy or somebody else with equivalent responsibilities in that domain. The net result is a streamlining and
standardization of procedures across the organization meaning that the average processing time of an E-document is
less than a few hours compared with days if not weeks for the previous paper version.

E-COMMERCE: PAST, PRESENT AND FUTURE.

EDH was developed initially as a Client-Server system (running for PCs, Macintosh and X-windows) in 1991. Even
with the client-server version, the benefits were almost instantaneous: reduced delays, streamlining of procedures and
no duplicate data entry. However, many of our customers were off-site and could not easily run the client-server
version from other countries. By 1995, a Web read-only client was available and it was possible to authorize requests
using the Web anywhere in the World. By 1996, the first E-documents became available on the Web, and in 1998 the
decision was taken to phase out the Client-Server version and replace it with a fully functional Web version built upon
Servlets, Enterprise Java Beans and Oracle Workflow.

Currently much more functionality is available on the Web than was ever available on the client server version. For
example it is possible to ask the Web version to ‘probe’ our materials management software (Baan) in order to

Paper #517

Developing for the Oracle Internet Platform

provide the user with estimated delivery delays based upon the product / supplier selected. Additionally certain
purchase requisitions are processed 100% electronically, transmitted automatically to the supplier without the
intervention of a Purchase Officer.

Despite the above achievements we see that there is still a significant step to be taken and this is to move from
internal E-commerce to true business-to-business (B2B) E-commerce. To see what is the right direction in order to
take this step, it is perhaps important for us to define what we think is B2B E-Commerce is not.

For us, the following is not B2B E-commerce:

* Suppliers providing us with portals to type our purchase requests into their catalogue. Is an employee in your
organization who orders a book from Amazon.com performing a B2B transaction? For us the answer is NO.

* Manual transferring of purchase requests from our system to a suppliers Web based system (we do this

already)
* Sending of purchase requests by FAX or EMAIL (we do both of these already)

* Any unidirectional or bi-directional transfer of data which requires manual intervention at either point in
order to transmit or receive the data (we do this already)

* Making available the purchase order to the suppliers via an https Web interface (we do this already)

We are looking at bi-directional, 100% automatic, error-free exchange of information between businesses or
communities with no manual intervention in order to provide a net value-added benefit (e.g. reduced delivery delay,
price reduction etc). For example, when a user makes a purchase requisition for a product at Oracle, this would be
automatically transmitted to their purchasing system, and the delivery delay would automatically be returned to our
system so that the user knows when the goods ordered will be delivered. This for us is the beginning of Business-to-
Business E-commerce. EDH provides the first step in this direction, so let us examine this system and its
requirements in more detail.

THE EDH WEB SERVER

When describing a Web Site as ‘high performance’ we need to quantify what we mean, the EDH Web Server
processes around 50,000 hits on an average day. Although to some readers this may seem relatively low, the EDH
server already suffers from most of the problems faced by sites with much higher hit rates. The techniques that we
used to support our 5,000 on-line users are applicable to almost any web site.

SERVER PERFORMANCE

The Hit Rate of a Web Site is an important measure of the sites performance. Unfortunately like many similar
measurements in the computing industry it is subject to some interpretation. A 5zt on a Web Site can mean many
things to different people. On some sites the downloading of a file counts as a hit. That means that a web page with
10 graphic images on it would count as 11 ‘hits’. Ten images per page is a low figure for many web sites; at the time of
writing the Oracle home page included 24 different images (many of which were repeated, making 159 in total). On
our web site a typical EDH document page contains no more that 10 images, all of which are re-used throughout the
site, meaning that a users browser will usually cache the image and not re-request it after the first time it is needed.

On the EDH web site we can make use of the fact that all of our users need to identify themselves to the web server
before they can access the site. Currently, on an average day around 1000 users visit the EDH site.

SESSION TRACKING

As with most e-business web sites, the EDH application is interested in setting up a dialog with our clients,
presenting them with a series of linked web forms until they have completed their task. This naturally implies that we
need to store some information about the progress of their task on our setver. Since the HIT'TP protocol is ‘state-less’
we have no way of determining if the user will ever complete their task. If we do not manage this correctly, we
potentially have to store information about an infinite number of partially completed tasks. One of the most

Paper #517

Developing for the Oracle Internet Platform

important parts of any servlet environment is its ability to track a particular users interaction with the server; this is
termed session tracking.

The first challenge in session tracking is overcoming the ‘state-less’ HI'TP protocol. There are two common ways of
achieving this.

7. URL REWRITING

With URL rewriting every URL on every page sent to the user is specially modified to contain a unique ‘key’ that
identifies the session. You have probably already used sites like this yourself, they are easy to identify since the URL
that you are using often appears as a long hexadecimal string.

This is the most reliable form of session tracking, as it does not make use of any special features (such as Cookies) on
the client browser. The primary disadvantage of this approach, is the cost of re-writing every URL on each page.

2. COOKIES

A Cookie is a small piece of information that is sent to your browser from a Web Server. This data is accepted by
your browser, checked for length, expiration date, path and domain then saved. When a user clicks and visits a page
the browser checks the URL of the page against its cookie database, if it has a cookie that matches the domain and
path of the link it will send the cookie to the server along with the request for the page. When used for session
tracking the cookie is set to contain a unique ID number that identified the users session on the server. Since the
same cookie is sent every time they access a page, it is relatively easy for the web server software to identify the user.

MEMORY USAGE AUTOMATIC GARBAGE COLLECTOR
Critical to any multi-user application is the issue of memory usage.
Many developers feel that by introducing an automatic garbage collector
(see sidebar) into the Java Virtual Machine, the designers of Java solved
all of Java applications memory management problems. In some
respects this is true, since many of the old ‘memory-leaks’ common in
older applications written in C or C++ have now been eliminated,
although Java has replaced these with its own type of memory leak.

The automatic garbage collector in Java
is implemented as a separate low-
priority threadt. It is responsible for
recycling (i.e. marking it as available)
memory within the JVM. Memory
becomes suitable for recycling, as soon
as no object has a reference to it.

One of the most common memory leaks in Java is caused by the use of | Normally when a method returns to its

Java’s collection classes (Vector, ArrayList, Hashtable, HashMap, etc.). caller, all of the temporary objects that it
When collections have a lifetime that is the same as the class (static created are ready to be recycled.
members), it is vital that it is possible for the collection to be emptied Unfortunately although the memory

at some point. It was a common problem in eatly Java Swing occupied by these objects is no longer
applications that some of its internal collections were impossible to needed, it cannot be reused until after
clear, and could grow without bound in long running applications. In the garbage collector has marked it as
fact Oracle’s own thin (all Java) JDBC driver exhibits a similar (very available.

slow) memory leak. An excellent tool that we have used to highlight Tn busy JVM (serving many users
memory consumption problems in Java is a product called Optimizelt simultaneously) the garbage collector

from Intuitive Systems, Inc. (http://www.optimizeit.com). being a low-priority thread, runs very

PERFORMANCE infrequently, and in fact it can happen
that the JVM can appear to run out of

memory when in fact there is still a lot
of memory that could be reused.

In the final analysis, the performance of a web site (in terms of the
users experience) is the most important measure of a sites future. If a
visitor to the site expetriences poor response times, loss of information,
or even worse loss of service during the completion of a transaction,

T A Thread another name for a lightweight process. In Java many threads run at the same time, and in the same memory space.
Your application runs as one or more threads, along with other specialized system #hreads that are responsible for managing the
resources on you Java Virtual Machine

Paper #517

http://www.optimizeit.com/

Developing for the Oracle Internet Platform

they are unlikely to feel inclined to visit again. In our application we have the relative luxury of having a user base that
has no alternative other than to use our site, but that in no way makes us complacent. In fact we are very aware that
the service we provide needs to be as high a quality as possible.

There are many factors that can affect the users experience of a web site, some of which are out with our control,
such as the quality of the network between our network and the users (CERN operates one of Europe’s Internet
eXchange Points meaning it is rare that CERN’s connectivity is a problem).

What we can control, however, is the quality of the hardware and software that we use to implement the application.
For our site we use a Sun Enterprise 450 running SunOS 5.6 with four 300Mhz CPUs, 2Gb of physical memory and
165Gb of disk. Network connectivity is provided by a 100-Mb Fast Ethernet connection.

Our web server is a Netscape Enterprise Server version 3.5.1, accesses to the EDH Servlets are load balanced across
20 Java Virtual Machines each with an allocation of 64Mb of RAM (mote on this later).

WHY JAVA?

In the past EDH had been built using a variety of technologies. Many of the programmers that worked on the project
were students or postgraduates with limited experience and short contracts. The result was a system made by many
different people and using many different technologies. At one point EDH had components written in C, C++, Java,
PL/SQL, PRO*C, Python, Petl, and prolog (we don’t know why we had a tendency towards languages beginning
with the letter P!). In the end it left us with a system that was almost impossible to maintain. Two years ago we began
a project of re-engineering the EDH application. An important goal in this exercise was to rationalize the number of
technologies down to one.

Java’s background of being a safe language for running inside clients web browsers also makes it very suitable for
writing very stable applications within the server environment. The architecture of the Java Virtual Machine is such
that it is continually checking the operation performed by the application, and prevents errors in one part of the
system from affecting others.

Sun identifies “Write once, run anywhere’ as the ‘core value proposition’ of the Java platform. What this means is that
is possible for us to develop and test our application using inexpensive PCs, and when it is ready, the binary can be
copied to and run on our Sun Server without modification.

Java's portability and stability comes with a cost however, Java programs run somewhat slower than programs written
in more traditional languages (such as C or C++). Although, since EDH is an interactive application, it spends most
of its time waiting for user input, so speed is less of a concern.

Finally, we chose Java because it is an object oriented language, thus enabling us to make use of modern design
techniques, and developers are between 30% and 60% more productive compared with C or C++. Since October
1998 there have been around a quarter of a million lines of Java Code written for the EDH application, by an average
of around 5 full-time programmers.

CODING STANDARDS

With sufficient financial resources it is possible to build very high availability hardware systems, with ‘hot-swappable’
components, built in redundancy, and transparent ‘fail-over’, but all of this would be pointless if the underlying
application software was of poor quality.

Along with the adoption of a single language for the implementation of EDH, we also adopted strict coding
standards, with design and code reviews. We based most of our standards on the Sun Java coding standards, although
we have also borrowed some ideas from C++ styles. Although introducing these practices took some effort in the
beginning, we can now easily see the improved quality and reliability of our system. We are firm believers that these
practices are essential to running a service such as the EDH application, owing to its large user base, and their

demand for very high availability.

JAVA VIRTUAL MACHINES

The Java language achieves its hardware independence by operating on a standardized, virtual computer system. All
real computer systems must exzulate this virtual computer system using a program called the Java Virtual machine.

Paper #517

Developing for the Oracle Internet Platform

The choice of Java Virtual machine can have a large influence on the overall performance and stability of a Java web
site. Currently there are three commercial Java Virtual Machine implementations for Sun Hardware.

SUN JVM (CLASSICAL)

The original Java Virtual Machine provided by Sun operated around a simple interpreter that translated each Java
instruction into equivalent instructions for the local hardware, each time they were encountered. Java threads were
also simulated in software (so called green threads) in order to simplify the design. Although this technique worked well,
the resulting performance was quite poor. More recent implementations from Sun make use of native operating
system threads (allowing the JVM to exploit multiple CPU hardwate platforms) and are based around Just-In-Time
(JIT) compiler technology. With a JIT compiler, the JVM software is able to compile large groups of Java instructions
into blocks of equivalent native instructions. The JIT compiler runs within the JVM at the same time as the
application. Although the performance increase can be dramatic (around a factor of 4), a JIT compiler is limited by
the fact that it has to complete the translation very quickly, and can perform very few optimizations of the resulting
native code. If a JIT compiler took a long time to compile a part of the application, the JVM would effectively pause.

Another disadvantage of JIT technology is the fact that it has no way of knowing how many times a particular piece
of recompiled code will run. The JIT compiler may take some time compiling a section of code that will run only
once, effectively wasting time and memory. Also, a JIT compiler has to be very conservative about what it can
compile. A Java system is a very dynamic environment where new classes can be loaded at any time, possibly
modifying the behavior of existing classes, in this case if the JI'T had compiled the code into native code, the result of
the newly loaded class may not be seen.

It was because of these (and other reasons) that Sun developed the HotSpot JVM.

SUN HOTSPOT PERFORMANCE ENGINE

The HotSpot Performance Engine (now known as the HotSpot Server VM) was designed to maximize the
performance of Java code. It achieves this by addressing some of the limitations of the classical, JIT-based JVM:

e DYNAMIC PROFILING

The name HotSpot refers to the dynamic profiling performed by the JVM, one of the most significant improvements
to the design of a JVM. With dynamic profiling, the JVM monitors how often areas of the application code run
and then when it has identified a hotspot (a frequently used area), it will then expend effort in natively compiling
the Java bytecode. The HotSpot JVM also supports dynamic ‘de-optimization’ a technique that allows the native
compiler to be less conservative when compiling by automatically removing compiled code if a newly loaded class
modifies the behavior of a class.

e JMPROVED GARBAGE COLLECTION

The HotSpot JVM employs a completely new generational garbage collection algorithm. This identifies and
separately manages short-lived objects (which typically live for the life of one call) from long-lived objects,
resulting in significantly better memory usage.

e FAST SYNCHRONIZATION

In multi-threaded Java applications coordinating access to shared resources using the synchr oni zed keyword is
typically a major bottleneck. In the HotSpot JVM the common case (where the resource is not contended) is now
much faster.

Unfortunately, the actual speed improvement when using the HotSpot JVM is highly dependant on your application
code, varying from no improvement at all over a classic JI'T up to as much as a factor of 15. When we first tried
HotSpot 1.0 with EDH we actually found it to be less performant than a classical JVM.

Paper #517

Developing for the Oracle Internet Platform

ORACLE JSERVER

Oracle JSetrver is Oracle’s own implementation of the Java Virtual Machine specification that runs within an Oracle 87
database. By running wzthin the database Java applications can leverage all of the scalability and reliability of the
database server. It is the only JVM implementation that uses the scalability of a RDBMS in order to be able to

support thousands of concurrent users. The graph below (taken from Oracle’s site) demonstrates the scalability of
JServer in comparison to Sun’s HotSpot 1.0.

3500
E 3000 4 JServer
< 2500 4 HotSpot
B 2000 ¢
= 1500 -
8 1000 |
% s00 4
u] t t t t t t t t t t t t t t t t t t
= = = = = = = = = = = = = = = = = = = =
— [=3] - [Ty (] — m [[Tr] — (2] [o [xr] = - Lo (3]
— (o] [a] =+ =+ [Ty [f=] [o [n] m (=] — ('] ('] o =t
Concurrent Users

Scalability of Oracles | Server: (test platform: Sun Enterprise 450 with 4 CPUs)

The developers of Oracles JServer have been able to make significant improvements compared with traditional JVM
designs, for example:

‘By running within the database Java applications

can leverage all of the scalability and reliability of
the database server’

An innovative feature of JServer is its use of native compilation. In a server environment the portability offered
by interpreted Java bytecode is not necessary. Server applications are typically longer lived than those of a client,
which means it is worthwhile investing more CPU cycles to produce highly optimized native code than could be

done by JIT (or HotSpot) compilers. Oracle calls this ‘way-ahead-of-time-compilation’ and it can significantly
improve server performance.

e GENERATIONAL SCAVENGING GARBAGE COLILECTOR

Similar to HotSpot JServer also uses an advanced garbage collection strategy (built upon Oracle existing
Multithreaded Setver technology) that greatly improves the memory utilization of Java Applications.

o SCALABILITY

Oracle has made significant advances in reducing the amount of memory required for a typical, stateful Java

session. On JServer each session appeats to be running on its own private JVM, yet the memory overhead is
typically under 50kb.

* DATABASE INTERGRATION

Since most e-Business web sites typically involve extensive use of relational databases, it is vital that Java
applications can efficiently access the database. By integrating the JVM within the database the communications
overhead imposed by running in an external JVM is eliminated. Oracle has also provided a special ‘Server’ JDBC
driver that can be used to directly access the database’s SQL engine through the same high-performance APIs
that wete previously only available to PL/SQL stored procedutes.

T JAccelerator has been used to natively compile all of the standard Java classes provided with the JVM, but it only becomes

available for application developers to compile their own classes in Oracle 8i Release 3 (version 8.1.7).

Paper #517

Developing for the Oracle Internet Platform

JServer is a relatively new product, yet we have been using it successfully in production with EDH for the past two
years, and have found it to be a very stable implementation.

ARCHITECTURE

USER INTERFACE

The EDH User interface is based around simple HTML forms. Due to our large and varied user base, we aimed to
support a very low minimum standard. Initially we only required our users to have Netscape Navigator 3.0 or Internet
Explorer 3.0. This meant that we have to be very conservative in the use of HIML and JavaScript. Recently we have
raised the minimum standard to Netscape Navigator 4.0 or Internet Explorer 4.0, which has allowed us to make use
of cascading style sheets.

}% Demande Achat Interne 568750 - Netscape oI
Fle Edt View Go Communicator Help
ldsAsm588 o
2§ Bookmaks i Weisite:[nitps://adh cem ch/D ocument/DAI BEB7E0 =l
i Demande Achat Interne (DAI) 7 B, & = =
5 588750 Help | Clone ' PiView Save | Send,

Fields with asterisks (*) are obligatory and must be filled in.

General Description *: [Oractes] ?

[echnical Contact = [Dergk MATHIESON (AS-SU-EDH) ?

Suppligr: IORACLE CORPORATION, 20, DAVIS DRIVE, CA 94002 BELMONT [ORAC37 ?

Country of Distribution = [ug ?

Currency = [USD Dollar US (1.45) =l ?

Total Value $4.95 (SFr.7.00) 7

Item Quantity Description Unit Price Price
1 1 Oracle8i Enterprise Edition §4.95 $4.95

Oraclei Enterprise Edition COROM for Sun Sparc Solaris
Budget Codes: 16144, Country of origin: US, Enter goods in inventory: No JModify (XDelete

Click to add a new line item o Add

Additional information

Purchasing oficer. Default proposed by EDH =7 |
Comments to purchasing officer [Brice quoted on oracle Web-Site =?
: _'l_I
Comments to supplier | =*
=l
& == | Documert: Done 4

An Example of the EDH User Interface

SERVLETS
All of the form processing in EDH is performed using Java Servlets. The choice of Java technology had already been

made (see eatlier section on Why Java?). We chose Java Servlets because of their simplicity, stability, and simple
session tracking model.

COMMON BUSINESS OBJECTS

A core feature of the EDH application architecture was the development of the Common Business Objects (CBOs).
The objects were designed to represent common types of object in out business domain, such as People, Account
Codes, Purchase Orders, and Delivery Addresses. These Objects were modeled on the Enterprise Java Beans (E]B)
architecture, although at the time that we began the project the EJB standard had only recently been released and
there were no stable implementations available that we could use. Instead we created our own simple component
model, using the same principals as EJB. We intend, once stable and proven implementations exist, to migrate our
components into true EJB’s in order to benefit from the support of commercial design and development tools.

COMMON INPUT OBJECTS

Coupled to most of our CBO’s are what we term Common Input Objects (CIO’s). These objects implement the user
interface for a particular CBO. Cutrently all of our CIO’s implement their user interface as an HTML form
component, although the design is abstracted in such a way as to make it possible for us to replace the user interface
at a later stage with an alternative technology (for example Java Applets) if necessary.

Paper #517

Developing for the Oracle Internet Platform

TEMPLATES

Like many Java Servlet applications the actual HIML form is generated from a series of template files.

<t abl e>
<tr>
<td>Total Price:</td><td>#VALUE#</t d>
</[tr>
</t abl e>

A snippet from a typical template file

The text between the # characters is replaced by the servlet with the correct value just before the page is displayed on
the users browser. As a matter if principal, we have no HIML code within the Java Servlets, by using several

templates it makes it possible for the application to present its user interface in the users preferred language (currently
EDH fully supports both English and French, CERN’s official working languages).

- - |
3 eave Request - Netscape = E3 3# Leave Request - Netscape [C[O1=]
File Edit View Go Communicator Help Eile Edit ‘“iew Go Communicator Help
P A e S F = i o AN & F]
v L B, = ¢ T > . R, B, =, % [
% EE2UElHEGUESY Prview Save ! Send | Hep | 2 PEGEGRED ¢ G Prview Save | Send | Aide |

| Reguestor. [perek MATHIESON (AS-IDS) ? | Demandeur [Derek MATHIESON (25-1DS) ? |
‘alues shown in § hour days &5how inhowrs Les valeurs données sont en jours de B heures {DShow inhourg

Previous New < Previous | Next» Balance | g1 ce actuelle < Precedent | Suivant:

Balance| Balance| précédente

Annual Leave 36.0) 36.0 August 2000 Congé Annuel 36.0 36.0) Adut 2000)
Saved Leave 5.5 5.5 LLE u e h 4Fr Sa_Su Congé Epargneé 5.5 5.5 Lu a e e re Sa Di
Compensation 231 231 IH Compensation 231 231 Iu

Reduced Working Hours o0 0.0 " ﬂ Horaire reduite 0.0 0.0 7 |8
14 |15

Other ““ Autres -
lliness 21 a“ pez Maladie 21
Official Holiday _?, Congé Officiel %
28 (29 (30 31 28 |29 (30 |31
Today Aujourd’hui
Leave Type Start Date End Date Duration Type de congé Date de début Date de fin Durée
[Annual Leave (Standard)] [5][17.08. 2000 [am =] (¥ [15.08. 2000 [AM =] 1.0 &Delete) [Zangs Annuel (Standard) =] [E[17.08. 2000 [am =] T [18.08. 2000 [AM =] 1.0.%Susen)
Click to add a new line item Add D = Cliquez ici pour ajouter une nouvelle position Aiouter) =
e == [Doument Done T = == [Document: Done EE - 20
EDH Vacation Reguest in English EDH Vacation Reguest in French
COMMON LLOGIN

Authenticating the identity of users is fundamental to any e-business applications, and in the EDH application this
was one of the first areas that we addressed. The EDH User Login that we developed proved to be so successful that
it was adopted by all of CERN’s othet web based administration applications and was re-christened “I'he Conmon
Login’.

The common login is based on an encrypted Cookie that is stored on the users browser. Fundamental to the design 1is
the use of an asymmetric cipher (also known as public key encryption). In regular encryption (symmetric cipher) the
information is encrypted using a secret piece of information (known as the £¢)), in order to decrypt the information
the encryption can be reversed using the same key. With an asymmetric cipher 770 keys are used. If one key is used to

encrypt the message, then only the other key can be used to decrypt the message. Also knowing one key does not
help you work out what the other key may be.

Paper #517

Developing for the Oracle Internet Platform

Encrypted
message
- Reverse
Encryption - .
Message |—P Alaorithm ——» #a$R&fj$ —» Encryption — Message
g Algorithm
Encryption
Key
Symmetric cipher
Encrypted
message
- Reverse
Encryption - .
Message |—P Alaorithm —» #a$R&fj$ —» Encryption —» Message
g Algorithm
Key A
Key B -
Encryption
Key Pair

Asymmetric cipher

Asymmetric ciphers are fundamental to the success of e-commerce on the Internet. The asymmetric cipher known as
RSA (after R. Rivest, A. Shamir and L. Adleman, its inventors) is the basis of the secure HI'TPS protocol; used to

secure electronic transactions worldwide.

In the common login the cookie is encrypted using one key that is kept a secret. The other key 1s freely distributed
and can be used by anyone to decrypt the cookie. That way anyone can dectypt the cookie, and use the information it
contains to identify the user. But only our setver computer has the secret key that can be used to create new login
cookies.

Paper #517

The Common login operates as follows:

The user accesses our site either by typing in the URL, or
by clicking on a hypetlink to one of our electronic
documents. For example: in e-mail from our workflow
engine.

Since the user has not yet logged in, they are redirected to
our login server.

The login server presents our user with a secure form,
with which they can enter their username and password.

The login server is a Java Servlet, which accesses our
User Database using JDBC.

If the username and password match one of our
registered users, then the encrypted login cookie is
generated and sent back to the users browser, along with
another re-direct, back to the URL that they were
originally seeking.

Developing for the Oracle Internet Platform

4% Please sign Materials Request [793290) from Reinoud MARTENS [_To] <]
File Edt “iew Go Message Communicator Help
By aRT e Taw il =

Subject: Please sign Materials Request (793290) from Reinoud MARTENS
Date: Sun, 20 Aug 2000 14:38:56 +0200 (MET DST)
From: EDH Work Flow Manager <wfm@edh.cern.ch>
To: Derek.Mathieson@cern.ch

You are requested to approve the follow ng docunent
for 500 CHF signature on 16152 (expiry date 23.08.2000)

793290 ' Oxygen Cylinder’ by Rei noud MARTENS

Pl ease access this document on the Wb at:
htt ps://edh. cern. ch/ Docunent / 793290

= |Document: Done 2

ommon Login - Netscape

File Edt “iew Go Communicator Help
1 A2 AN w8 @]

@ CERN - European Organization for Nuclear Research

Administrative Information Services

Login Name |dmathies

Password I"‘"‘““"“"‘““ﬂ Login |
AlS News

» Mo active news is found

[Change Password] [Logout] [Help] [ALS Site]

In case of prablems or questions please contactthe AIS HelpDesk,
Email gis.zupparti@carn.ch Phone +41-22-76 79933

,E == |Document: Done

I Material Request 793290 - Netscape

Fle Edt Yiew Go Communicator Help

19 2 A4 a8 & 8 =
7 f Bookmaks A Netsite [ritps /edhcem ch/D ocument MAG/733230 =]

= Material Request v oo X BE, 7
2 793290 Son A\ Bl A\ @), o

Fields with asterisks (*) are obligatory and must be filled in

General Description: Oxygen Cylinder

Reguestar ™ Reinoud MARTENS (AS-CIS)
Delivery Location ™ 14-G0-921

Reguested Delivery Date

Delivery Comments

Budiet Code ™ 16152 EDH Total: SFr. 30.50
Pos Qty Unit SCEM Comments Price Subtotal
1 1 bt 60.03.10.100.0 30.50 30.50

OXYGENE TECHMIQUE - 0.4 M3
Total: SFr. 30.50

Document Status

20.08.2000 14:38 With Derek MATHIESON for 500 CHF signature on 16152 awaiting approval

|G 6= |Document: Done y

The verification of the cookie and initial re-direct is performed by a plugin that we have written for either Netscape or
Apache web servers. By implementing the verification in a Web Server plugin we can use the same authentication
mechanism for static HIML pages, along with any web application that is compatible with either Netscape or Apache
Servers (including Oracle Application Server applications). Since the web server plugin only contains the public
decryption key, we can freely distribute the plugin for use by other web applications that want to make use of the

technology.

Paper #517

Developing for the Oracle Internet Platform

[.04D BAILLANCING

One area that we identified very quickly when developing EDH was the need to spread the load of the application on
several Java Virtual Machines at the same time. This was because a single virtual machine rapidly became ovetrloaded
with only a relatively small number of users. The problem usually manifests itself with the JVM running out of
available memory, even although the JVM had been allocated 64Mb of RAM. This was because as the JVM gets
loaded, the garbage collector fails to keep up with the number of objects being freed, this results in new memory
allocation calls failing, even when there is plenty of free memory (only all of it is currently waiting to be marked free
by the garbage collector).

In some sense Java applications can become a victim of their own success, since as soon as they become popular the
garbage collector slows down. In EDH, we solved this problem by writing another Web-Server plug-in which allowed
us to automatically spread the users over several [VMs (at the time of writing we are using 20 JVMs all running on the
same physical computer).

Load balancer plugin
— JVM 1
— == Web Session
\ Server =
555 / JVM 2
Session
\Z—

JVM 3

— / Session

Load-balancing across multiple Java Virtual machines

The load-balancing algorithm that we employ is very simple; the user ID that is held in their encrypted cookie
determines the choice of JVM. Since the user Ids are effectively randomly distributed across our users, this gives us a
reasonably balanced load.

WORKFLOW AT CERN

Workflow at CERN involves the routing of an electronic document to the people that are required to approve it.
Approval of a document involves the user entering their authorization password in a specially encrypted field in the
document. We increase the security of the HI'TPS connection to our web server by masking their authorization
password using a JavaScript implementation of the MD5 algorithm plus a unique ‘Authorization Key’ generated by
our server. Our own auditors and all of the external institutes that use EDH have accepted this authorization
password as equivalent to a paper signature.

One of the complexities of the situation at CERN i1s the enormous number of special workflows that we require. The
routing of financial documents has to take into consideration not only CERN’s own financial rules, but also the
requirements of other institutes for whom CERN spends money. Additionally different working practices within the
organization are also supported which means that currently there are around 270 different paths that can be chosen
depending on the type of document, who created it, and whose money is being spent.

Paper #517

Developing for the Oracle Internet Platform

Within Oracle Workflow Builder we have defined how each document should be routed. For example for a Purchase

Otder the workflow process is defined as shown below.

Approved Approved,

.
Start Financial Routing Technical Routing Supplier R outing

Fejected Rejected

Approved

Rejected

End [&pproved)

End [Fejected)

Example Purchase Order Routing

This may look simple, but each of the steps in the diagram itself expands to another sub-process such as that shown
in the diagram below, where the CERN Standard Financial Routing is defined.

Epproved
Team Finantial.,_

Routing Rejected

End (Spproved)

»

Fejected

«Timeouts

]
10K CHF SKatule

Approved

«<Timeout>

Rejected

Approved

Team 2K, CHF Signature

Project No

<Timeout> <Timeout

Approved ﬂ Yes
EEE—

<Detault> ~"Approved

Start Budget Code Type

Mo

Signature

Fiejected Fejected

Rejected

2K, CHF Signatwre Budget code amount 10K CHF Signature Country is member?
> 20007

<Timeouts

Non-Member State

End (Rejected)

<Timeout>

Unlirnited amount
signature

Budget code amount End [Approved)

» 100007

Appraved

Rejected

-

-

End [Rejected)

Standard Financial Routing

SIGNATURE RIGHTS DATABASE

In order that the workflow system is able to decide who has the right to sign for a particular step in the workflow
process we have a database of signature rights for every workflow action. Most of the data in this sighature rights
database is derived automatically from our corporate databases. The organization structure from our human resources
database is merged with data from our financial system to obtain a database of what accounts someone can spend

from and to what limit.

The diagram on the next page shows the basic arrangement of the organization. CERN is divided into four Seczors,
each of which is split into three or four Divisions, which are in turn split into Groups, which are further split into

Sections?.

t Some Sub-Sections also exist at CERN.

Paper #517

Developing for the Oracle Internet Platform

CERN
[
[[
Administration || Accelerator
Sector Sector
I
[[|
Services Finance
Division Division
I
[[|
Systems Database Internet Apps
Group Group Group

Simplified Structure of CERN

In the Administration Division we define that a Group Leader can spend up to 10,000 Francs (about US$5,800) on
any account in theit group, and that a section leader can spend up to 2,000 Francs (about US$1,200) on any account
in their section. This means that either the Group Leader or the Section Leader can sign a document for 500 Francs,
however the signhature rights are automatically prioritiged, such that the section leader will be selected first. The Group
Leader would be asked to sign only if the Section Leader was unavailable (for example, on absent due to training,
vacation, etc.).

<Timeout>

5 Approved

2K CHF Signature

Rejected

>

A typical Signature Action

In a typical routing definition there are many signature actions, for example financial documents require at least one
signature to authorize payment. These actions appear on the diagram like the example shown above. When the
workflow reaches this step in the routing a special stored procedure is called which determines who has the right to
sign for the expenditure according to our signature right database. The procedure then uses our human resources
database to select the first person that has the right to sign and is not absent.

CONTENT BASED WORKFLOW

At many points within the workflow it is necessary to interrogate specific properties of the document (for example
the total price of the purchase, or the name of the external supplier). In Oracle Workflow this is achieved by writing a
user defined stored procedure that is called by the workflow engine during the routing. Normally this stored
procedure would be written in PL/SQL but because all of our electronic documents ate written in Java it would be
useful to be able to re-use the Java implementation. By running Oracle Workflow within an Oracle 8/ database it is
possible to write stored procedures directly in Java and in this way Oracle workflow can directly call the

get Tot al () method of our Purchase Order CBO, thus eliminating any the additional maintenance caused by
duplicated code in Java and PL/SQL.

CONCLUSIONS

Probably the most important conclusion that we can make from our experience is that it is possible to create a
successful multi-lingual high performance E-commerce application using Java Servlets. We have found Java to be an
excellent choice for server-side applications; its stability and ease of development make it possible for relatively small
programming teams to rapidly produce high quality and reliable systems.

Paper #517

Developing for the Oracle Internet Platform

We have found that a well-desighed development environment is vital to the success of projects such as these.
Introduction of coding standards with formal code-reviews greatly increases the quality of the software. Additionally,
by reviewing another developers code other team members are also aware how other parts of the system work, and
are then able to track down any bugs when they arise.

SERVER-SIDE VALIDATION

At the beginning of the project we had many debates as to the need for client-side (JavaScript) validation. Some
members of the design team felt that it was essential that we perform local validation before we sent any data to the
server. Clearly the benefit would be in terms of responsiveness, but at a significant cost in terms of maintainability.
JavaScript implementations vary enormously between browsers (even between the sae version on different
platforms) meaning that we would have to test on all of the platform/browser combinations (we have around 110
accessing our sitel). Coupled with this is the fact that JavaScript is 7oz Java, therefore we could not directly re-use the
validation code that we anyway needed to write on the server (we could not re/y on the client-side validation since it is
trivial to bypass it).

Finally we agreed that we would minimize the amount of JavaScript on the client and perform all of the validation on
the server. In fact the only JavaScript that we now have is to make the Enter key submit the form and to copy fields
between lookup screens.

In production setver-side validation Zs fast enough, we have personally used EDH over 56kbit modem links and long
distance Internet connection without problem. By having all of the business logic located in a single place we have a
more maintainable system without any possibility of inconsistent checks being made by different parts of the system.

THE FUTURE

Currently we are using 20 instances of Suns classic JVM with a standard JIT compiler. Gradually the number of JVMs
has increased as the site was subject to more and more load (initially we had just 5 JVMs). Although currently this is a
stable configuration we cannot continue to increase the number of JVM indefinitely (each JVM consumes around
85Mb of memory with about 30Mb resident). In the future we plan to run all of the Servlets directly within the
JServer JVM.

As mentioned earlier, within JSetver each session appears to have its own private JVM yet the memory overhead per
session is in the order of 50kbytes. What this means is that we can afford to allocate a separate session (and JVM) to
each connected user, and by doing so this allows us to make use of existing administration tools to control the activity
of the users.

Currently many users share the same JVM and communicate with the database via a shared pool of database
connections. By sharing a single JVM is it almost impossible to prevent the activity of one user from affecting the
others.

Shared JVM: A single user can dominate Private [V Ms: Each user is bounded by the [VM

Conversely, by using JServer the amount of resources consumed by a session can be strictly controlled using standard
Oracle tools. Limits on memory, CPU, etc. can all be set.

We have already run tests on using Oracle 8i release 2 (version 8.1.6), with very encouraging results, during the
presentation in October we will present our findings in more detail.

Paper #517

Developing for the Oracle Internet Platform

CONTACT INFORMATION

For more information regarding our work on Oracle Workflow we can be contacted via e-mail at:
Derek.Mathieson(@cern.ch and James.Purvis@cern.ch.

REFERENCES

[CERN]J..ccccvterirenes CERN - European Laboratory for Particle Physics, Geneva, Switzerland
http://www.cern.ch

[CODING]............ EDH Java Coding Standards
http://ais.cern.ch/apps/edh/CodingStandards

[EJB] .o JavaSoft - Enterprise Java Beans Specification -
http://www.javasoft.com/products/ejb/index.html

[5S72N R JavaSoft - Java™ Servlet API -
http://www.javasoft.com/products/servlet/index.html
[WEMC]......cccvveae Workflow Management Coalition - Terminology & Glossary -

http://www.aiim.org/wfmc/standards/docs/glossary.pdf

Paper #517

mailto:Derek.Mathieson@cern.ch
mailto:James.Purvis@cern.ch
http://www.cern.ch/
http://ais.cern.ch/apps/edh/CodingStandards
http://www.javasoft.com/products/ejb/index.html
http://www.javasoft.com/products/servlet/index.html
http://www.aiim.org/wfmc/standards/docs/glossary.pdf

	Introduction
	Setting the Scene
	CERN
	World Wide Workflow
	Multi-Lingual
	EDH
	E-commerce: Past, Present and Future.

	The EDH Web Server
	Server Performance
	Session Tracking
	1. URL Rewriting
	2. Cookies

	Memory Usage
	Performance

	Why Java?
	Coding Standards

	Java Virtual Machines
	Sun JVM (classical)
	Sun HotSpot Performance Engine
	Dynamic Profiling
	Improved Garbage Collection
	Fast Synchronization

	Oracle JServer
	JAcceleratorƒ
	Generational Scavenging Garbage Collector
	Scalability
	Database Intergration

	Architecture
	User Interface
	Servlets
	Common Login
	Load Balancing

	Workflow at CERN
	Signature Rights Database
	Content Based Workflow

	Conclusions
	Server-Side Validation

	The Future
	Contact Information
	References

