ACOL TUNE SHIFTS AND DISPERSION CHANGE ASSOCIATED

WITH QUADRUPOLE CURRENT VARIATIONS

M. Martini, L. Rinolfi

1. Introduction

In the ACOL machine, three trim power supplies will allow separate control of wide quadrupole strength to adjust the betatron tunes Q_H , Q_V and the dispersion D. This paper derives the matrix which relates the tune shifts ΔQ_H , and the dispersion change ΔD to quadrupole current variations $\Delta I_{H,V}$

2. Fundamental relations

Changes in betatron tunes and horizontal orbit dispersion are associated with changes in quadrupole strength by the relations 1

$$\Delta Q = \frac{1}{4\pi} \int_{S}^{S+C} \beta_{H,V}(\sigma) \Delta K_{H,V}(\sigma) d\sigma \qquad (1)$$

$$\Delta D(s) = \frac{-\sqrt{\beta_{H}(s)}}{2 \sin \pi Q_{H}} \int_{s}^{s+c} \sqrt{\beta_{H}(\sigma)} D(\sigma) \Delta K_{H}(\sigma) \cos(-\pi Q_{H} + \mu_{H}(\sigma) - \mu_{H}(\sigma)) d\sigma (2)$$

where C is the machine circumference.

Equation (1) can be replaced by a sum over the quadrupoles

$$\Delta Q_{H,V} = \frac{1}{4\pi} \sum_{j=1}^{n} \bar{\beta}_{H,Vj} 1_{j} \Delta K_{H,Vj}$$
 (3)

SIS-2004-320

 $\beta_{H,Vj}$ and 1_j being respectively the average value at $\beta_{H,V}$ and the length of quadrupole j.

Equation (2) can also be transformed into a sum over the quadrupoles, defined by the values β , α , μ at their entrance 2 .

$$\Delta D(s) = -\frac{\sqrt{\beta_{\rm H}(s)}}{2 \sin \pi Q_{\rm H}} \sum_{\rm j=1}^{\rm n} \Delta K_{\rm Hj} \left\{ C_{\rm 1j} \sqrt{\beta_{\rm Hej}} \cos \phi_{\rm j}(s) - \frac{C_{\rm 2j}}{2 \sqrt{\beta_{\rm Hej}}} \left[(\alpha_{\rm Hej} \cos \phi_{\rm j}(s) + \sin \phi_{\rm j}(s) \right] \right\}$$

where

$$\phi_i(s) = -\pi Q_H + \mu_{Hej} - \mu_H(s)$$

and

$$C_{1j} = \int_{0}^{1} a_{j}^{11}(\sigma) D_{j}(\sigma) d\sigma \qquad C_{1j} = \int_{0}^{1} a_{j}^{12}(\sigma) D_{j}(\sigma) d\sigma$$

the $a_{\hat{j}}^{11}$ and $a_{\hat{j}}^{12}$ being the transfer matrix coefficients of the quadrupoles.

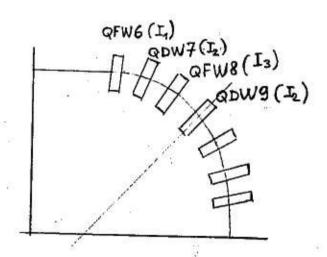
In the thin lens approximation, and assuming that the dispersion function may be replaced by its average value \overline{D} in each quadrupole, equation (4) becomes

$$\Delta D(s) = -\frac{\sqrt{\beta_{H}(s)}}{2 \sin \pi Q_{H}} \sum_{j=1}^{n} \Delta K_{Hj} \overline{D}_{j} 1_{j} \left\{ \sqrt{\beta_{Hej}} \cos \phi_{j}(s) - \frac{1}{2\sqrt{\beta_{Hej}}} (\alpha_{Hej} \cos \phi_{j}(s) + \sin \phi_{j}(s)) \right\}$$

$$(5)$$

3. Correction matrix

The AC wide quadrupole (QW) are divided in three families which have a separate trim power supply (currents I_1, I_2, I_3). First and third families include each 8 horizontally focusing quadrupoles, the second includes 12 horizontally defocusing quadrupoles (see Figure).



AC first quadrant

The strength variation is produced by a change in quadrupole current

$$\Delta K_{H,V} = \frac{\Delta I}{I} K_{H,V}$$
 (6)

Using equations [3] and (5), the changes of betatron tunes and orbit dispersion with the quadrupole currents can be written in a matrix form

$$\begin{pmatrix} \Delta Q_{H} \\ \Delta Q_{V} \\ \Delta D \end{pmatrix} = M \begin{pmatrix} \Delta I_{1} \\ \Delta I_{2} \\ \Delta I_{3} \end{pmatrix}$$

The matrix coefficient m are

$$m_{1k} = \frac{\partial Q_H}{\partial I_K}$$
 $m_{2k} = \frac{\partial Q_V}{\partial I_K}$
 $m_{3k} = \frac{\partial D}{\partial I_K}$

The analytical expressions being

$$m_{1k} = \frac{1}{I_k} \sum_{i} \overline{\beta}_{Hi} 1_{i} K_{Hi}$$
 $m_{2k} = \frac{1}{I_k} \sum_{i} \overline{\beta}_{Vi} 1_{i} K_{Vi}$

$$\mathbf{m_{3k}} = \frac{-\sqrt{\beta_{\mathrm{H}}}}{2 \ \mathbf{I_{k}} \sin \ \mathbf{\pi} \ \mathbf{Q_{\mathrm{H}}}} \sum_{\mathbf{i}} \ \mathbf{K_{\mathrm{H}}} \ \mathbf{\bar{D}_{i}} \ \mathbf{1_{i}} \left\{ \sqrt{\beta_{\mathrm{Hei}}} \ \cos \ \boldsymbol{\varphi_{i}} - \frac{\mathbf{1_{i}}}{2\sqrt{\beta_{\mathrm{Hei}}}} \ [\alpha_{\mathrm{Hei}} \ \cos \ \boldsymbol{\varphi_{i}} + \sin \ \boldsymbol{\varphi_{i}}] \right\}$$

where k=1,2,3 and the sums are performed over all quadrupoles of a given family I .

The inverse matrix M^{-1} , called current corrections matrix, gives the trim current variations needed to achieve a requested correction for one parameter without disturbing the other two.

4. Numerical results

The interest is mainly concerned with dispersion correction in nominal zero-dispersion regions where the stochastic cooling systems are located. Consequently, the matrices are evaluated at longitudinal location zero. Numerical calculations using characteristic functions provided by optics program ORBIT³ gives

$$M = 10^{-3} \begin{pmatrix} 1.36 & -0.62 & 1.43 \\ -0.40 & 1.90 & -0.53 \\ -0.48 & -1.59 & 6.84 \end{pmatrix}$$

and

$$M^{-1} = 10^{2} \begin{pmatrix} 7.19 & 1.15 & -1.41 \\ 1.79 & 5.93 & 0.09 \\ 0.93 & 1.46 & 1.38 \end{pmatrix} \begin{pmatrix} 9.19 \\ 9.79 \\ 0.93 \end{pmatrix} \qquad \frac{\text{m QDNo}}{\text{m QDNo}}$$

4

Annex

Quadrupole characteristics

	QFW6	QDW7	QFW8	- OMB
1 (m)	0.758	-0754	0.751	0.760
K _H (m ⁻²)	0.4406	-0.4969	0.5453	-0.3894
I (A) I	1830.6	1884.8	1782.0	1884.8

Références

- G. Guignard. Selection of formulae concerning proton storage rings, CERN 77-10 [1977].
- 2. B. Autin, Lattice perturbations, CERN/PS 84-22 (AA) [1984].
- 3. B. Autin, private communication, 1986.
- 4. L. Rinolfi, Distribution des quadripôles ACOL (unpublished note) [1986].