
 
 

HIMAC-075 

 

 

 

 

 
Design of APhF-IH Linac  

for a Compact Medical Accelerator 

 

 

Valery Kapin, Satoru Yamada, Yoshiyuki Iwata 

 

 

 

 

December, 2003 
 
 

National Institute of Radiological Sciences 
9-1 Anagawa 4-chome, Inage-ku, Chiba 263-8555, JAPAN 

 
 

NIRS

HIMAC

E
X

T
-2

00
4-

04
7

01
/

12
/

20
03



1

 Design of APhF-IH Linac  
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4-9-1 Anagawa, Inage-ku, Chiba 263-8555, JAPAN 

 

Abstract: The design of a small injection linac for a compact medical synchrotron is 

discussed. The linac design is based on interdigital H-type (IH) drift-tube structure with 

alternative phase focusing (APhF). A high acceleration rate and an absence of magnetic 

lenses inside drift-tubes reduce the cost and length of APhF-IH linac in comparison with 

HIMAC linac based on Alvarez structure with magnet quadrupoles inside drift-tubes. To 

reduce effects of emittance growth, the RFQ structure is used in front of the APhF linac. In 

such linac layout, the current transmission of a carbon beam can reach up to 90-100%. In this 

report, the basic parameters of whole linac are presented, while the design of APhF structure 

is considered in details.  

Two reference designs of 4 MeV/u 200 MHz APhF linacs with different voltage 

distributions along the whole tank have been generated and analyzed numerically. For the 

first design, a constant voltage distribution along the tank is assumed. The total length of the 

structure is about 4.2 m. For the second design, a gradient type of voltage distribution is 

assumed. The total length of the second design is twice shorter (about 2.1 m). Both designs 

keep the same value of the maximum electric field on the drift-tube surfaces along the whole 

tanks. It is about 1.6 of the Kilpatrick limit. 

The second design with a gradient-type of voltage distribution looks to be more 

attractive. A required voltage distribution can be realized in IH-tank. An example of gradient-

voltage distribution calculated with Microwave Studio code is presented. 
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1. Introduction 

More than 1,000 patients have been treated with carbon ions accelerated by a medical 

synchrotron HIMAC at National Institute of Radiological Sciences, NIRS [1]. The results of 

the clinical studies, the purposes of which are to confirm the effectiveness of the carbon 

therapy keeping side effects at extremely low levels, seem excellent [2]. However, HIMAC 

facility has a large size and is very expensive for a budget of local hospitals. Major activity of 

the Department of Accelerator Physics and Engineering at NIRS is concentrated on the 

developments of a small sized therapy system aiming to spread the carbon therapy in the 

whole country. A compact and reliable accelerator system is required to be developed for this 

purpose. 

The compact medical accelerator consists of carbon synchrotron and injection linac. 

The injection linac is an important factor for the construction and operation cost of medical 

facility. In this report, design considerations and preliminary calculations for a small injection 

linac are presented. The linac consists of a 400 keV/u four-vane cavity with the radio-

frequency quadrupole (RFQ) focusing and a 4 MeV/u interdigital H-type (IH) drift-tube (DT) 

cavity with an alterative phase focusing (APhF). Both structures operate at the RF frequency 

of 200 MHz. A similar linac layout has been recently considered at GSI, Germany [3]. 

In comparison with a classical heavy-ion linac consisting of RFQ and Alvarez-tank 

with magnet quadrupoles inside drift-tubes, the combination of RFQ with IH-APhF has a 

smaller size and provides an appropriate beam quality. A high acceleration rate and absence 

of magnetic lenses inside drift-tubes are the most attractive features of IH-APhF linac [3], 

which essentially reduce its length and cost. For example, HIMAC linac [4] with a 

conventional layout consists of the 0.8 MeV/u 7 m long RFQ and the 6 MeV/u 24 m long 

Alvarez tanks, and the GSI design of the 7 MeV/u injection linac consists of a short 

0.3 MeV/u RFQ and the 4.3 m long IH-APhF structure. 

However, a beam emittance growth due to coupling between radial and longitudinal 

motion is a main disadvantage of APhF-linac. To reduce effects of an emittance growth, it is 

favorable to accelerate short-bunched beams in APhF-linac. A high quality bunched beams 

can be delivered by a conventional RFQ structure located before an APhF-structure. In such 

linac layout, the beam current transmission from a carbon ion source to the synchrotron can 

reach up to 90-100%. Thus, the beam losses in the linac can be essentially diminished. It is 

important advantage of such linac layout, since carbon ion sources have limited beam 

currents. 
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 In this report, the design of APhF-structure is considered in details. The design 

of RFQ structure is not presented here, since design technology of RFQ is well 

known and proved both theoretically and experimentally, including HIMAC RFQ [4]. 

It is known, that the focusing strength of APhF linac is inversely proportional to the 

particle energy. With a decrease of the focusing strength, a portion of stable particles (or the 

APhF acceptance) diminishes [5,6]. To compensate such drop of the focusing strength, the 

number of accelerating gaps in a focusing period, gN  should be increased. Such change of the 

focusing period is accompanied by a growth of beam emittance. An increasing the voltage 

between drift-tubes along the tank can provide an auxiliary way for the particular 

compensation of the focusing strength drop. A usage of such gradient-type of voltage 

distribution along the tank reduces a required range for a variation of gN . 

Two reference designs of APhF linacs with different voltage distributions along the 

whole tank have been generated and analyzed numerically. Both designs keep the same value 

of the maximum electric field on the drift-tube surfaces along the whole tanks. It is about 1.6 

of the Kilpatrick limit. For the first design, a constant voltage distribution along the tank is 

assumed and the total length of structure is about 4.2 m. For the second design, a gradient 

type of voltage distribution is assumed and the total length of structure is twice less 

(about 2.1 m). The gradient-type of voltage distribution looks to be more attractive and can be 

realized in IH-tank. An example of gradient-voltage distribution calculated with Microwave 

Studio code is presented. 

Another problem of APhF structures is a strong dependence of a beam quality on 

small drift-tube misalignments along structure and on fluctuations of the gap voltages about 

programmed values [3,7]. The effects of random errors in drift-tube positions and electrical 

fields in gaps can be evaluated analytically. Using formulae presented in Ref. [7], the level of 

permissible errors for the drift-tube displacements is about several 100 µ m and for the 

fluctuations of the gap voltages is about 5-10 %. A careful technology for mechanical 

assembling and RF measuring can ensure these levels of precision. The more detailed study of 

these effects requires additional beam dynamics simulations and is not considered in this 

report. 
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2. Basic parameters of injection linac 

Basic parameters of injection linac are presented in Table 1. The linac consists of RFQ 

tank and IH-APhF drift-tube structure both operating at the RF frequency of 200 MHz. The 

frequency is twice higher than one of the HIMAC linac in order to reduce tank sizes. The total 

length of linac is restricted by the value of 5 m. The length of 200 MHz 400 keV/u RFQ linac 

can be less than 1.5 m. For example, the length of the 400 keV/u RFQ linac presented in 

Ref. [8] for the GSI linac is 1.35 m. Hence, the length of APhF linac can not exceed 3-4 m. 

In this paper, two options of APhF linac with different voltage distributions along the 

tank are considered. The first design assumes a constant voltage distribution along a whole 

tank, and second design assumes a gradient type of voltage distribution along the tank, while 

the gap voltage is proportional to the relative velocity of the synchronous particle, sg β∝U . 

Figure 1 shows voltage distributions for the both cases. 

The design of RF cavity should prevent RF electric breakdown. The maximum peak 

surface field SE  is expressed as KilpatrickS EbE ⋅=  [9], where b  is known as the bravery factor, 

and KilpatrickE  is known as the Kilpatrick limit. For our linac designs 6.1=b  is assumed. With 

KilpatrickE =147 kV/cm at 200 MHz, the peak surface field SE =236 kV/cm. 

In order to keep the same voltage breakdown conditions along a whole structure, the 

gap length, gl  is kept to be a constant for the constant-voltage design and is proportional to 

the relative particle velocity, sβ  for the gradient-voltage design. Figure 2 shows the 

distributions of the gap factor λβα sgg l=  along the structure, where λ  is the wavelength. 

To evaluate the surface field SE  on the drift-tube surfaces, the computer code 

POISSON [10] has been used. Figure 3 shows the calculation results for the first accelerating 

cell. The aperture radius a =5 mm, the internal and external radii of drift tube corners are 

equal to 2 mm and 4 mm, respectively. The maximal surface field is reached on the surface of 

the external corner of the drift-tube. 

Some analytical approaches for a drift tube linac use the square-wave approximation 

for the gap field. The amplitude of square-wave is the ratio between the gap voltage and the 

gap length, ggg lUE = . For the first accelerating cell of our designs, the ratio between the 

maximum surface filed and amplitude of square-wave gS EE  is equal to 1.47. 
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 For the first accelerating cells of both designs, gE =158 kV/cm at the gap voltage 

gU =173 kV and the gap length gl =1.1 cm. The first design keeps constant 

values of gU , gl  and, hence, gE . However, the average value of the accelerating 

field λβsg0 2EE =  reduces from 79 kV/m to 25 kV/m, decreasing an acceleration rate at the 

exit end of the first design. The second design keeps constant values of gE  and 0E =79 kV/m 

along a whole structure, resulting in a shorter length of structure. 

The energy gain sW∆  in the RF gap is well approximated by the so-called Panofsky 

equation [9]: 

sgs cosϕTqUW =∆ ,                                           (2-1) 

where q  is the particle charge, sϕ  the synchronous phase, T  is the transit-time factor: 

( ) ( ) 12I
sin

RgL

1

s
0

g

g ≤⋅≡















⋅=

−

aTTaT α
λβ
π

πα
πα

.                    (2-2) 

The gap factor gα  and the aperture radius a  affect on the value of transit-time 

factor T , which determines the energy gain. The dependence of the longitudinal coefficient 

( )gL αT  on the gap factor α  at the injection energy is shown in Fig. 4,a. At the gap factor 

gα =0.25, the value of the longitudinal coefficient, ( )gL αT  is equal to 0.90. With an energy 

growth the value of ( )gL αT  increases faster to the value ( )gL αT =1 for both our designs, since 

the “constant-voltage” design has the decreasing ( )sg βα -dependence, the “gradient-voltage” 

design has a constant ( )sg βα -dependence. The value gα =0.25 has been chosen for both 

designs at injection energy. 

The dependence of the radial coefficient ( )aTR  on the aperture radius a  at the 

injection energy is shown in Fig. 4,b. The radial coefficient ( )aTR  decreases with the growth 

of the aperture radius a . To ensure a high acceleration rate, the value of ( )aTR  should be 

higher as possible. However, to ensure a high acceptance of the accelerator, the aperture 

radius a  also should be high enough. At the aperture radius of 5 mm, the value of ( )aTR  has 

an appropriate value of 0.88. This value of the aperture radius has been chosen for both our 

designs, while the aperture radius is kept to be constant along the whole structures.  

The dependence of the transit-time factor T  on aperture radius at injection energy 

injW  and at the double value of the injection energy inj2WW =  is shown in Fig 4,c. Because 
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 ( )aTR  depends on the ratio sβa , the value of ( )aTR  increases to the value ( )aTR =1 

with an energy growth. Note, there is a possibility to increase the aperture radius along the 

structure, still keeping a high value of the ( )aTR . Because the particle velocity increases by 

the factor 3 in our APhF linac, the aperture radius also can be increased by the same factor. 

The potential and field distributions along the first accelerating cell at the injection 

energy are shown in Fig. 5. These distributions at the aperture radius ar =  are shown in 

Fig. 5,a. The distribution of potential along the line ar =  is similar to the linear dependence. 

The longitudinal component of the electrical field zE  is similar to the “square-wave” 

function. The radial component of the electrical field rE  is widely spread along the whole 

accelerating cell. It differs from an ideal pulse-type radial field for the “square-wave” 

approach. 

The distributions along the cell axis 0=r  are shown in Fig. 5,b. On the cell axis the 

zE -field has a bell shape and deeply penetrates inside drift tubes, reaching zero-values at the 

cell boundaries. The pattern of the zE -field is strongly coupled with cell boundaries. The 

voltage distribution along the cell axis 0=r  is similar a sine-function, while the voltage on 

the gap axis, 0
g
=rU  is smaller than voltage between drift-tubes, gU . At the injection energy, 

the potential depression g
0

g UUr=  is equal to 0.94. 

The results of calculations by POISSON code for the last cell of the “constant-

voltage” design are shown in Fig. 6. The potential and field distributions at the aperture radius 

ar =  and on the cell axis 0=r  are shown in Fig. 6,b and Fig. 6,c, respectively.  

One may conclude, that with an energy growth, distributions along the line ar =  

become closer to distributions for an ideal “square-wave” approach. The radial component of 

the electrical field rE  is similar two pulses concentrated at the gap boundaries and does not 

penetrate inside drift-tubes. On the cell axis the zE -field has is concentrated within the gap 

length and does not penetrate inside drift tubes. Similar graphs for the “gradient-voltage” 

design are shown in Fig. 7. The potential distributions along ar =  are also similar to the 

linear dependence. 

Thus, the potential along the cell at ar =  can be approximated by the linear function 

for the whole length of both our APhF designs. This approach will be used at early stages of 

beam dynamics simulations. It allows us to calculate fields analytically and to avoid the 

calculations with POISSON code. 
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 3. The APhF concept 
The APhF belongs to the wide class of focusing methods by axially symmetrical RF 

fields, provided in sequences of drift-tubes with axially symmetrical cross-sections. The 

original APhF idea of beam focusing by a periodical alternating a synchronous phase in a 

sequence of the drift-tube gaps has been developed and modified since the early 50’s by many 

authors. In the papers [3,5,6,11,12], there are comprehensive lists of references to the most 

known recipes of generating the drift-tube structures with required beam parameters. 

Here, we will use focusing by RF fields of the drift-tube gaps in a spirit of a so-called 

asymmetrical alternative phase focusing (A-APhF), which has been proposed by V.V. Kushin 

in more than 30 years ago [11,12]. The A-APhF concept is well suited for our design. The A-

APhF linac is able to provide a high-rate acceleration of short beam bunches, which can be 

delivered by the RFQ linac. 

In this report, a sequence of drift-tube gaps is treated as periodical arrays of focusing 

and defocusing lenses for both longitudinal and radial motion. Besides of periodical sign-

variable forces, these lens arrays provide non-zero average focusing forces. This means that 

distribution of periodical forces has an asymmetry. The asymmetry of the periodical forces 

allows to increase a portion of stable particles, because an operating point is shifted to a 

center of stability diagram. Following to the A-APhF concept, the average force for the 

longitudinal motion is defocusing, and the average force for the radial motion is focusing.  

To analyze the A-APhF lens array, several approaches can be applied, e.g. a smooth 

approximation method, Matiew-Hill equations with one or several harmonics of a focusing 

force or a step-wise presentation of the focusing force. In this report, step-wise approach of 

the focusing force is used. With a concept of an equivalent accelerating wave [13], every RF 

gap is treated as a single thick lens with constant force. 

Let’s consider a general case of the phase sequence on the period of the phase 

excursion, gg
ss
Nn ϕϕ Κ . The number of drift-tube gaps in one focusing period is denoted as gN . 

The focusing period of APhF linac fL  coincides with the period of phase excursions. The 

phase sequence can be written as the step-wise function ( ) ( )τϕϕτϕ ~
s += . The variable part of 

the phase-alternating function ( )τϕ~  is constant within the every gn -th accelerating period. 

Following the notation adopted in papers [11-13], one can derive the motion equations 

for phase deviation ψ  and radial position r  using longitudinal coordinate sZ  as an 

independent variable. Let’s introduce a dimensionless independent variable fs LdZd =τ  and 
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 dimensionless radial position fLr=ρ . Small phase deviations ψ  and a linear 

radial motion can be expressed by the following Matiew-Hill equations:  

( )
( )




=⋅+
=⋅+

0
0

22

22

ρττρ
ψττψ

ρ

ψ

Pdd
Pdd

,                                            (3-1) 

where the periodical step-wise functions ( ) ( )1+≡ ττ ψψ PP  and ( ) ( )1+≡ ττ ρρ PP  are given by  

( ) ( )[ ]τϕϕτψ
~sin2 +⋅= BP ,                                                (3-2 ) 

( ) ( )[ ]ψτϕϕτρ ++⋅−= ~sinBP ,                                          (3-2) 

with the focusing strength B  given by  

( ) 2
32

s

2

s

f

s
2
m 1 β

λββ
λπ

−







=

L
cm
qEB
o

.                                         (3-4) 

In the equation (3-4), mE  denotes the amplitude of an equivalent accelerating wave, 

which can be expressed as a product of an average electrical field in the accelerating cell and 

the transit-time factor, i.e., TEE 0m = . 

The above motion equations (3-1) are the Matiew-Hill equations with periodical step-

wise functions. They have been solved using a matrix technique, which is well known in the 

linear accelerator theory [14]. To analyze solutions of these equations it is convenient to use 

the so-called Smith-Gluckstern stability diagrams. The RMS and average values of functions 

( )τψP  and ( )τρP  have been used to build stability diagrams. The stability diagrams can be 

built for the integer even numbers of 2g ≥N .  

In the matrix formalism, the matrices of the focusing period are obtained by 

multiplying in proper order the corresponding matrices of every drift-tube gap. The product 

matrix of the symmetrical focusing period is of the form [13] 













−
=

µµν
ν
µµ

cossin

sincos
fM .                                                       (3-5) 

In APhF linacs for heavy ions the number of RF gaps in focusing period 2g >>N  [3]. 

In our design, the number gN is more than 10. The matrices of the focusing period have been 

calculated numerically. The stability diagrams have built using procedures of the 

mathematical package MAPLE V [15].  

Figure 8 shows dependence of synchronous phase within a focusing period ( )τϕs , the necktie 

stability diagram for longitudinal and transverse motion, and a radial stability diagram with 
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 non-synchronous particles at the injection energy. Figure 8,b and Figure 8,c are 

built on the radial plane { }RMS; ρρ PP . The circle and cross marks are used to show 

positions of position of synchronous and non-synchronous particles, respectively. For the 

strong focusing it is quit usual to ask that the representative point should stay inside the stable 

region for all captured ions at all times. In Fig. 8,b, the operating point is near the intersection 

of the curves 0cos L =µ  and 0cos R =µ . 

According to the equations 3-4, with increasing the particle velocity, the focusing 

strength B  is decreased. For the “constant-voltage” design with sm 1 β∝E , the focusing 

strength B  decreases faster as ( ) 2
ss

2
g ββNB ∝ , and for the “gradient-voltage” design with a 

constant mE , the focusing strength B  decreases slowly as ( ) ss
2
g ββNB ∝ . 

To keep the focusing strength and a position of operating point in the center of 

stability diagram, it is necessary to increase gN  along the whole structure. The number gN  

should be changed slowly in the case of the “gradient-voltage” design ( sg β∝N ) in a 

comparison with the “constant-voltage” design ( ( ) ssg ββ ∝N ). Figure 9 shows the dependence 

of gN  on the particle energy along whole APhF structure for both our designs. 

In paper [6], it is recognized, that when the number gN  changes abruptly, there are a 

serious mismatch of either or both the transverse and longitudinal motion, which lead to a 

growth of the beam emittance. The authors are pointed out, that it is necessary to devise some 

method to change gN  adiabatically, or construct some alternate method of phase space 

matching, to eliminate the emittance growth.  

In the reference [12], several tables with parameters of A-APhF linacs are presented. 

Those APhF designs use non-integer values of gN . Although it is not explicitly written in the 

paper text, one may assume that number gN  change continuously in those A-APhF designs. 

We have decided to use the number gN  as a floating-number function of the particle velocity 

in mathematical procedures of generating APhF accelerating cells, i.e., ( )sgg βNN α . 
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4. Generation of APhF drift-tube structure 

Table 2 shows main steps during process of generation and analysis of APhF linac. 

These steps include the choice of the operation point on the stability diagram, the application 

of some theoretical approach to the RF field in the accelerating cells, generating drift tube 

sizes, and beam tracing. For every step, several options are available. The double line in 

Table 2 shows our choice from possible options. 

The parameters of our APhF designs have been essentially determined by a 

requirement to keep a position of operating point in the center of stability diagram and by an 

applying restrictions on the RF field parameters described in Section 2. The procedure of the 

stability analysis with a help of Smith-Gluckstern stability diagrams for Matiew-Hill equation 

has been outlined in the previous section. On this step, the concept of equivalent accelerating 

wave has been used as a theoretical approach to the RF field in the drift-tube gaps. 

For both our designs the stability diagrams have been built throughout whole linacs at 

even numbers gN . The phase advances of the longitudinal and transverse oscillations on the 

length of the focusing period for both our designs are shown in Fig. 10. During arrangement 

of operating points on stability diagrams, the linac parameters have been calculated at even 

numbers gN . Then, linac parameters have been interpolated as a function of the particle 

velocity. Using these dependences, drift-tube generation procedure has been performed. 

Several analytical and numerical procedures for a generation of geometric dimensions 

of drift-tube linacs are known, e.g. Ref. [16,17]. Basically, these algorithms have been 

developed for conventional Alvarez-type linacs, where drift-tube lengths monotonically 

increase along the linac and the cell length is equal to λβsh , where h  is the harmonic 

number. For example, the Swenson’s algorithm [16] for Alvarez cells uses combination of 

analytical formulae and numerically calculated moments of the field distribution along the 

accelerating cells (also known as transit-time coefficients). Due to large alternations of the 

synchronous phase in APhF linac, the length of accelerating cells excurse periodically around 

λβsh -value. As result, some Swenson’s constrains are not fulfilled well in the case of APhF.  

To avoid systematic errors in calculations of the drift-tube lengths coming from an 

analytical approaches, we have realized a numerical procedure based on a direct numerical 

solution of the motion equations. First, preliminary values of the cell lengths have been 

calculated using a simple numerical iterative process described in Ref. [17]. It is based on 

Panofsky’s eq. (2-1) and performs iterations to the average value of the particle velocity 
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 within every accelerating cell. Second, the gap center is shifted to ensure the 

programmed value of the synchronous phase. Finally, the drift tube dimensions 

have been additionally corrected with a numerical integration of the motion equations, which 

have been solved by the Runge-Kutta method. The electrical fields in the gaps have been 

calculated using a linear interpolation of the potential between drift-tubes at the radius ar = .  

Electrical fields in the acceleration gap have been be derived in the electrostatic 

approach, which is usually used for low-energy linacs [17]. Electrical field is calculated as a 

gradient of the potential, UE −∇=
ρ

. The potential inside the cylindrical volume is presented 

as Fourier-Bessel series with the period λβs=L : 

∑




























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
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



+=

j
jj a

L
jIz

L
jBz

L
jAr

L
jIUzrU ππππ 22sin2cos2),( 000      (4-1) 

Using a given potential distribution on the cylindrical surface ar = , the coefficients 

of the series are defined using the numerical harmonical analysis. The potential values at 

ar =  can be calculated using some numerical code, e.g., POISSON code. Examples of the 

field calculations with POISSON code have been presented in Section 2. For a fast beam 

dynamics simulations we used a linear approach to the potential distribution on the cylindrical 

surface ar = , which is widely used in linac codes [18].  

To avoid time-consuming numerical calculations of Fourier-Bessel series, we used a 

paraxial approximation to the potential. In paraxial approximation, the axially symmetrical 

potential is expressed by the series 

( ) ( ) ( ) ( )
( )

( )( )zUr
n

zUrzUzrU n
n

n

n

,0
2!

1,0
2

,0, 2
2

2

2







−

++′′−≅ Κ ,                     (4-2) 

where the function ),0( zU  is the potential distribution on the axis 0=r . This function is 

calculated using a cubic-spline interpolation for the values of ),0( nzU , which has been 

calculated from the above Fourier-Bessel series for potential.  

The synchronous phase and the reference particle energy vs cell number for the 

“constant-voltage” design and for the “gradient-voltage” design are shown in Fig. 11. The 

“gradient-voltage” design with 48 RF gaps and total length 2.137 m is almost twice shorter 

then the “constant-voltage” design with 88 RF gaps and total length 4.213 m. Parameters of 

accelerating cells for both designs are presented in Table 3 and Table 4. 
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5. Beam dynamics simulations 

In order to obtain the characteristics of an accelerated beam, numerical beam 

dynamics simulations have been performed. We have used the beam dynamic code DYN1 

written by Kapin. This code has been previously tested for RFQ structures and showed a good 

agreement with PARMTEQ code. This code simulates the motion of particles without space-

charge effects between particles of the beam. The motion equations are solved by the 

numerical integration using the Runge-Kutta method. The external fields are formulated in a 

quasi-static approximation: 

)cos();cos( ~~
BE tt Ψ++=Ψ++= == ωω BBBEEE

ρρρρρρ
,                                   (5-1) 

where the electromagnetic fields E
ρ

 and B
ρ

 are the sums of static ( == BE
ρρ

, ) and time-variable 

components ~~ ,BE
ρρ

 with an angular frequency ω .  

The following notation of the motion equations in RF electrical fields is used by 

DYN1 code: 
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where tωϕ =  is the particle phase; cvzz =β  is the relative particle velocity; c  is the 

velocity of light; iZ  and iA  are the charge state and atomic number of ion, respectively; ; pq  is 

the elementary charge; amum is the mass of nucleon; { }zyx EEE ,,  are the components of the RF 

electric field; ( ) 2121 −
−= zz βγ  is the Lorentz factor. The beam dynamics in APhF has been 

calculated under the non-relativistic approximation, 1≈zγ . 

The results of beam dynamics simulations for the “constant-voltage” design are 

presented in Fig.12-16. The longitudinal acceptance of particles moving along the axis and 

the energy spectrum of passed particles are shown in Fig. 12. The phase capture is about 

30 degrees. This is a typical value for A-APhF linacs [11,12]. For example, and GSI’s 

design [3] has a similar longitudinal capture. The almost all captured particles reach the given 

output energy  MeV/u4=W . Energy spectrum has a sharp peak at this energy.  
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 Fig. 13 shows transverse acceptances of the “constant-voltage” design. 

Due to the strong coupling of the longitudinal and transverse motions, the 

transverse acceptance of APhF linac depends of the longitudinal parameters of the beam. 

Several transverse acceptances for particular longitudinal parameters of the beam are shown 

in Fig. 13. The shapes of particular transverse acceptances are very different.  

Usually, the so-called effective acceptance is defined. It is a common area of 

particular acceptances. The transverse effective acceptance is equal to mrad  mm 15π ×  (GSI 

case [3] mrad  mm π13 × ). To ensure the radial stability of the particles injected within the 

longitudinal acceptance, the radial emittance of the injected beam should be less or equal to 

the effective radial acceptance. Thus, emittance of beam injected into the APhF linac from the 

RFQ is determined by acceptances shown in Fig. 12 and Fig. 13. 

The dependence of the beam transmission on the relative voltage amplitude in IH-

APhF tank for the “constant-voltage” design is shown Fig. 14. The emittances of the injected 

beam determined above are shown in Figure 15. The results of Fig. 14 show that the beam 

transmission of the injected beam can reach 85 %. Also, Fig. 14 demonstrates that the APhF 

structure is very sensitive to a small voltage deviation of order 1%. 

Figure 16 shows the transverse and longitudinal emittances of the passed particles for 

the “constant-voltage” design. The transverse emittance of the output is about mrad  mm π8 × . 

The phase portrait of the beam in the longitudinal phase-space has a long tail smearing over 

about 50 degrees. The energy spread is about %8.0±≈∆ WW . The requirement for the 

energy spread of output beam is %4.0±≤∆ WW . In order to reduce the energy spread of 

output beam, a phase-space portrait of beam should be “rotated”. It can be done by scaling the 

amplitude of the phase law (Fig.11,a) with the coefficient 0.95. A new structure consisting of 

86 cells provides a beam with a smaller energy spread (see Fig. 16) %4.0±≈∆ WW , which 

is close to the above-required value. 

Some results of beam dynamics simulations for the “gradient-voltage” design are 

presented in Fig. 17. In comparison with the “constant-voltage” design, the longitudinal 

acceptance is a little bit larger, the longitudinal emittance of output beam is smaller, and the 

beam transmission is higher (92%). In view point of beam dynamics a short “gradient-

voltage” design is more attractive than the “gradient-voltage” design. 
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6. Effects of Random Errors 

The APhF is based on the principle of the strong focusing for both the longitudinal 

and the transverse motion. It is know that a serious problem to the strong focusing is an 

extreme sensitivity to random errors in the positions and strength of the lens elements [14]. In 

the case of the APhF, there is a strong dependence of a beam quality on small drift-tube 

misalignments along structure and on fluctuations of the gap voltages about programmed 

values [3,7]. 

Analytical approaches for the calculation of induced oscillations due to random errors 

in strong focusing linacs have been developed in Ref. [13,14,17]. According to these 

approaches, the mean-square induced amplitude rmsAδ  determines the level of permissible 

errors. rmsAδ  is the sum of the mean-square contributions of Ξ  individual lens 

elements rmsaδ : 

rmsrms aA δδ ⋅Ξ= .                                                   (6-1) 

Thus, the structure with a smaller number of the individual lenses is less sensitive to 

random errors. This means that the “constant-voltage” design with 88=Ξ  may provide a 

larger amplitude of the random oscillations than the “gradient-voltage” design ( 48=Ξ ).  

The amplitude rmsaδ  has a factor ν1 , i.e. inversely proportional to the amplitude 

coefficient ν  determined by the matrix of the focusing period (3-5). The quantity ν  is 

generally small, approaching to zero value at the boundaries of the stability diagram. This 

means that effects of random errors become more serious when the position of an operating 

point on the stability diagram is near the boundaries. To reduce effects of random errors the 

operating point should stay within a center of the stable area. 

The analytical formulae for effects of random errors in an accelerator with focusing by 

an axial-symmetrical accelerating field have been derived by V.K. Baev and are presented in 

Ref. [7]. The formulae can be used for APhF linac, which is a kind of the focusing by an 

axial-symmetrical accelerating field.  

The radial induced amplitude rarmsδ contributed by random errors in drift-tube 

positions rδ  and amplitudes of the electrical fields in gaps Eδ  can be evaluated as [7]: 
2

2
max

2

g
2

22
f

rms 246 E
r

r

r R
N

La δδ
νλ

δ +
Ω

= ,                                             (6-2) 

                                  with 3
ssm

2 sin βϕπA=Ω  and 2
0mm m cqEA λ= ,  

where λβsf hNL g=  is the length of the focusing period, rν  is an amplitude coefficient for 

radial motion. Let’s evaluate the level of permissible errors for the “constant-voltage” design 
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 ( 88=Ξ ) with parameters given at the injection energy, i.e., 10g =N , 

maxR =5 mm, 03.0s =β , 2s πϕ = , 6m =E  MeV/m, 9.0=rν .  
For the position displacements rδ =100µ m, the mean-square induced amplitude rmsAδ  

is about 0.5mm at an amplitude fluctuations Eδ =5%, and rmsAδ  is about 1 mm at Eδ =10%. At 

displacements rδ =500 µ m and amplitude fluctuations Eδ =10%, the mean-square induced 

amplitude rmsAδ  is large (about 2mm) and may lead to the considerable beam loss.  

One may conclude, that the level of permissible errors for the drift-tube displacements 

is up to several 100 µ m and for the fluctuations of the gap voltages is about 5-10 %. A 

careful technology for mechanical assembling and RF measuring can ensure these levels of 

precision. The more detailed study of the effects of random error requires additional beam 

dynamics simulations and is not considered in this report. 

 

7. Feasibility of a gradient-type voltage in IH-cavity 
The “gradient-voltage” design has some advantages. However, the realization a 

gradient type of the voltage distribution in IH-cavity might be difficult. It requires special 

tuning elements and may affect on value of the shunt impedance. The detailed studies of such 

tuning procedure and its influence on the shunt impedance can be found in papers [19,20]. 

Several IH-type linacs use a gradient-type voltage distribution [8,21]. The very close 

example for our design is the GSI 7 MeV/u 217 MHz IH-type KONUS linac [8], which uses a 

gradient type of the voltage distribution. In this GSI linac, the gap voltage is ramped from 

200 kV to 480 kV along the 3.8 m long structure. 

The preliminary calculations by Microwave Studio code [22] has been performed for 

the cavity with the total length 2 m. Drift tube structure has uniform parameters: the gap 

length is 1 cm and the drift-tube length 4 cm. Figure 18 shows the internal layout of resonator 

and Fig. 19 shows the voltage distributions along the cavity. The voltage amplitude increases 

about 3 times along the cavity and differs from an ideal dependence. The beam dynamics 

calculations for an realistic voltage distribution will be performed in the near future. 
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 Table 1. The injector linac specification 

 

Total length of “RFQ+APhF” tanks < 5 m 

  

Ion species 12C+4  

  

RFQ linac  

         Tank length < 2 m 

         Frequency (wavelength) 200 MHz (1.49 m) 

         Input/Output energy 8 / 400-500 keV/u 

         Max. surface field 236 kV/cm(1.6 Kilpatrick) 

         Peak rf power  < 100 kW 

  

APhF linac  

         Tank length 2-3 m 

         Frequency  200 MHz  

         Input energy 400-500 keV/u 

         Output energy 4 MeV/u 

         Max. surface field  236 kV/cm (1.6 Kilpatrick) 

         Internal corner radius of DT >2 mm 
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Table 2. Design steps for APhF linac 
Operating point analysis – 

Stability diagram 

Theoretical Approach to the RF field in cells Generating drift tube structure Beam tracing RF Voltage in 

RF resonator 

Kushin’s (1970) approximation 

with 10s ϕϕϕ ±=  

Concept of an equivalent accelerating wave 

(Average field and Transit-time Factor) 

Swenson; Kapchinskii 

(Panofsky equation: 

scell0s cosϕTLqEW =∆ ) 

Semi-analytical particle tracing 

– map’s multipliation 

Smith-Gluckstern diagram for step-

wise Hill-Matiew equation (heavy 

ions ( )zϕϕ ≈s  - 2g >>N )  

Square-wave approximation 

(constant field in the gap) 

Swenson; Murin-text book:  

analytical formulae  

Semi-analytical particle tracing 

– map’s multipliation (MRTI; 

MEPhI) 

Linear paraxial 

approximation with 

splines 

Correcting synchronous phase in cells 

created by analytical procedure with 

accelerating wave  

Numerical integration  

(Runge-Kutta method) 
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Matiew equation 

(Okamoto, 1989)  
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Table 3. Cell parameters for the “constant-voltage” design 
Cell 
No gU , V cellL , m entrl , m gl , m exitl , m a , m sφ , deg
1 173000 0.0224 0.0034 0.011 0.008 0.005 -60.0 
2 173000 0.0276 0.0075 0.011 0.009 0.005 -28.0 
3 173000 0.0294 0.0085 0.011 0.010 0.005 9.0 
4 173000 0.0301 0.0096 0.011 0.009 0.005 49.8 
5 173000 0.0294 0.0094 0.011 0.009 0.005 78.4 
6 173000 0.0256 0.0090 0.011 0.006 0.005 99.6 
7 173000 0.0221 0.0056 0.011 0.005 0.005 73.7 
8 173000 0.0214 0.0055 0.011 0.005 0.005 45.2 
9 173000 0.0220 0.0048 0.011 0.006 0.005 3.8 
10 173000 0.0242 0.0058 0.011 0.007 0.005 -27.4 
11 173000 0.0260 0.0069 0.011 0.008 0.005 -49.0 
12 173000 0.0298 0.0077 0.011 0.011 0.005 -65.4 
13 173000 0.0334 0.0107 0.011 0.012 0.005 -47.6 
14 173000 0.0347 0.0111 0.011 0.013 0.005 -28.5 
15 173000 0.0375 0.0120 0.011 0.014 0.005 -5.2 
16 173000 0.0381 0.0140 0.011 0.013 0.005 33.5 
17 173000 0.0367 0.0128 0.011 0.013 0.005 52.7 
18 173000 0.0367 0.0128 0.011 0.013 0.005 67.7 
19 173000 0.0349 0.0128 0.011 0.011 0.005 80.6 
20 173000 0.0325 0.0110 0.011 0.010 0.005 73.5 
21 173000 0.0320 0.0104 0.011 0.011 0.005 59.3 
22 173000 0.0320 0.0105 0.011 0.010 0.005 43.6 
23 173000 0.0306 0.0103 0.011 0.009 0.005 23.5 
24 173000 0.0319 0.0090 0.011 0.012 0.005 -12.2 
25 173000 0.0352 0.0114 0.011 0.013 0.005 -27.1 
26 173000 0.0368 0.0124 0.011 0.014 0.005 -36.3 
27 173000 0.0383 0.0130 0.011 0.014 0.005 -42.3 
28 173000 0.0403 0.0138 0.011 0.015 0.005 -43.6 
29 173000 0.0418 0.0150 0.011 0.016 0.005 -37.0 
30 173000 0.0426 0.0153 0.011 0.016 0.005 -30.5 
31 173000 0.0436 0.0157 0.011 0.017 0.005 -23.3 
32 173000 0.0484 0.0164 0.011 0.021 0.005 -13.8 
33 173000 0.0495 0.0206 0.011 0.018 0.005 27.5 
34 173000 0.0462 0.0176 0.011 0.018 0.005 40.3 
35 173000 0.0458 0.0173 0.011 0.018 0.005 47.3 
36 173000 0.0459 0.0173 0.011 0.018 0.005 52.4 
37 173000 0.0461 0.0174 0.011 0.018 0.005 56.5 
38 173000 0.0457 0.0175 0.011 0.017 0.005 59.8 
39 173000 0.0452 0.0170 0.011 0.017 0.005 57.0 
40 173000 0.0454 0.0171 0.011 0.017 0.005 53.5 
41 173000 0.0457 0.0172 0.011 0.018 0.005 49.5 
42 173000 0.0457 0.0173 0.011 0.018 0.005 44.6 
43 173000 0.0405 0.0172 0.011 0.012 0.005 37.4 
44 173000 0.0406 0.0120 0.011 0.018 0.005 -10.6 
45 173000 0.0469 0.0171 0.011 0.019 0.005 -21.8 
46 173000 0.0486 0.0183 0.011 0.019 0.005 -26.8 
47 173000 0.0495 0.0188 0.011 0.020 0.005 -30.0 
48 173000 0.0503 0.0192 0.011 0.020 0.005 -32.1 
49 173000 0.0511 0.0196 0.011 0.021 0.005 -33.7 
50 173000 0.0521 0.0199 0.011 0.021 0.005 -34.5 
51 173000 0.0530 0.0206 0.011 0.022 0.005 -32.5 
52 173000 0.0536 0.0209 0.011 0.022 0.005 -30.6 
53 173000 0.0542 0.0211 0.011 0.022 0.005 -28.6 
54 173000 0.0549 0.0215 0.011 0.022 0.005 -26.3 
55 173000 0.0559 0.0218 0.011 0.023 0.005 -23.4 
56 173000 0.0645 0.0225 0.011 0.031 0.005 -18.3 
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Cell 
No gU , V cellL , m entrl , m gl , m exitl , m a , m sφ , deg
57 173000 0.0650 0.0306 0.011 0.023 0.005 37.2 
58 173000 0.0573 0.0231 0.011 0.023 0.005 42.0 
59 173000 0.0572 0.0229 0.011 0.023 0.005 44.1 
60 173000 0.0574 0.0230 0.011 0.023 0.005 45.4 
61 173000 0.0577 0.0231 0.011 0.024 0.005 46.1 
62 173000 0.0580 0.0233 0.011 0.024 0.005 46.5 
63 173000 0.0583 0.0235 0.011 0.024 0.005 46.8 
64 173000 0.0584 0.0236 0.011 0.024 0.005 46.4 
65 173000 0.0587 0.0236 0.011 0.024 0.005 45.2 
66 173000 0.0591 0.0239 0.011 0.024 0.005 44.1 
67 173000 0.0595 0.0240 0.011 0.024 0.005 42.9 
68 173000 0.0598 0.0242 0.011 0.024 0.005 41.6 
69 173000 0.0603 0.0245 0.011 0.025 0.005 40.0 
70 173000 0.0598 0.0245 0.011 0.024 0.005 37.9 
71 173000 0.0517 0.0244 0.011 0.016 0.005 33.0 
72 173000 0.0526 0.0163 0.011 0.025 0.005 -20.4 
73 173000 0.0617 0.0251 0.011 0.026 0.005 -23.3 
74 173000 0.0627 0.0257 0.011 0.026 0.005 -24.9 
75 173000 0.0633 0.0260 0.011 0.026 0.005 -26.1 
76 173000 0.0637 0.0262 0.011 0.026 0.005 -26.9 
77 173000 0.0643 0.0266 0.011 0.027 0.005 -27.7 
78 173000 0.0648 0.0268 0.011 0.027 0.005 -28.3 
79 173000 0.0653 0.0269 0.011 0.027 0.005 -28.8 
80 173000 0.0660 0.0272 0.011 0.028 0.005 -28.8 
81 173000 0.0665 0.0275 0.011 0.028 0.005 -28.3 
82 173000 0.0671 0.0277 0.011 0.029 0.005 -27.7 
83 173000 0.0673 0.0277 0.011 0.029 0.005 -27.0 
84 173000 0.0681 0.0281 0.011 0.029 0.005 -26.2 
85 173000 0.0686 0.0282 0.011 0.030 0.005 -25.1 
86 173000 0.0692 0.0283 0.011 0.030 0.005 -23.7 
87 173000 0.0703 0.0286 0.011 0.031 0.005 -21.6 
88 173000 0.0697 0.0296 0.011 0.029 0.005 -16.1 

The total length is 4.213 m 
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Table 4. Cell parameters for the “gradient-voltage” design 
Cell 
No gU , V cellL , m entrl , m gl , m exitl , m a , m sφ , 

deg 
1 175300 0.0226 0.0035 0.0111 0.0080 0.005 -59.8
2 181800 0.0277 0.0072 0.0116 0.0089 0.005 -27.9
3 190800 0.0298 0.0081 0.0121 0.0096 0.005 10.7
4 198600 0.0304 0.0090 0.0126 0.0087 0.005 53.0
5 202300 0.0290 0.0086 0.0128 0.0076 0.005 81.9
6 202600 0.0251 0.0075 0.0129 0.0047 0.005 94.5
7 204100 0.0221 0.0046 0.0130 0.0045 0.005 67.5
8 210000 0.0213 0.0043 0.0133 0.0037 0.005 36.2
9 218900 0.0224 0.0031 0.0139 0.0054 0.005 -10.0
10 228000 0.0252 0.0046 0.0145 0.0061 0.005 -38.2
11 234600 0.0289 0.0054 0.0149 0.0086 0.005 -59.0
12 240500 0.0332 0.0078 0.0153 0.0101 0.005 -52.0
13 248100 0.0358 0.0092 0.0158 0.0109 0.005 -31.2
14 257700 0.0394 0.0098 0.0164 0.0132 0.005 -6.5
15 267000 0.0402 0.0123 0.0170 0.0109 0.005 38.8
16 274000 0.0382 0.0104 0.0174 0.0104 0.005 57.4
17 278700 0.0371 0.0101 0.0177 0.0093 0.005 70.0
18 282300 0.0350 0.0090 0.0179 0.0081 0.005 70.2
19 287000 0.0340 0.0078 0.0182 0.0080 0.005 57.0
20 293900 0.0315 0.0076 0.0187 0.0053 0.005 41.3
21 303200 0.0321 0.0046 0.0193 0.0082 0.005 -2.7
22 313400 0.0368 0.0072 0.0199 0.0097 0.005 -23.7
23 322900 0.0396 0.0087 0.0205 0.0104 0.005 -33.1
24 331500 0.0421 0.0093 0.0211 0.0117 0.005 -38.8
25 340100 0.0447 0.0106 0.0216 0.0125 0.005 -35.9
26 349200 0.0464 0.0113 0.0222 0.0130 0.005 -29.4
27 359000 0.0524 0.0118 0.0228 0.0179 0.005 -21.5
28 369000 0.0553 0.0167 0.0234 0.0152 0.005 21.5
29 378200 0.0519 0.0143 0.0240 0.0136 0.005 41.5
30 385900 0.0508 0.0129 0.0245 0.0134 0.005 47.7
31 393000 0.0510 0.0128 0.0249 0.0133 0.005 51.4
32 399600 0.0509 0.0127 0.0254 0.0128 0.005 52.6
33 406500 0.0510 0.0123 0.0258 0.0130 0.005 49.3
34 413900 0.0516 0.0124 0.0263 0.0130 0.005 45.4
35 421900 0.0447 0.0124 0.0268 0.0056 0.005 39.9
36 431300 0.0455 0.0048 0.0274 0.0133 0.005 -16.6
37 441500 0.0547 0.0122 0.0280 0.0145 0.005 -24.8
38 451300 0.0570 0.0134 0.0286 0.0150 0.005 -27.5
39 460900 0.0586 0.0139 0.0293 0.0155 0.005 -28.7
40 470500 0.0603 0.0143 0.0299 0.0161 0.005 -29.1
41 480100 0.0618 0.0149 0.0305 0.0165 0.005 -27.6
42 489900 0.0631 0.0152 0.0311 0.0168 0.005 -26.1
43 499800 0.0646 0.0155 0.0317 0.0173 0.005 -24.4
44 509800 0.0759 0.0160 0.0324 0.0276 0.005 -22.0
45 519400 0.0774 0.0263 0.0330 0.0181 0.005 34.8
46 528200 0.0687 0.0172 0.0335 0.0180 0.005 38.9
47 536600 0.0693 0.0170 0.0341 0.0182 0.005 40.8
48 544800 0.0697 0.0173 0.0346 0.0179 0.005 42.5

The total length is 2.137 m 
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a) 

 
b) 

Fig. 1. Voltage distribution along the APhF structure as a function of relative particle 

velocity: a) design with a constant voltage; b) design with a gradient voltage 

 

 

 
a) 

 
b) 

Fig. 2. Distribution of the gap factor λβα sgg l=  along the APhF structure as a 

function of relative particle velocity: a) the design with a constant voltage distribution; b) the 

design with a gradient voltage distribution. 
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a) 

 

 

 
b) 

 

Fig. 3. Electrical fields in the first accelerating cell calculated by POISSON code: a) 

Cross-section of accelerating cell, lines of equal potentials and electrical field arrows; b) The 

relative distribution of the electrical field amplitude along the surface of the left drift tube as a 

function of the mesh points SN . 
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a) 

 
b) 

 

 
c) 

 

Fig. 4. The dependence of transit-time-factor on the aperture radius and the gap factor: 

a) The dependence of the longitudinal coefficient ( )αLT on the gap factor, gα  at injection 

energy; b) The dependence of the radial coefficient ( )aTR  on the aperture radius, a  at the 

injection energy injW ; c) The dependence of the transit-time factor T  on aperture radius at 

the injection energy injW  and at the energy inj2WW = . 
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a) 

 

 
b) 

Fig. 5. The potential and field distributions along the 1st accelerating cell at the 

injection energy: a) V , E , zE , and rE  distributions at the aperture radius ar = ;  

b) V , zE , and rE  distributions along the cell axis 0=r . 
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a) 

b) 

c) 

Fig. 6. Electrical fields calculated by POISSON code for the last accelerating cell of 

the “constant-voltage” design: a) Cross-section of accelerating cell, equipotential lines and 

electrical field arrows; b) V , E , zE , and rE  distributions at the aperture radius ar = ;  

c) V , zE , and rE  distributions along the cell axis 0=r . 
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a) 

b) 

c) 

Fig. 7. Electrical fields calculated by POISSON code for the last accelerating cell of 

the “gradient-voltage” design: a) Cross-section of accelerating cell, equipotential lines and 

electrical field arrows; b) V , E , zE , and rE  distributions at the aperture radius ar = ;  

c) V , zE , and rE  distributions along the cell axis 0=r . 
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a) 

 
b) 

 
c) 

Fig. 8. Stability of motion at the injection energy: a) dependence of synchronous phase 

within a focusing period; b) the necktie stability diagram for longitudinal and transverse 

motion; c) a radial stability diagram with non-synchronous particles at the injection energy. 
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Fig. 9. The number of gaps in the focusing period gN  vs the particle energy along the 

whole APhF structure for the “constant-voltage” design (solid line) and for the “gradient-

voltage” design (dashed line). 
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Fig. 10. The phase advances of the longitudinal (left axis, solid line) and transverse 

(right axis, dashed line) oscillations on the length of the focusing period for the “constant-

voltage” design (circular mark) and for the “gradient-voltage” design (rhombus mark). 
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Fig. 11. The synchronous phase and the reference particle energy versus the cell 

number for the “constant-voltage” design (a) and for the “gradient-voltage” design (b). 
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a) 

 
b) 

Fig. 12 The longitudinal acceptance of particles moving along the axis for the 

“constant-voltage” design: a) the phase space area occupied by passed particles;  

b) the energy spectrum of passed particles.  
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Fig. 13 Transverse particular acceptances and an effective acceptance for the 

“constant-voltage” design.  
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Fig. 14. The beam transmission versus the relative voltage amplitude in IH-APhF tank 

for the “constant-voltage” design. . 
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Fig. 15. The emittance of the injected beam for the “constant-voltage” design. 
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a) 

b) 

c) 

Fig. 16 The emittance of the passed particles for the “constant-voltage” design:  

a) the transverse emittance; b) the longitudinal emittance; c) the longitudinal emittance after a 

scaling of the phase law for energy spread minimization. 
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a) 

 

 
b) 

Fig. 17. The longitudinal phase-space for the “gradient-voltage” design:  

a) the longitudinal acceptance for particles moving along the axis; b) the longitudinal 

emittance of the output beam for the injected beam shown in Fig. 15. 
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Fig. 18. The internal layout of IH-resonator with length 2 m. 

 

 

 

 

 
Figure 19. The voltage distribution along the IH-cavity. 

 


